
Guided Synthesis of Control Programs Using UPPAAL
�

Thomas Hune
BRICS

�
, Department of Computer Science

Aarhus University
Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark
E-mail: baris@brics.dk

Kim G. Larsen Paul Pettersson
BRICS

�
, Department of Computer Science,

Aalborg University
Fredriks Bajersvej 7E,

DK-9220 Aalborg East, Denmark
E-mail: � kgl,paupet � @cs.auc.dk

Abstract

In this paper we address the problem of scheduling and syn-
thesizing distributed control programs for a batch production
plant. We use a timed automata model of the batch plant and
the verification tool UPPAAL to solve the scheduling problem.
The plant model aims at faithfully reflecting the level of ab-
straction required for synthesizing control programs from gen-
erated timed traces. Therefore it quickly becomes too detailed
and complicated for automatic synthesis. To solve this prob-
lem we present a general way of adding guidance to a model
by augmenting it with additional guidance variables and dec-
orating the transitions with extra guards. Applying this tech-
nique have made synthesis of control programs feasible for a
plant producing as many as 60 batches. In comparison, we
could only handle plants producing two batches without using
guides.

The synthesized control programs have been executed in
a physical plant. This proved useful in validating the plant
model and in finding some modeling errors.

Keywords: real-time verification, guided model-checking,
scheduling, program synthesis, distributed systems.

1 Introduction

In this paper we suggest a solution to the problem of syn-
thesizing and verifying valid control programs for resource
allocation, based on a batch plant of SIDMAR [3, 5]. We
model the plant as a network of timed automata, with the dif-
ferent components of the plant (e.g. batches, recipes, casting
machine, cranes, etc.) constituting the individual timed au-
tomata. The scheduling problem is formulated as a reachabil-
ity question allowing us to apply the real-time model-checking�

This work is partially supported by the European Community Esprit-LTR
Project 26270 VHS (Verification of Hybrid systems).�

Basic Research In Computer Science, Centre of the Danish National Re-
search Foundation.

tool UPPAAL [7, 8] to derive a schedule. An overview of the
methodology is shown in Figure 1.

UPPAAL offers a trace with actions of the model and timing
information of the actions. The remaining effort required in
transforming a model trace into an executable control program
depends heavily on the accuracy of the model with respect to
the control programming language and the physical properties
of the plant. Given a sufficiently high level of accuracy of the
plant model, a schedule can be obtained from a trace by pro-
jection and synthesizing the control program from a schedule
amounts to textual substitution. However, a model suitable for
such program synthesis becomes very detailed as all the nec-
essary information about the plant, such as the timing bounds
and the physical constraints for movements of loads, cranes
etc, have to be specified. As an immediate drawback, synthe-
sizing schedules for several batches quickly becomes infeasi-
ble.

To deal with this (unavoidable) problem we introduce a
method, allowing the user to guide the model-checking ac-
cording to certain chosen strategies. Each strategy will con-
tribute with a reduction of the search-space, but in contrast to
fully automatic reduction methods it is up to the users intu-
ition to ’guarantee’ preservation of schedulability. However,
if a schedule is identified via the guided search, the schedule
is indeed a valid one for the original model.

To be able to run the generated control programs in a phys-
ical plant, we consider a LEGO1 MINDSTORMS plant,
instead of the original plant of SIDMAR. We have used the
plant to successfully run synthesized control programs and to
increase our confidence in the plant model.

The rest of this paper is organized as follows: In the next
two sections we describe the scheduling problem and how it
has been modeled i n UPPAAL. In Section 4 and 5 we present
the guiding techniques and evaluate its effect on the plant
model. In Section 6 we describe experiments with the LEGO
plant and how programs are synthesized for the plant. Sec-

1See the web site http://www.lego.com/.

1

Plant Model

SIDMAR Plant

Schedule

LEGO Plant

Guided Plant Model

Control Program

Figure 1. Overview of methodology.

tion 7 concludes the paper. Finally, timed automata descrip-
tions of three plant components are enclosed in the appendix.

2 The Scheduling Problem

Our plant is based on a part of the SIDMAR steel produc-
tion plant located at Gent in Belgium. We will consider the
part of the plant between the blast furnace and the continu-
ous casting machine where molten pig iron is converted into
steel of different qualities. This is also a case study of the
VHS project2 (see [3, 5] for a description of the plant). Iron
is poured into ladles which are used for transportation during
the process. The iron is converted into steel by treatments in
different machines and finally casted in the casting machine.
Empty ladles must be moved to a storage place and then leave
the system. The physical components of the process are: two
converter vessels where molten iron is poured into ladles, five
machines, tracks connecting these, two cranes running on one
overhead track, a buffer place, a storage place for empty la-
dles, and one casting machine. The layout of the plant can be
seen in Figure 2.

