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Abstract. To limit the explosion problem encountered during reacha-
bility analysis we suggest a variety of techniques for reducing the number
of states to be stored during exploration, while maintaining the guarantee
of termination and keeping the number of revisits small. The techniques
include static analysis methods for component automata in order to de-
termine small sets of covering transitions. We carry out extensive exper-
imental investigation of the techniques within the real-time verification
tool Uppaal. Our experimental results are extremely encouraging: a best
combination is identified which for a variety of industrial case-studies re-
duces the space-consumption to less than 10% with only a moderate
overhead in time-performance.
Keywords. Timed automata model checking, Static analysis

1 Introduction

Reachability analysis has proved one of the most successful methods for auto-
mated analysis of concurrent systems. Several verification problems, e.g. trace-
inclusion, invariant checking and model checking of temporal logic formula us-
ing test automata may be solved using reachability analysis. However the major
problem in applying reachability analysis is the potential combinatorial explo-
sion in the size of state spaces and the resulting excessive memory requirements.
During the last decade numerous symbolic and reduction techniques have been
put forward [5, 7, 13, 3, 12, 10] in order to avoid this explosion problem, playing
a crucial role in the successful development of a number of verification tools for
finite-state and timed systems (e.g. SMV, SPIN, visualSTATE, Uppaal, Kro-

nos).
The explosion in memory consumption is closely linked to the need for storing

states during exploration, primarily with the aim of guaranteeing termination
but also to avoid repeated exploration (revisits) of states. However, one may
maintain the guarantee of termination while keeping the number revisits small
without necessarily storing all states. As an example consider the state space of
the network in Fig. 1. Here, termination is guaranteed with storing of only two
states (e.g. AY 0 and AY 1). The main question addressed in this paper is how to
efficiently decide whether “to store” or “not to store” states during exploration.

In answering this question, we see that it suffices to store enough states
so that all cycles in the global state space are covered. However, as finding
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Fig. 1. A network of two timed automata and its discrete state space.

the smallest such set is NP-complete, we instead propose a number of efficient
storing strategies yielding small covering sets. The techniques include storage
only of every k-th state along a path, and storage only of states with multiple
successors. Also, static analysis methods of cycles of the individual automata in
a network are given in order to determine a (small) set of covering transitions
based partially on a heuristic analysis of the quality of such sets using a (cheap)
random walk analysis.

Within the real-time verification tool Uppaal, we conduct a thorough ex-
perimental investigation of the various storing techniques identifying their best
combinations. Our experimental results are extremely encouraging: for the ma-
jority of a range of industrial case-studies and examples studied in the literature
it is possible to reduce the number of states stored to less than 10% compared
with that of the currently distributed version of Uppaal and with only a small
overhead in time-performance.

The outline of the paper is as follows: section 2 introduces the timed au-
tomata network model used in Uppaal together with the basic reachability
algorithm. Section 3 provides a number of revised reachability algorithms based
on different storing strategies. Section 4 revises the notion of covering set and
provides a number of static analysis algorithms for identifying small such sets.
Section 5 provides an extensive experimental analysis of the reduction techniques
suggested, and, finally, section 6 contains the conclusion.

2 Preliminaries

Let X be a set of clocks, V a set of bounded integer variables and Σ a set of
actions and co-actions s.t. a = a and a ∈ Σ ⇔ a ∈ Σ. An integer expression
over V is an expression on the form v, c, e1 + e2 or e1 − e2, where v ∈ V , c is an
integer constant, and e1 and e2 are integer expressions. Let G(X, V ) be the set



of all guards, s.t. x ./ c, e1 ./ e2, and g1 ∧ g2 are guards, where x is a clock, c is
an integer over V , e1 and e2 are integer expressions, g1 and g2 are guards, and
./∈ {<,≤, =,≥, >}. Let U(X, V ) be the set of updates, s.t x := 0, v := e, and
u1; u2 are updates, where x is a clock, v is a bounded integer variable, e is an
integer expression, and u1 and u2 are updates.

Definition 1 (Timed Automata). A timed automaton A over X, V and Σ
is a tuple (L, l0, E, guard, sync, up, I) where L is a finite set of locations; l0 ∈ L
is the initial location; E ⊆ L × L is the set of edges; guard : E → G(X, V ),
sync : E → Σ ∪ {τ}, up : E → U(X, V ) assign guards, actions, and updates to
edges; and I : L → G(X, V ) assigns invariants to locations. A network of timed
automata is a tuple of timed automata A1 ‖ · · · ‖ An over X, V , and Σ.

