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Abstract. In this paper we address the problem of distributing model
checking of timed automata. We demonstrate through four real life ex-
amples that the combined processing and memory resources of multi-
processor computers can be effectively utilized. The approach assumes a
distributed memory model and is applied to both a network of worksta-
tions and a symmetric multiprocessor machine. However, certain unex-
pected phenomena have to be taken into account. We show how in the
timed case the search order of the state space is crucial for the effective-
ness and scalability of the exploration. An effective heuristic to counter
the effect of the search order is provided. Some of the results open up
for improvements in the single processor case.

1 Introduction

The technical challenge in model checking is in devising algorithms and data
structures that allow one to handle large state spaces. Over the last two decades
numerous approaches have been developed that address this problem: symbolic
methods such as BDDs, methods that exploit symmetry, partial order reduction
techniques, etc [4]. One obvious approach that has been applied successfully by
a number of researchers is to parallelize (or distribute) the state space search [1,
15]. Distributed reachability analysis and state-space generation has also been
investigated in the related field of performance analysis in the context of stochas-
tic Petri nets [3, 8] (see the second paper for further references). Since the state-
of-the-art in model checking and performance analysis is still progressing very
fast, it does not make sense to develop parallel or distributed tools from scratch.
Rather, the goal should be to view parallelization as an orthogonal feature, which
can always be easily added when the appropriate hardware is available.
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To some extend this goal has been achieved in the work of [3,15, 8], all with
very similar solutions. Stern and Dill [15], for example, present a simple but
elegant approach to parallelize the Mury tool [5] using the message passing
paradigm. In parallel Murep, the state table, which stores all reached protocol
states, is partitioned over the nodes of the parallel machine. Each node maintains
a work queue of unexplored states. When a node generates a new state, the
owning node for this state is calculated with a hash function and the state is
sent to this node; this policy implements randomized load balancing. In the
case of Mury, the algorithm of Stern and Dill achieves close to linear speedup.
We applied the approach of Stern and Dill to parallelize UPPAAL[11], a model
checker for networks of extended timed automata. We experimented with parallel
UPPAAL using four existing case studies: DACAPO [13], communication [7] and
power-down [6] protocols used in B&O audio/video equipment, and a model of
a buscoupler.

In the case of timed automata, the state space is uncountably infinite, and
therefore one is forced to work with symbolic states, which are finite representa-
tions of possibly infinite sets of concrete states. A key problem we had to face in
our work is that the number of symbolic states that has to be explored depends
on the order in which the state exploration proceeds. In particular, the number
of states tends to grow if state space exploration is parallelized. The main con-
tribution of this paper consists an effective heuristic which takes care that the
growth of the number of states remains within acceptable bounds. As a result
we manage to obtain close to double linear speedups for the B&O protocols and
the buscoupler. For the DACAPO example the speedup is not so good, probably
because the state space is so small that only a few nodes are involved in the
computation at a time. Some of the results open up for improvements in the
single processor case.

The rest of this paper is structured as follows: Section 2 reviews the notion
of timed automata. Section 3 describes our approach to distributed timed model
checking, Section 4 presents experimental results, and Section 5 summarizes
some of the conclusions.

2 Model Checking Timed Automata

In this section we briefly review the notion of timed automata that underlies the
UPPAAL tool. For a more extensive introduction we refer to [2, 10]. For reasons of
simplicity and clarity in presentation we have chosen to only give the semantics
and exploration algorithms for timed automata. The techniques described in this
paper extend easily to networks of timed automata, even when extended with
shared variables as is the case in UPPAAL.

Timed automata are finite automata extended with real-valued clocks. Fig-
ure 1 depicts a simple two node timed automaton. As can be seen both the loca-
tions and edges are labeled with constraints on the clocks. Given a set of clocks
C, we use B(C) to stand for the set of formulas that are conjunctions of atomic
constraints of the form z i n and z —y < n for z,y € C, <€ {<,<,=,>,>}



Fig. 1. A simple two state timed automaton with a single clock x.

and n being a natural number. Elements of B(C) are called clock constraints
over C. P(C) denotes the power set of C.

Definition 1. A timed automaton A over clocks C is a tuple (L,ly, E,I) where
L is a finite set of locations, lo is the initial location, E C L x B(C) x P(C') x L
is the set of edges, and I : L — B(C) assigns invariants to locations. In the case
of (I, g,r,1") € E, we write | 25 1.