The cranes can only hold one ladle and cannot overtake
each other. Also on each track and in each machine there is
room for at most one ladle. Only by using the crane the ladles
can ‘overtake’ each other. Machines number one and four are
of the same type and so are machines number two and five.

Because of the temperature of the steel there is an upper
bound on the time a batch is allowed to spend in the plant
from it is poured until it is casted. Casting of a ladle takes a
specified time and must be continuous so when casting of one
ladle has finished a new ladle must be waiting in the holding
place of the casting machine.

2See the web site http://www-verimag.imag.fr//VHS/-
main.html.

���

���

���

���

���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

continuous

machine
casting

place

storage

holding

place

convertor
vessel #2

machine#1

track#2

machine#2 machine#3

overhead
cranes

machine#4 machine#5

track#1

crane#2

crane#1

buffer

convertor
vessel #1

Figure 2. Layout of the plant.

Steel of different qualities can be produced depending on
which types of machines are visited and for how long. For
each batch this is decided by a recipe. The problem to be
solved can now be stated as: given an ordered list of quali-
ties of steel, if possible synthesize a control program for the
plant such that the qualities of steel are produced in the right
order and within a given time. A first step of solving this is to
find a schedule for the plant.

3 Scheduling with Timed Automata

The scheduling problem can be solved in a number of ways.
Here we use the real-time model checker UPPAAL [7, 8]3 (see
[5] for a discussion of this approach). The plant is modeled
using timed automata [2] allowing the scheduling problem to
be stated as a reachability question that can be analyzed by
UPPAAL. Timed automata are finite-state automata extended
with clock variables, and guards over the clocks (a part of a
timed automaton is shown in Figure 3). The result of a reacha-
bility analysis will be a trace defining a schedule for the plant.
This trace will be translated into a working program control-
ling the plant. To make the translation as straightforward as
possible, the produced trace should be as precise and detailed
as possible, especially with respect to timing information.

Central to the model of the plant is the automaton repre-
senting the behavior of a batch (see Figure 9 of the appendix)4.
The batch automaton reflects the topology as well as the phys-
ical constraints of the plant. Basically there is one location for
each position in the plant, a position being either a machine,

3See the web site http://www.uppaal.com/ for more information
about UPPAAL.

4Pictures of all the automata and the LEGO plant can be found at the
web site http://www.brics.dk/˜baris/CaseStudy/.

2

i1a

x<=bmove

i2 i2a

x<=bmove

k1

i1aa
x<=bmove

i2aa
x<=bmove

c1down

x==bmove,
posI[4]==0
posI[4]:=1,
posI[3]:=0

posI[5]==0

posI[5]:=1,
posI[4]:=0,
x:=0

b2right?

cAIup!

posI[3]==0

posI[3]:=1,
posI[4]:=0,
x:=0

b2left?
x==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

cIdown_end?
cBIup!

Figure 3. Part of the batch automaton.

the track between two machines, or a position on the overhead
track when a batch is picked up by a crane. For each track there
is one binary array used for storing which positions are occu-
pied. There is one clock associated with the batch automaton
used for ensuring that time passes when a batch is moving on
a track. All timing constants in the model are worst case times
for the movement. Figure 3 shows the part of the batch au-
tomaton modeling the position named i2, between machines
number one and two on track one. Moving between positions
is modeled in two steps. First a transition is taken to an inter-
mediate position, e.g. from i2 to i1aa, which resets the clock
of the automaton (in this case, the clock named x). The worst
case time for moving a batch between two positions is given
by the constant bmove. The invariants in location i1aa and
the guard on the transition leaving the location5 ensures that
exactly bmove time units passes in this location.

For each batch in the plant there is also an automaton mod-
eling the recipe (a recipe using machine type one and two is
shown in Figure 7 of the appendix). This defines which types
of machines should be visited, for how long, and the order
of the visits. When the batch is located at the right type of
machine it has the possibility to synchronize with the recipe
to have the machine turned on. When the specified time has
passed the recipe and the batch synchronize again to have the
machine turned off. The recipe also measures the overall time
a batch has spend in the plant.