Notice that the terms location and edge refer to the syntactic elements of a
timed automaton. A concrete state of a timed automaton is a semantic element
and is defined as a triple (l, u, γ) of the current location l, and two functions u
and γ assigning values to clocks and variables, respectively. More formally, let
Γ be a function from V to intervals in Z s.t. ∀v ∈ V : 0 ∈ Γ (v), thus defining
the range of the variables. A clock valuation, u, is a function from X to the
non-negative reals, R≥0. A variable valuation, γ, is a function from V to Z such
that γ(v) ∈ Γ (v). Let R

X be the set of all clock valuations and ZV the set of
all integer valuations. We write (u, γ) |= g when the guard g is satisfied in the
context of u and γ.

The semantics of (a Network of) Timed Automata is often stated in terms
of a labelled transition system → with (L1 × · · · ×Ln)×R

X ×Z
V being the set

of states. There are two types of transitions: Whenever allowed by the invariant
of the current locations, time can pass. The resulting delay transitions do not
change the locations nor the variables, but all clocks are incremented by the
exact same delay. Alternatively, if the guard of an edge (or two edges if they
synchronise via complementing actions) is satisfied, we might trigger an edge
transition. Edge transitions do not take time, i.e. the clock valuation is not
changed except to reflect updates directly specified on the edge involved. The
same is true for the variable valuation.

Given a state property ϕ, the reachability problem for timed automata is that
of deciding whether there is a path from the initial state to a state satisfying ϕ.
A standard forward breadth-first or depth-first search based directly on the
semantics of a timed automaton is unlikely to terminate, since the state-space is
uncountably infinite. It is well known that several exact and finite abstractions
based on zones exist, see [1, 2]. Zones are sets of clock valuations definable by
conjunctions of constraints of the forms x ./ c and x− y ./ c, where x and y are
clocks and c is an integer. Using zones, one can define the symbolic semantics of
a network of timed automata as a labelled transition relation ⇒ over symbolic
states on the form (l, Z, γ), where l is a location, Z is a zone, and γ is a variable

valuation, s.t. (l, Z, γ)
t
⇒ (l′, Z ′, γ′) iff ∀σ′ ∈ Z ′ : ∃σ ∈ Z : (l, σ, γ)

t
→

δ
→ (l′, σ′, γ′)

(t being a set of edges and δ being a non-negative real-valued delay). We will
skip the formal definition and assume the existence of such a symbolic semantics.
In the following, we will refer to symbolic states simply as states.



proc Reachability

W = {init state}; P = ∅;
while W 6= ∅ do

get s from W ;
if s |= ϕ then return true; fi

P = P ∪ {s};

foreach s′, t : s
t
⇒ s′ do

if s′ 6∈ P ∪ W then W = W ∪ {s′}; fi od

od

return false;
end

Fig. 2. Decision procedure for the reachability problem.

Given the symbolic semantics, defining a decision procedure for the reacha-
bility problem is easy and is shown in Fig. 2. Here, P is the set of already visited
states (the passed list), and W is the set of states which are to be explored (the
waiting list). The passed list is usually implemented as a hash table, and the
waiting list is often a queue or a stack.

3 Storing Strategies

By storing states in a passed list, we avoid that states are explored more than
once, thus ensuring termination and efficiency. For termination, not all states
need to be stored. Theoretically, only enough states such that all cycles in the
symbolic transition system are covered must be stored – this is called a feedback
vertex set. However, finding the smallest such set is NP-complete [8]. Our goal
in this paper is to find efficient strategies to obtain small feedback vertex sets
for the symbolic transition relation (thus ensuring termination), while keeping
the number of revisited states as low as possible.

We start by presenting a revised version of the reachability algorithm, see
Fig. 3, which adds an extra integer field, flag, to each state in the waiting list.
The interpretation of this flag depends on the two functions to store(s, flag) and
next flag(s, t, flag), which compute whether to store s and what the flag of a
successor of s should be, respectively. The reductions presented in the following
are all instances of this generic scheme and differ only in the actual definition of
to store and next flag.