Formally, clock values are represented as functions called clock assignments
from C' to the non-negative reals R>o. We denote by R the set of clock assign-
ments for C. The state space of an automaton A is L x R¢. The semantics of a
timed automaton A is defined as a transition system:

— (lu) = (Lbu+d) ifueI(l)and u+deI(l)
— (I,u) = (I',u') if there exist g and r s.t. | 251" u € g and v’ = [r — OJu

where for d € R, u + d maps each clock z in C to the value u(z) + d, and
[r — OJu denotes the assignment for C' which maps each clock in r to the value 0
and agrees with u over C'\r. In short, the first rule describes delay and the second
edge transitions. It is easy to see that the state space is uncountable. However, it
is a well-known fact that timed automata have a finite-state symbolic semantics
[2] based on countable symbolic states of the form (I, D), where D € B(C):

— (I,D) = (I,norm(M, (D A I(1))" A I(1)))
— (I,D) = (I',r(gADANIQD) A1) if 1 25 7.

where DT = {u+d | u € DAd € Rxo} (the future operation), and r(D) =
{[r » OJu | w € D}. The function norm : N x B(C) — B(C) normalizes the clock
constraints with respect to the maximum constant M of the timed automaton.
Normalizing the clock constraints guarantees a finite state space. We refer to [2,
10] for an in-depth treatment of the subject.

The state space exploration algorithm is shown in Fig. 2. Central to the
algorithm are two data structures: the waiting list, which contains unexplored
but reachable symbolic states, and the passed list, which contains all explored
symbolic states. An important but in the literature often ignored optimization
is to check for state coverage in both lists. Instead of only checking whether a



PASSED := ()
WAITING := {(lo, Do)}
repeat
get (1, D) from WAITING
if D ¢ D’ for all (I, D) € PAsSED then
add (I, D) to PASSED
Svcc:= {(I',D'): (I,D) —» (I',D') AD" # 0}
for all (', D’) € Succ do
put (I, D’) in WAITING
od
end if
until WAITING = {)

Fig. 2. Sequential symbolic state space exploration for timed automata.

symbolic state is already included in the list, UPPAAL searches for states in the
list that either cover the new state or is covered by it. In the first case the new
state is discarded and in the latter case it replaces the existing state covered by
it. We will return to this matter in Section 3.

3 Distributed Model Checking of Timed Automata

The approach we have used for distributing the exploration algorithm is similar
to the one presented in [3,15,8]. Each node executes the same algorithm (see
Fig. 3) which is a variant of the sequential algorithm shown in Fig. 2. Since we
assume a distributed memory model, all variables are local. Each node is assigned
a part of the state space according to a distribution function mapping symbolic
states to nodes. Whenever a new symbolic state is encountered it is sent to the
node responsible for exploring and storing that particular state. Each time a
state has been explored and its successors have been sent, all states waiting to
be received are received and put into the waiting list. If there are no states in
the waiting list, the node waits until a state arrives. Although all nodes run the
same algorithm, each node knows its own id and one node is the master node.
This node is responsible for calculating the initial state and sending it to the
owning node, and for deciding when the verification has finished. The verification
terminates when there are no more states waiting to be explored in the waiting
lists and there are no messages in transit. When the master finds out that the
verification is finished it sends a termination signal to all the nodes.

3.1 Nondeterminism and Search Orders
When exploring a state space using UPPAAL, one can choose between breadth-

first or depth-first search order corresponding to a queue or a stack implementa-
tion of the waiting list, respectively. In a distributed search one must still choose



PASSED := ()
WAITING := {)
repeat
receive states and place them in WAITING
get (1, D) from WAITING
if D¢ D' for all (I, D) € PASSED then
add (I, D) to PASSED
Svcc := {(',D"): (I,D) —» (I',D') A D" # (}
for all (', D') € Succ do
send (I, D') to h(l')
od
end if
until not terminate

Fig. 3. The distributed state space exploration algorithm.

whether each node uses a queue or a stack; we will call this “distributed breadth-
first” and “distributed depth-first” order, respectively. This only tells in what
mode the single nodes run. In general the search order will be nondeterministic
and may change from execution to execution.

In a distributed breadth-first search the states are explored in order of arrival
at each node. However, the order in which states arrive at a node (enter the
waiting list) will differ between executions. Some reasons for this are varying
communication delays, and different workloads on the nodes. This means that
in general states will not be searched in breadth-first order.

The main difference between a depth-first search and a distributed depth-
first search is that in the single processor case only one path is explored at a time
while in the distributed case more paths are explored at the same time. This is
because all successors of a state are generated and sent to their owning nodes,
where the search is continued in parallel. When the waiting list is implemented
as a stack small changes of the order in which states arrive may significantly
change the search order. Assume two states a and 3 arrive at a node while it
is exploring a state with « arriving last (so a will be on the top of the stack).
The successors of a are generated and sent to their owning nodes. One or more
of these may go to the node itself which means that they are explored before
(because states are received before a new state is popped from the waiting list),
and the same for their successors and so on. It may thus occur that § has to
wait a long time before it is explored even though it has arrived at almost the
same time as . Hence small changes in the order of arrival of states may change
the search order drastically.