There is one automaton for each crane with two locations
for each position a crane can be in, one representing the crane
being empty and the other the crane carrying a batch (a crane
automaton is shown in Figure 8 of the appendix). The time
consuming movements of a crane are modeled using a clock
and intermediate locations like in the batch automaton. In the
same way as in the batch automaton, there is also a binary

5The transition is not shown in the figure, it has the guard �����
�����
	��

like the transition from i1a to i2.

i1a

x<=bmove

i2 i2a

x<=bmove

k1

i1aa
x<=bmove

i2aa
x<=bmove

c1down

x==bmove,
posI[4]==0
posI[4]:=1,
posI[3]:=0

posI[5]==0,
next>m1,next<m4

posI[5]:=1,
posI[4]:=0,
x:=0

b2right?

next>m3

cAIup!

posI[3]==0,
next==m1

posI[3]:=1,
posI[4]:=0,
x:=0

b2left?
x==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

cIdown_end?

next>m3
cBIup!

Figure 4. Guided part of the batch automaton.

array for storing the positions occupied by the cranes. A crane
and a batch automaton synchronize when a batch is picked up,
moved, or set down.

Given a list of qualities of steel to be produced a model
of the plant consists of one batch automaton and one recipe
automaton for each quality of steel, two crane automata, an
automaton representing the casting machine, and one automa-
ton defining the list of qualities of steel. For example, a plant
model with 60 batches consists of 125 timed automata (with
183 real-valued clocks).

4 Guiding Timed Automata

The plant model described in the previous section allows all
possible behaviors of the physical plant. To keep the size of the
state space manageable we need to restrict its behaviors. We
will do this by guiding the state-space exploration according
to a number of certain chosen strategies. The guides are im-
plemented in the model by introducing a number of new vari-
ables, constraints (possibly also over existing clocks and vari-
ables), and assignments to the new variables6. Thus, in guid-
ing a model we reduce its behavior. This ensures the essential
property that any schedule generated for a guided model is in-
deed also a valid schedule of the original model.

We have implemented a number of strategies for guiding
the state-space exploration. Due to space limitations we will
only describe the guides abstractly, in terms of the physical
plant, and give one detailed example of how the guides are in-
troduced in the plant model. We emphasize that the strategies
are heuristics. Most of them could in fact reduce the number
of valid schedules of the plant model. However, this is not a

6The technique of adding guiding variables presented in this paper is rem-
iniscent of the notion of history and prophesy variables used in traditional
program verification, as in the work of Abadi and Lamport [1].

3

All Guides Some Guides No Guides
BFS DFS BSH BFS DFS BSH BFS DFS BSH

sec MB sec MB sec MB sec MB sec MB sec MB sec MB sec MB sec MB

1 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 3.2 6.1 0.8 2.2 3.9 3.3
2 18.4 36.4 0.1 1.0 0.1 1.1 - - 2.1 4.4 7.8 1.2 - - 19.5 36.1 - -
3 - - 3.2 6.5 3.4 1.4 - - 72.4 92.1 901 3.4 - - - - - -
4 - - 4.0 8.2 4.6 1.8 - - - - - - - - - - - -
5 - - 5.0 10.2 5.5 2.2 - - - - - - - - - - - -

10 - - 13.3 25.3 16.1 9.3 - - - - - - - - - - - -
15 - - 31.6 51.2 48.1 22.2 - - - - - - - - - - - -
20 - - 61.8 89.6 332 46.1 - - - - - - - - - - - -
25 - - 104 144 87.2 83.3 - - - - - - - - - - - -
30 - - 166 216 124.2 136 - - - - - - - - - - - -
35 - - 209 250 - - - - - - - - - - - - - -

Table 1. Time and space requirements for generating schedules.

problem as long as it is still possible to generate valid sched-
ules from the model.

When the scheduling problem is stated the production order
of the steel qualities is given. One strategy is to use the order
when starting new batches in the plant. To implement this
we introduce the variable nextbatch to control which batch is
allowed to start next. According to the engineers at SIDMAR
the same strategy is used there.

Related to this strategy is the starting time of the batches.
Since there is an upper bound on the time a batch is allowed
to spend in the plant, all batches should not be allowed to start
at the same time. Therefore, we prevent a batch from stating
based on the progress of the batch just before it (the strategy
is implemented by delaying the update of the nextbatch vari-
able).