Distance In many real life examples, cycles are rather long and it is sufficient
to store every k-th state along any path, i.e.

to store(s, flag) ≡ flag mod k = 0

next flag(s, t, flag) ≡ flag + 1

For the example in Fig. 1 this strategy stores (provided that we use BF-Search
which starts at CX0 with flag 0) for k = 2: {CX0, BY1, AX0, CX1}, and for
k = 3: {CX0, CY1, BX0, BX1}.



proc Reachability-with-Reduction

W = {(init state , 0)}; P = ∅;
while W 6= ∅ do

get (s, flag) from W ;
if s |= ϕ then return true; fi

if to store(s, flag) then P = P ∪ {s}; fi

foreach s′, t : s
t
⇒ s′ do

if s′ 6∈ P ∪ W then W = W ∪ {(s′, next flag(s, t, flag))}; fi od

od

return false;
end

Fig. 3. Revised decision procedure for the reachability problem, with hooks for adding
various reduction techniques.

Successors Observations of state spaces of industrial protocols revealed that
there are usually chains of states with only one successor. It is practically useless
to store several states from such a chain. Thus only states which have more than
one successor need to be stored. To avoid that cycles of states with only one
successor cause problems, we use the flag as a counter to store at least one state
of such cycles, i.e.

to store(s, flag) ≡ |succ(s)| > 1 ∨ flag = k

next flag(s, t, flag) ≡

{

0 if to store(s, flag)

flag + 1 otherwise

In practice these cycles are infrequent and it is safe to use a large value for k (in
none of out numerous experiments we considered such cycles occurred). For the
example in Fig. 1 this strategy stores: {AY0, BY1, AY1}.

Covering Set In [11] a strategy based on static analysis of the cycles of the
individual automata in the system was proposed. Here we provide a generalisa-
tion of the idea, inspired by [9]. Suppose that we have a set of edges, Cover , with
the property that each cycle in the global state space contains at least one edge
from Cover . Then it is sufficient to store states that are targets of transitions
derived from edges in Cover , i.e.

to store(s, flag) ≡ flag = 1

next flag(s, t, flag) ≡

{

1 if t ∈ Cover

0 otherwise

We will consider the problem of finding Cover in the next section. Referring to
the example of Fig. 1, there are three cycles: (CX0, AY0, BY1, CY1), (BY1,
BX0, AX0, BX1, CX1, AY1), and (AX0,BX1, CX1, AY1). Possible candidates
for Cover are { (Y,X) } and { (C,A) }, resulting in the states in {AX0, CX0,
BX0} and {AY0, AY1} being stored, respectively.



Random The simplest way to decide which states to store is to use random-
ness. In this case the flag is actually not needed since we simply store states with
some probability, p. A deterministic version of this strategy is to use a global
counter, by counting the number of newly visited states and store each k-th state
(k ≈ 1

p
).

Combinations There are many possibilities for combining the previous strate-
gies. One particular combination of covering set, successors and distance reduc-
tions is the following:

to store(s, flag) ≡ flag ≥ k ∧ |succ(s)| > 1 ∨ flag = k2

next flag(s, t, flag) ≡











0 if to store(s, flag)

flag + 1 if ¬to store(s, flag) ∧ t ∈ Cover

flag otherwise

We increase flag when the state is a target of covering edge. And we store states
only if the flag is greater than k and the number of successors is greater than
one or the flag is k2 (the latter catches cycles where each state only has one
successor). There are of course many other possible combinations. We have tried
other combinations of covering set, successors, distance, and random strategies
with non-uniform probabilities. However, the behaviour of these combinations
was usually similar to the one presented above.

Lemma 1. Procedure Reachability-with-Reduction terminates with any
of these storing strategies (resp. with probability one for random strategies).

4 Covering Set

In this section we discuss the problem of finding a covering set, being a set
of edges with the property that each cycle in the symbolic state space uses at
least one edge from this set. The algorithms used are due to [9], where they were
used in the context of partial order reduction. We contribute additional methods
for identifying relations among cycles which lead to smaller covering sets and a
heuristic analysis of the quality of a covering set based on random walk analysis.