For guiding the movements of a batch we introduce a new
variable named next for each batch. The value of next specifies
where the batch should go next, based on its recipe. When
there is a choice of machine the recipe will chose the machine
on the track with fewest batches present. The choice of the
first machine is implemented by an expression like:

���������
	������������	���������������! �"�#$��%'&)(*�+��,�-��� �".#/��%'&)(!0

where
����	���1�

is the number of batches present on track one
and

����	�����
the number of batches on track two.

A strategy for deciding how a batch moves from a given
position to its destination has also been implemented. The
strategy implemented selects the only direct route between the
two positions. To implement this strategy in the plant model
we use the next variable. A guard constraining on the value
of next is added to all transitions leaving a position. Fig-
ure 4 shows the part of the batch automaton from Figure 3
with guiding guards added. Machine one is the only machine
to the ’left’ of position i2 therefore next must have value

(*�

(machine 1) to move in that direction. This is ensured by the
guard

 �"�#$�2&�&)(3�
on the transition from i2 to i1aa. The tran-

sitions from i2 to k1 represents the batch being picked up by

one of the cranes. If this is the case the destination of the batch
should not be a machine on track one (i.e. not machine 1, 2, or
3) therefore next is required to be greater than

(!4
.

When a crane is carrying a batch it is always guided by the
batch automaton. In general an empty crane should only move
when something is ready to be picked up or if it is blocking
the other crane moving a batch. Guards in the crane automata
ensure that an empty crane only moves if a batch is waiting to
be picked up or if the value of a guiding variable cranereq is
non-zero. A crane moving to a position where the other crane
could be blocking it, will set the cranereq variable to allow the
blocking crane to leave.

It is possible to imagine other strategies and other exper-
iments that would be interesting. However, the guides pre-
sented here have been very effective as shown by the results in
the next section. Using the approach to guiding presented here
allows for easy adding and changing of guides. This is impor-
tant since guides are based on heuristics so experimenting is
sometimes needed for finding good strategies.

5 Experimental Results

The plant models described in the previous sections have
been analyzed in the validation and verification tool UP-
PAAL [7, 8]. In this section we present the results of the anal-
ysis for three versions of the model, with varying number of
guides and batches. In particular, we present the measured
time and space needed by UPPAAL to perform the analysis7.
Comparing the requirements for the different models allows us
to evaluate the benefits of the presented guiding techniques.

The three analyzed models are: the original plant model
without the guides described in Section 3, the plant model with
all guides added described in Section 4, and a model with all
guides added except the once using the nextbatch variable de-
scribed in Section 4.

7We use the standard UNIX programs time and top to measure the time
and space consumptions.

4

UPPAAL offers a number of options to control the internal
verification algorithm applied in the tool [8]. When analyz-
ing the plant models we have used the compact data-structure
for constraints [9], the control-structure reduction [9], and a
recently implemented version of the (in-)active clock reduc-
tion [4]. In addition we experiment with using breadth-first
(BFS), depth-first search strategy (DFS), or depth-first search
in combination with bit-state hashing (BSH) [6]8.

In Table 1 we present the time (in seconds) and space (in
MB) consumed by UPPAAL version 3.0.12 9 when generat-
ing schedules. The positions marked with “-” indicate that the
execution requires more than 256MB of memory, two hours
of execution time, or that a suitable hash table size has not
found10.

As can be seen in Table 1, the use of guides allows us to
generate schedules for 35 batches using 250 MB and 3.5 min-
utes, whereas no schedule can be generated for three batches
when no guides are used. We also observe that adding some
guides improves the situation by enabling analysis of systems
with three batches. Finally, we observe that the bit-state hash-
ing technique does not improve the situation when applied to
model instances with guides, even though it performs well
space-wise. We experienced that finding suitable hash table
sizes is very tedious for large systems. Therefore the largest
system analyzed in the experiment is a guided model using
depth-first search without bit-state hashing. In fact, we have
been able to generate schedules for models with as many as
60 batches on a Sun Ultra machine equipped with 1024 MB of
memory.

6 Synthesis of Control Programs

As we did not expect to be able to run the generated con-
trol programs in the original plant of SIDMAR, we have used
a LEGO plant (see Figure 5) in which we run the synthe-
sized programs. This allows for experimenting with the plant
to validate the model and it also makes finding answers to a
number of questions about the plant easy (e.g. measuring time
bounds).