Referring to the example in Fig. 1, possible candidates for Cover are {(Y,X)}
and {(C,A)}. The challenge we face is to compute such a covering set for a net-
work based solely on a static analysis of the control structure of each automaton,
i.e., without unfolding the symbolic transition relation. Elementary cycles in the
control structure, henceforth called local cycles, are important elements of such
an analysis, since cycles in the symbolic state space, henceforth called global
cycles, are formed by unfolding local cycles. The straightforward way of find-
ing a covering set is to compute all local cycles and pick an edge from each. In
the example, there are three local cycles: {X, Y }, {A, B, C}, and {A, B}, lead-
ing to a covering set of {(Y, X), (A, B)}, for instance. But if we look closer, it
becomes clear that the cycle {X, Y } cannot be realised without the synchroni-
sation provided by {A, B, C}, and that {A, B} cannot be realised without the



reset provided by {X, Y }. We say that {A, B} is covered by {X, Y }. We will now
formalise this.

For the rest of this section we assume the existence of a network of n timed
automata, Ai = (Li, l0, Ei, guardi, synci, upi, Ii). A local cycle of Ai is a sequence
(e1, . . . , em) of edges in Ei iff there is a set of locations l1, . . . , lm in Li s.t.

l1
e1→i · · ·

em−1

−−−→i lm
em→i l1, where l

e
→i l′ ⇔ e = (l, l′) ∧ e ∈ Ei. A global

cycle is a sequence (t1, . . . , tm), where each ti is a set of edges, iff there is a

sequence of symbolic states, s1, . . . , sm s.t. s1
t1=⇒ · · · sm

tm=⇒ s1, where =⇒ is
the labelled transition relation of the network. A projection P (o) of a global
cycle o = (t1, . . . , tm) is the set of local cycles corresponding to subsequences of
o, i.e., c ∈ P (o) iff c = (e1, . . . , ek) is a local cycle and ∃1 ≤ i1 < · · · < ik ≤
m, ∀1 ≤ j ≤ k : ej ∈ tij

. By an abuse of notation we sometimes treat sequences
as sets.

A set of transitions T covers a set of cycles C iff for each cycle c ∈ C :
T ∩ c 6= ∅. A set of transitions T is a covering set of a network N iff T covers all
global cycles of N . The straightforward way to find some covering set is to find
all local cycles and choose one transition from each cycle. However, it is often
the case that a cycle cannot occur without one of the other cycles occurring as
well. Formally, a set of local cycles D covers a local cycle c iff for each global
cycle o holds c ∈ P (o) ⇒ P (o) ∩ D 6= ∅. A set of local cycles C is covered by D
iff D covers each cycle in C. If some set of cycles D covers all local cycles, then
it is sufficient to choose one transition from each cycle of D. In our studies of
existing models, we have identified four common situations which can be used
to identify when a cycle is covered by a set of other cycles:

– Let c be local cycle that at some point updates the value of a variable
v to some value k′ and later requires it to have another value k without
updating v in the meantime. In order to be realisable, such cycles must be
combined with a cycle which updates v to k. Let need change to(v, k) be the
set of cycles which need v to be changed to k in order to be realisable. Let
changes to(v, k) be the set of cycles which change v to k.

– A variation of this idea is based on cycles which either always increase or
decrease a variable v (similar to a for-loop). These must be combined with
cycles updating v in a non-increasing or non-decreasing manner, respectively.
Let increasing(v) be the set of cycles which always increase v (and similarly
for decreasing) and let changes(v) be the set of cycles which update v.

– Cycles synchronising via an action must obviously be paired. Let sync(a) be
the set of cycles which synchronise on a.

– Cycles which at some point require a clock x to be bigger than k and later
to be smaller than k without resetting x in the meantime must be combined
with cycles resetting x (the opposite does not hold since clocks can be in-
cremented by delaying). Let needs reset(x) be the set of cycles which need
x to be reset and let resets(x) be the set of cycles which reset x.

Lemma 2. Let A1 ‖ · · · ‖ An, Ai = (Li, l
0
i , Ei, guardi, synci, upi, Ii) be a network

of timed automata. Let Ci be the set of local cycles of Ai, and C = ∪iCi. For



some i, let c ∈ Ci. Then D covers c if at least one of the following holds:

∃v, k : c ∈ needs change to(v, k) ∧ changes to(v, k) ⊆ D

∃v : c ∈ increasing(v) ∧ changes(v) \ increasing(v) ⊆ D

∃v : c ∈ decreasing(v) ∧ changes(v) \ decreasing(v) ⊆ D

∃a : c ∈ sync(a) ∧ sync(a) \ Ci ⊆ D

∃x : c ∈ need reset(x) ∧ resets(x) ⊆ D

Returning to our running example, we now see that {A, B} is covered by
{X, Y } because the former is in need change to(i, 0) and the latter is the only
cycle in changes to(i, 0). Similarly, {X, Y } is covered by {A, B, C} because the
former is in sync(a) and the latter is the only cycle in sync(a).

All functions used in Lemma 2 may be obtained by static analysis, perhaps
with the need of over-approximation e.g. in case an effect of a transition on
a variable is found too complicated, the static analysis may simply suppose
that the transition can change the variable to any value of its domain. The
usefulness of the different heuristics depends on the type of models we want
to analyse. For communication protocols using need change to seems sensible,
whereas increasing and decreasing are much more useful in models containing
for like constructs.

The choice of covering set determines the number of stored states. However,
the number of stored states is not proportional to the size of the covering set,
but rather to the frequency of the edges of the covering set in the symbolic
state space (because we store targets of these edges). For example, in Fig. 1
the frequency of edge (Y, X) is 4/12, whereas the frequency of edge (C, A) is
2/12. The number of states stored for the covering set {(Y, X)} is indeed larger
than for {(C, A)}. Unfortunately, it is very difficult to estimate the frequency
of an edge from a static analysis. Therefore we propose to perform a Random
Walk Analysis : Before the construction of the covering set we perform several
random walks through the system and count the occurrences of edges. In this
way we identify random walk coefficients. These are fairly good estimates of the
frequencies. Thus we would like to find covering set with the smallest sum of
random walk coefficients. However, since even finding the smallest covering set
is as hard as reachability, we have to use a heuristic approach.

Figure 4 presents two possible algorithms for construction of a covering set.
Different heuristics can be used for choose cycle and choose transition functions.
It is advantageous to take these random walk coefficients into account in these
heuristics. We refer to section 5.1 for a discussion of these heuristics and their
comparison. Moreover, the One-Phase-Construction algorithm can be used
for verification of user-proposed sets. Note that this algorithm does need to
construct all local cycles – in the worst case this can be exponential in the size
of the automaton, although in practice the worst case is seldomly reached (for
our industrial test cases it was maximally 500 cycles). If an automaton has a very
large number of local cycles, it might be advantageous to find a set of covering
transitions for this automaton using, for instance, depth first search, and then



proc Two-Phase-Construction

H = covered = ∅;
while covered 6= C do

c = choose cycle(C \ covered );
H = H ∪ {c};
covered = Closure(covered ∪ {c});

od

T = ∅;
while H 6= ∅ do

t = choose transition(H);
T = T ∪ {t};
foreach c ∈ H, t ∈ c do

H = H \ {c}; od

od

return T ;
end

proc One-Phase-Construction

H = T = ∅;
while H 6= C do

t = choose transition(C \ H);
T = T ∪ {t};
foreach c ∈ C, t ∈ c do

H = H ∪ {c}; od

H = Closure(H);
od

return T ;
end

Fig. 4. Algorithms for computation of Covering set; Closure(H) computes set of cycles
already covered by H (using Lemma 2).

use the One-Phase-Construction algorithm for the rest with this set as a
starting set for T .

5 Experiments

A prototype of the techniques presented in this paper has been implemented
in the real-time model-checker Uppaal. We have performed exhaustive exper-
iments with different heuristics for covering set construction, storing strategies
(including different parameters), and combinations of strategies. Experiments
were done on 12 different examples, including industrial case-studies and exam-
ples previously studied in the literature. Due to space considerations we only
summarise the results and give the conclusions we have drawn from the experi-
ments. The results reported in this section are based on the following examples
(Aut. is the number of automata in the network; Edges is the number of edges):

Name Aut. Edges Description

Fischer 4 20 Mutual exclusion protocol for 4 processes
Train-Gate 6 42 Train crossing with 4 trains
CSMA 7 58 CSMA/CD protocol for 6 processes
BRP 6 46 Bounded Retransmition Protocol
Dacapo 6 206 Start-up phase of a TDMA protocol
Token Ring 8 70 FDDI token ring for 7 stations
BOCDP 9 130 Bang & Olufsen Collision Detection Protocol
BOPDP 9 142 Bang & Olufsen Power Down Protocol
Buscoupler 16 198 Data link layer of ABB field bus protocol

In the following, the quality of different methods for the covering set con-
struction is evaluated and then the proposed storing strategies are compared.