The plant consists of a number of distributed units, each
controlled locally by one RCX[10] brick. There are three
types of units: a crane, a machine with a track segment, and
the casting machine. Also an overhead track for the cranes
exists in the LEGO plant. Each unit is interfaced with a
set of commands like MoveTrackRight and LiftBatch. The
synthesized program will run in a central controller sending

8The bit-state hashing technique generates a sub set of the reachable state-
space. A feasible schedule found with this technique is therefore guaranteed
to also be feasible in the original plant model.

9The tool was installed on a Linux Redhat 5.2 machine equipped with a
Pentium III processor and 256MB of memory.

10When applying the hash table technique, we have used table sizes from
1048577 to 33554441 bits. The reported results corresponds to the most suit-
able hash table size found.

Figure 5. The LEGO plant.

commands to the distributed local controllers. Since the com-
munication between the RCX bricks is unreliable and slow,
the only feedback from the local controllers are acknowledge-
ments of commands received from the global controller. This
has big influences on the kind of control programs we gener-
ate.

As a result of the model checking in UPPAAL a trace con-
taining information about synchronizations between automata
and delays is produced. Some of the synchronizations are not
relevant for the scheduling. To get a schedule for the plant
we project the trace to the actions relevant for the plant. Given
some numbering of actions, part of a schedule looks like in Ta-
ble 2. There is a one-to-one correspondence between a sched-
ule of this kind and the commands of the synthesized central
control program. Each line with a Delay action is translated
into a delay in the control program (in RCX code there is
a Wait instruction doing this). For the rest of the lines only
the second part is used, which defines what unit the command
should be send to and what the command is. For example
Track2Right is translated to a command MoveTrackRight
and sent to the local controller of track two.

The projection and the translation have been implemented
using the pattern scanning and processing language gawk.
Since the RCX language does not offer reliable communi-
cation primitives, each line in the schedule is translated into a
code segment implementing such communication11. Figure 6
shows a part of a synthesized control program.

The synthesized programs have been executed in the plant.
This was mainly intended as validation of the UPPAAL model
of the plant. During the validation we found three errors in the
model: when the crane picked up an empty ladle from the cast-
ing machine it started to move horizontally at the same time

11The code has to be in-lined as the language does not support function or
procedure calls.

5

... Delay(5)
Load1.Track1Right Crane1.Move1Left
Delay(10) Delay(5)
Load1.Machine1On Load1.Machine2On
Load2.Track5Right Delay(1)
Delay(4) Crane1.Move1Left
Crane1.Move1Left Delay(6)
Delay(6) Crane1.Move1Left
Load1.Machine1Off Delay(3)
Load1.Track2Right Load1.Machine2Off
Crane1.Pickup1 ...

Table 2. Part of a generated schedule.

’’’’moveAup();
’’’’Crane A - Move UP
PB.PlaySystemSound 1
PB.SendPBMessage 2, 99 ’ Move up, on C1
PB.SetVar 1, 15, 0 ’Wait for ack
PB.While 0, 1, 3, 2, 99
PB.Wait 2, 20
PB.SetVar 1, 15, 0 ’Read the message
PB.ClearPBMessage
PB.SumVar 2, 2, 1
PB.If 0, 2, 2, 2, 20 ’If looped 20 times

PB.PlaySystemSound 1
PB.SendPBMessage 2, 99 ’Then Send message,

again same as sendig 0
PB.SetVar 2, 2, 0

PB.EndIf
PB.EndWhile

’’’’Delay 12
PB.Wait 2, 1200

Figure 6. Part of a synthesized program.

as the pickup started, so here a delay was missing; when two
cranes were located at positions next to each other and started
to move in the same direction they could collide because the
crane ’in front’ was started last; the casting machine did not
turn correctly in systems with only one batch. These problems
were corrected in the model and new control programs were
synthesized.

Having the complete process from the model to synthe-
sized control programs fully automated proved especially use-
ful when the batteries got worn out. As a result the initial
timing information, which was correct with new batteries, had
to be changed. New times were measured and since schedul-
ing was still possible, new programs were quickly generated
and worked as expected.

Performing the experiments also validates the implemen-
tation of the translation from traces to programs and here no
problems were found. Our confidence in the model has been
significantly increased by conducting these experiments.

7 Conclusion

In this paper, we have used timed automata and the verifi-
cation tool UPPAAL to synthesize control programs for a batch
production plant. To deal with the unavoidable complexity of
a plant model suitably accurate for program synthesis, we sug-
gest and apply a general approach of guiding a model accord-
ing to certain strategies. With this technique, we have been
able to synthesize schedules for as many as 60 batches on a
machine with 1024 MB of memory. Applying bit-state hash-
ing the space consumption may be decreased even further.