Table 1. Different heuristics for covering set construction; for each heuristic (01 - T4)
and model we report number of Edges (E) in the covering set, the sum of the random
walk coefficients (RWC), and peak memory consumption of the reachability algorithm
with this covering set.

BRP Train-gate BOPDP BOCDP
E RWC Memory E RWC Memory E RWC Memory E RWC Memory

O1 2 0.15 31.5% 2 0.13 27.4% 3 0.2 18.3% 5 0.13 17.1%
O2 9 0.21 39.9% 2 0.12 30.8% 8 0.16 17.9% 18 0.15 22.5%
O3 11 0.21 39.9% 4 0.29 30.3% 12 0.16 17.9% 20 0.08 13.3%

O4 8 0.2 37.1% 5 0.23 28.8% 6 0.14 17.4% 14 0.25 29.9%
O5 1 0.08 16.5% 3 0.24 36.3% 3 0.26 33.8% 7 0.21 24.1%
T1 7 0.14 23.3% 2 0.12 30.8% 5 0.16 9.3% 10 0.18 24.9%
T2 10 0.14 27.1% 3 0.11 25.1% 10 0.15 11.3% 28 0.17 25.8%
T3 1 0.08 16.5% 17 0.53 51.5% 57 0.41 37.5% 53 0.37 48.8%
T4 1 0.08 16.5% 12 0.37 70.2% 22 0.4 46.8% 25 0.36 45.9%

Here memory consumption refers to the peak size of P ∪W during the computa-
tion, given as a percentage of all reachable states; overhead is the ratio between
the number of visited states and the number of reachable states.

5.1 Covering Set Construction

At the moment, our prototype supports the heuristics based on need change to
and sync for the identification of covering sets. Table 1 reports some representa-
tive results from using these heuristics. We have tried both one phase methods
(O1-O5) and two phase methods (T1-T4) with different heuristics for the selec-
tion of a next cycle/transition, e.g. selection according to the number of newly
covered cycles (O2, O3), the length of the cycle (T1, T2); random selection (O4);
approach which chooses a suitable variable (channel) and then selects all cycles
covering this variable (channel) (T3, T4); selecting min-RWC transition from
max-RWC cycle (O1); selecting the transition with largest RWC(O5). The main
observations from these experiments are the following:

– The number of edges that are needed to cover all cycles is quite small. From
12 tested models, some of them consisting of more then 10 automata and
150 edges, half of them can be covered by one or two edges and only one of
them needs more than 5 edges.

– The sum of the random walk coefficients is a better static measure of the
’quality’ of a covering set than the size of the set.

– None of the nine methods is ’dominant’. The most ’stable’ method seems
to be one phase construction which selects next transition according to the
ratio of newly covered cycles and random walk coefficient (O2).

Thus we conclude that the best approach is to have several different heuris-
tics, construct several covering sets, and then choose the one with the smallest
sum of random walk coefficients. This is the method that we have used in the
following experiments.



5.2 Storing Strategies

The results from using different storing strategies are reported in Table 2. The
’entry point’ strategy is a slightly improved1 version of the strategy in [11],
which is a special case of the covering set construction presented in this paper
and which is already implemented in Uppaal. The results for distance, random,
and combination strategies depend on the choice of parameters. It is usually
possible to achieve better results than those reported here by choosing parame-
ters optimised for the given model. The parameters used in the table are those
which give the best ’overall’ results. We have made experiments with some other
(combinations of these) strategies, but the results were usually similar to those
presented.

For many of the examples, the combined strategy significantly reduces the
amount of memory used (e.g for BRP, token ring, Train gate, Dacapo, BOCDP,
BOPD and Buscoupler less than 20% of the state space needs to be represented at
any time). In those cases the number of revisits is often relatively small (less than
a factor of 2) and the runtime overhead is even smaller (the runtime overhead is
bounded by the relative increase in the number of visited states). In fact, in some
cases the reachability algorithm with reduction is even faster than the standard
algorithm because a lot of time consuming operations are eliminated (since the
passed list is smaller) and hence the exploration rate is higher.