Based on traces from the model checking tool UPPAAL,
schedules are generated. From theses schedules, control pro-
grams are synthesized and later executed in a physical plant.
During execution a few modeling errors were detected. Af-
ter correction, new schedules were generated and correct pro-
grams were synthesized and executed in the plant.

The presented method for guiding model-checking has
proved very successful in significantly increasing the size of
models which can be analyzed. The largest model we ana-
lyze consists of 125 timed automata and a total of 183 clocks.
The notion of guides allows the user to add heuristics for con-
trolling the behavior of the plant, and we believe that the ap-
proach is applicable and useful for model checking in general
and reachability checking in particular. The validation of the
model by running the synthesized programs also proved use-
ful: having access to the (a) physical plant during the design
of the model, allowed a number of questions to be readily an-
swered.

Based on the traces generated from the UPPAAL model
other types of control programs can be synthesized. Here it
would be especially interesting to study how more communi-
cation between the distributed controllers can be used, e.g. for
generating more optimal programs, and for detecting run-time
errors.

Acknowledgements The authors wish to thank Ansgar
Fehnker and Kåre Jelling Kristoffersen for fruitful discussions
and many useful suggestions.

References

[1] Martin Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82:253–284, 1991.

[2] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. The-
oretical Computer Science, 126(2):183–236, April 1994.

[3] Rene Boel and Geert Stremersch. VHS Case Study 5: Timed Petri net
model of steel plant at SIDMAR. draft, 1999.

[4] Conrado Daws and Stavros Tripakis. Model checking of real-time reach-
ability properties using abstractions. In Bernard Steffen, editor, Proc.
of the 4th Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, number 1384 in Lecture Notes in Computer Sci-
ence, pages 313–329. Springer–Verlag, 1998.

[5] Ansgar Fehnker. Scheduling a Steel Plant with Timed Automata. In
Proc. of the 6th International Conference on Real-Time Computing Sys-
tems and Applications. IEEE Computer Society Press, 1999.

6

[6] Gerard Holzmann. The Design and Validation of Computer Protocols.
Prentice Hall, 1991.

[7] Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Sym-
bolic Model-Checking of Real-Time Systems. In Proc. of the 16th IEEE
Real-Time Systems Symposium, pages 76–87. IEEE Computer Society
Press, December 1995.

[8] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–
152, October 1997.

[9] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Efficient
Verification of Real-Time Systems: Compact Data Structures and State-
Space Reduction. In Proc. of the 18th IEEE Real-Time Systems Sym-
posium, pages 14–24. IEEE Computer Society Press, December 1997.

[10] LEGO. Software developers kit, November 1998. See
http://www.legomindstorms.com/.

Appendix

gotoT1
tot<=rtotalby3

onT1
t<=mtreat, tot<=rtotalby2

gotoT2
tot<=rtotal

onT2
t<=mtreat, tot<=rtotal

rend
tot<=rtotal

cast

casted
tot<=rtotal

terminus

setoff

dumped

idle

onT1still

t:=0

M1on!

t:=0, nextbatch:=nextbatch+1
M2on!

t==mtreat

next:=fin

M2off!

try?

quality1!

tot<=rtotal

done?

tot:=0
go?

dump!

nextbatch==(number-1)
next := (posI[0]+posI[1]+posI[2]+
 posI[3]+posI[4]+posI[5]<=
 posII[0]+posII[1]+posII[2]+
 posII[3]+posII[4]+posII[5]+
 posII[6] ? m1 : m4)

t:=0

M4on!

t:=0, nextbatch:=nextbatch+1
M5on!

t==mtreat

next:=fin
M5off!

t==mtreat

M1off!

next := (posI[0]+posI[1]+posI[2]+
 posI[3]+posI[4]+posI[5]+(next==m1 ? -2 : 0)<
 posII[0]+posII[1]+posII[2]+
 posII[3]+posII[4]+posII[5]+
 posII[6]+(next==m4 ? -2 : 0) ? m2 : m5)

t==mtreat
M4off!