Table 2. Comparison of strategies – the memory and overhead are reported.

entry covering successors random distance combination
points set p = 0.1 k = 10 k = 3

Fischer 27.1% 42.1% 47.9% 53.7% 67.6% 56.9%
3,077 1.00 1.66 1.00 4.51 2.76 6.57

BRP 70.5% 16.5% 19.8% 18.3% 15.8% 7.6%
6,060 1.01 1.20 1.03 1.78 1.34 1.68
Token Ring 33.0% 10.3% 20.7% 17.2% 17.5% 16.8%
15,103 1.16 1.46 1.03 1.63 1.43 7.40
Train-gate 71.1% 27.4% 24.2% 31.8% 24.2% 19.8%
16,666 1.22 1.55 1.68 2.90 2.11 5.08

Dacapo 29.4% 24.3% 24.9% 12.2% 12.7% 7.0%
30,502 1.07 1.08 1.07 1.21 1.16 1.26

CSMA 94.0% 75.9% 81.2% 105.9% 114.9% 120.3%
47,857 1.06 2.62 1.40 7.66 2.83 6.82

BOCDP 25.2% 22.5% 6.5% 10.2% 9.3% 4.5%
203,557 1.00 1.01 1.08 1.02 1.01 1.09

BOPDP 14.7% 13.2% 42.1% 15.2% 11% 4.3%
1,013,072 2.40 1.33 1.02 1.52 1.14 1.74

Buscoupler 53.2% 13.6% 40.5% 31.7% 24.6% 14.3%
3,595,108 1.29 2.48 1.18 3.17 2.13 8.73

The surprising fact is the small number of revisits. It is difficult to provide
any theoretical explanation of this phenomenon (the worst-case behaviour is
exponential). We just point out that the order in which vertices are visited
becomes very important with reductions. Let us suppose that there are two

1 The improved version exploits information about communication channels to a cer-
tain extent.



paths p1 and p2 from state s1 to state s2 and that state s2 is not going to be
stored. Thus when the state is reached by the second path, it will be revisited.
But if the paths have the same length (and this is very often the case) and we use
breadth-first search order (i.e. W is implemented as queue), then s2 will still be
in W when it is visited via the second path and thus it will not be revisited (at
least not for now). With depth-first search order, it would be revisited anyway.
We have verified this hypotheses on our examples. The overhead was significantly
larger for depth-first search order than for breadth-first. This observation may
suggest why the state-space caching in SPIN [6] was not very succesfull, because
SPIN is DFS-based.

In two cases (Fischer’s and CSMA), the combined strategy turns out to be
less efficient than the existing entry point strategy used in Uppaal. It turns out
when using reductions not only the number of revisits increases, but also the
peak size of the waiting list. In some cases, the size of the waiting list dominates
the memory consumption. For example, the combination strategy in the CSMA
example stores only 16% of the states in the passed list, but due to the large
waiting list the peak memory consumption is much larger. We have observed this
behaviour mainly for parametrised systems which consists of several copies of one
process – these systems have a high degree of nondeterminism and interleaving
and thus the waiting list grows faster. This problem can partially be solved by
implementing the waiting list as a priority queue and giving priority to states
which are not going to be stored (intuitively, we want to get rid of them as
soon as possible). Since the order is not breadth-first the overhead increases
considerably. We have performed experiments confirming this reasoning.

There is clearly a trade-off between space and time and also between passed
list size and waiting list size. The combined strategy usually stores the least
amount of states in the passed list (but due to the waiting list the actual memory
consumption can be larger than for other strategies). The successor strategy is
not the most memory efficient, but causes nearly no overhead in terms of revisited
states.

6 Conclusion

The contributions of this paper include a number of complementary storing
strategies as well as static techniques for determining small sets of covering
transitions with the aid of a random walk analysis. Extensive experiments have
been carried out with different heuristics for covering set construction, storing
strategies and combinations of strategies. The experiments are very encourag-
ing: on a variety of industrial case-studies the space-saving is more than 90%
with only a moderate increase in runtime. Though the experiments have been
conducted within the real time tool Uppaal the strategies proposed are equally
applicable to other model checkers (including finite-state ones). However, the
strategies are particular useful for timed systems as partial order reduction has
yet to be successfully developed in this context (e.g. see [4]).
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