Figure 7. An example recipe automaton.

c1emp c1full

c2emp

c2c1emp
x<=cdelay

c2c1full
x<=cdelay

c2full

c3emp

c3c2emp

x<=cdelay

c3c2full
x<=cdelay

c3full

c4emp

c4c3emp
x<=cdelay

c4c3full
x<=cdelay

c4full

c5emp

c5c4emp
x<=cdelay

c5c4full
x<=cdelay

c5full

c2c1aemp
x<=cdelay

c3c2aemp

x<=cdelay

c4c3aemp
x<=cdelay

c5c4aemp
x<=cdelay

c2c1afull
x<=cdelay

c3c2afull
x<=cdelay

c4c3afull
x<=cdelay

c5c4afull

x<=cdelay

c2up

x<=cup

c2downx<=cup

c1up x<=cup

c1down
x<=cup

c3up
x<=cup

c3down
x<=cup

c4up

x<=cup

c4down
x<=cup

c5up
x<=cup

c5down
x<=cup

cpos[3]==0, cpos[2]==0,
posI[4]==1

cpos[3]:=1,
cpos[4]:=0,
x:=0,
creq1:=1

moveBup?

x==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[3]:=0,
creq1:=0

x==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[3]:=0,
creq1:=0

evom21?

cpos[3]==0

cpos[3]:=1,
cpos[4]:=0,
x:=0,
creq1:=1

moveB21?

cpos[5]==0

cpos[5]:=1,
cpos[6]:=0,
x:=0,
creq1:=1

moveBup?

x==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[5]:=0

x==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[5]:=0

evom32?

cpos[5]==0

cpos[5]:=1,
cpos[6]:=0,
x:=0

move32?

cpos[7]+creq2==0

cpos[7]:=1,
cpos[8]:=0,
x:=0

moveBup?

x==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[7]:=0

x==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[7]:=0

evom43?

cpos[7]==0

cpos[7]:=1,
cpos[8]:=0,
x:=0

move43?

cpos[9]==0

cpos[9]:=1,
cpos[10]:=0,
x:=0

moveBup?

x==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[9]:=0

x==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[9]:=0

evom54?

cpos[9]==0

cpos[9]:=1,
cpos[10]:=0,
x:=0

move54?

cpos[3]==0,
cpos[4]==0,
posII[4]==1

cpos[3]:=1,
cpos[2]:=0,
x:=0

moveBdown?

x==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0

cpos[5]==0,
creq2==1

cpos[5]:=1,
cpos[4]:=0,
x:=0

moveBdown?

x==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[5]:=0

cpos[7]==0,
creq2==2

cpos[7]:=1,
cpos[6]:=0,
x:=0

moveBdown?

x==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[7]:=0

cpos[9]==0,
creq2==2

cpos[9]:=1,
cpos[8]:=0,
x:=0

moveBdown?

x==cdelay,
cpos[10]==0

cpos[10]:=1,
cpos[9]:=0

cpos[3]==0

cpos[3]:=1,
cpos[2]:=0,
x:=0

moveB12?

x==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0

evom12?

cpos[5]==0

cpos[5]:=1,
cpos[4]:=0,
x:=0

move23?

x==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[5]:=0

evom23?

cpos[7]==0

cpos[7]:=1,
cpos[6]:=0,
x:=0

move34?

x==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[7]:=0

evom34?

cpos[9]==0

cpos[9]:=1,
cpos[8]:=0,
x:=0

move45?

x==cdelay,
cpos[10]==0

cpos[10]:=1,
cpos[9]:=0

evom45?

x:=0
cBIIup?

x==cup
posII[4]:=0

posII[4]==0x:=0,
posII[4]:=1

cBIIdown_start?
x==cup

cIIdown_end!

x:=0
cBIup?

x==cup
posI[4]:=0

posI[4]==0x:=0,
posI[4]:=1

cBIdown_start?
x==cupcIdown_end!

x:=0
cIIIup? x==cup

x==cupcIIIdown?

creq2!=2

x:=0
cIVup?

x==cup

x:=0 cIVdown_start?x==cup
cIVdown_end!

x:=0
cVup?

x:=0 cVdown_start?x==cup
cVdown_end!

Figure 8. The lower crane.

7

III2

waiting

V3cast

V5k5 V6 cast

i0 i0a

x<=bmove

i1 i1a

x<=bmove

i2 i2a

x<=bmove

i3 i3a

x<=bmove

i4 i4a

x<=bmove

i5

ii0

ii0a
x<=bmove

ii1

ii1a
x<=bmove

ii2

ii2a
x<=bmove

ii3

k0

k1

k1k0

k2

k2k1

k3

k3k2

k4

k4k3

k4sink

k5

k5V3b
k5k4

machine1 machine2 machine3

machine4

machine5

p1

p2

sink

source

x1

i0aa
x<=bmove i1aa

x<=bmove i2aax<=bmove i3aa
x<=bmove

i4aa
x<=bmove

ii0aa

x<=bmove

ii1aa
x<=bmove

ii2aa
x<=bmove

c2down

c1down

c4down

c5down

preii0

x<=bmove

preI0
x<=bmove

park>0park:=park-1
cIIIup!

next:=emp doneB1!outcast! creq2:=0 cVup!

posI[1]==0

posI[1]:=1,
posI[0]:=0,
x:=0

b1right?
x==bmove,
posI[2]==0

posI[2]:=1,
posI[1]:=0

posI[3]==0,
next!=m1

posI[3]:=1,
posI[2]:=0,
x:=0

m1right?

M1on?

x==bmove,
posI[4]==0
posI[4]:=1,
posI[3]:=0

posI[5]==0,
next>m1,next<m4

posI[5]:=1,
posI[4]:=0,
x:=0

b2right?

next>m3

cAIup!

x==bmove next==m3

x:=0
m2right?

M2on?

x==bmove next==m3

x:=0
b3right?

x==bmove

M3on?

x==bmove,
posII[0]==0

posII[0]:=1,
posII[1]:=0

posII[1]==0,
next==NA

posII[1]:=1,
posII[2]:=0,
x:=0

m4left?

M4on?

x==bmove,
posII[2]==0

posII[2]:=1,
posII[3]:=0

posII[3]==0,
next==m4

posII[3]:=1,
posII[4]:=0,
x:=0
b5left?

x==bmove,
posII[4]==0

posII[4]:=1,
posII[5]:=0

posII[5]==0,
next!=m5

posII[5]:=1,
posII[6]:=0,
x:=0
m5left?

M5on?

move01!

next==NA move10!

next>m3

moveA12!

evom10!

evom01!

next<=m3

moveA21!

next==fin

move23!

next<=m3

evom21!

next>m3

evom12!

park<buf_size park:=park+1
cIIIdown!

next==NA
move32!

next==fin

move34!

next==NA
evom32!

next==fin
evom23!

next==NA
move43!

dumpB1?

next==fin

move45!

next==NA
evom43!

next==fin

evom34!

next==emp

move54!

next!=emp

incast!

tryB1!

next==emp
evom54!

next==fin

evom45!

M1off? M2off? M3off?

M4off?

M5off?

next==m1,
posI[0]==0

posI[0]:=1
goB1!

next==m4,
posII[0]==0

posII[0]:=1

goB1!

next!=m4,
next!=m5,
next!=fin

cAIIup!

x==bmove,
posI[0]==0

posI[0]:=1,
posI[1]:=0

posI[1]==0,
next==NA

posI[1]:=1,
posI[2]:=0,
x:=0

m1left?
x==bmove,
posI[2]==0

posI[2]:=1,
posI[3]:=0

posI[3]==0,
next==m1

posI[3]:=1,
posI[4]:=0,
x:=0

b2left?
x==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

next!=m2,
next!=m3

x:=0
m2left?

x==bmove

next!=m3

x:=0
b3left? x==bmove

next!=m3

x:=0
m3left?

posII[1]==0

posII[1]:=1,
posII[0]:=0,
x:=0

b4right?

x==bmove,
posII[2]==0

posII[2]:=1,
posII[1]:=0

posII[3]==0,
next!=m4

posII[3]:=1,
posII[2]:=0,
x:=0

m4right?

x==bmove,
posII[4]==0

posII[4]:=1,
posII[3]:=0

posII[5]==0,
next==m5

posII[5]:=1,
posII[4]:=0,
x:=0

b5right?

x==bmove,
posII[6]==0

posII[6]:=1,
posII[5]:=0

turn?

creq2:=2 nrut?

next>m3
cAIIdown_start!

cIIdown_end?

next<=m3
cAIdown_start!

cIdown_end?

cIVdown_start! cIVdown_end?

cVdown_start! cVdown_end?

next>m3,next!=fin
cBIIdown_start!

next!=m4,
next!=m5

cBIIup!

next<=m3
cBIdown_start!

next>m3

moveB12!

next<=m3

moveB21!

next>m3

cBIup!
x:=0
b4right?

x==bmove

x:=0

b1right?

x==bmove

Figure 9. The batch automaton.

8