3.2 Why the Search Order Matters

In a distributed state space search the number of states explored (and thereby
the work done) may differ from run to run. This is because whether a state
is explored or not depends on the states encountered before. As an example,



consider two states (I, D) and (I, D') with same location vector ! but different
time zones satisfying D C D'. If (I, D) arrives first and is explored before arrival
of (I,D"), then (I,D") will also be explored since it is not covered by any state
in the passed list (assuming that there are no other states covering it). Since the
successors of (I, D) are very likely to have larger time zones than the successors
of (I,D) these will also be explored later. However, if (I, D') arrives first and
is explored before (I, D) arrives, then (I, D) will not be explored because it is
covered by a state in the passed list. This also means that no successors of (I, D)
will be generated or explored.

Earlier experiments with the sequential version of UPPAAL showed that
breadth-first search is often much faster than depth-first search when gener-
ating the complete state space. This comes from the fact that depth-first search
order causes higher degree of fragmentation of the zones that breadth-first order,
resulting in a higher number of symbolic states being generated.

As noted above, the distributed algorithm neither realizes a strict breadth-
first nor depth-first search. When using a queue on each node, the algorithm
approximates breadth-first search. In fact, on a single node the search order
will be breadth-first. As we increase the number of nodes, chances increase that
the nondeterministic nature of the communication causes the ordering within
the queue to be such that some states with a large depth (distance from the
initial state) are explored before other states with a smaller depth. In cases
where breadth-first is actually the optimal search order, increasing the number
of nodes is bound to increase the number of symbolic states explored.

Since it seems that breadth-first order in most cases is the optimal search
order we propose a heuristic for making a distributed breadth-first order closer
to breadth-first order. The heuristic keeps the states in each waiting list ordered
by depth, for example by using a priority queue. This guarantees that the state
in the waiting list with the smallest depth is explored first. In Section 4, we will
demonstrate that this heuristic drastically reduces the rate at which the number
of symbolic states increases when the number of nodes grows. In some cases it
actually decreases the number of states explored.

3.3 Distribution Functions and Locality

On one hand, a good distribution function should guarantee a uniform work
load for the nodes, on the other hand it should reduce communication between
nodes. Since these objectives in most cases contradict each other, one has to find
a suitable tradeoff. We therefore considered several distribution functions.

As in [15], most of our results are based on using a hash function as the
distribution function. However, to make the inclusion checks of the time zones
in the waiting and the passed lists possible, states with the same location vector
must be mapped to the same node. The hash value of a symbolic state is therefore
only based on the location vector and not on the complete state.

One possible hashing function is the one already implemented in UPPAAL
and used when states are stored in the passed list. It uniquely maps each state
to an integer modulo the size of the hash table. Experiments have shown that



it distributes location vectors uniformly. Trying to increase locality of the dis-
tribution function, it should be possible to use the fact that transitions only
change a small part of the location vector and only some transitions change the
integer variables. If we consider a state a and a successor 3, we can expect most
locations and integer variables in § to be the same as in «. Section 4 reports on
experiments where the distribution function only hashes on part of the location
vector or only on the integer variables.

Some experiments with model specific distribution functions were done, but
it was extremely difficult to even approach the performance of the generic distri-
bution functions. Finding effective model specific distribution functions requires
much work and a thorough understanding of the given model.

Within UPPAAL the techniques described in [12] for reducing memory con-
sumption by only storing loop entry points in the passed list are quite important
for verifying large models. The idea is to keep a single state from every static
loop (which are simple to compute). This guarantees termination while giving
considerable reductions in memory consumption for some models. UPPAAL im-
plements two variations of this techniques. The most aggressive one is described
in [12] which only stores loop entry points. While reducing memory consump-
tion this technique may increase the number of states explored, since certain
states are explored more than once. A less aggressive approach is to also store
all non-committed states (in which no automaton is in a committed location) in
the passed list. Experiments show that this is a good compromise between space
and speed.

We propose using this technique to increase locality in the exploration. Since
non loop entry points are not stored on the passed list they might as well be
explored by the node which computed the state in the first place instead of
sending it to another node, thereby increasing locality. Consider, for example, a
state a and its successor §. If B is not a loop entry point and therefore is not
going to be stored on the passed list, we may as well explore 8 on the same node
as a. Section 4 reports on experiments with this technique.

3.4 Generating Shortest Traces

An important feature of a model checker is its ability to provide good debugging
information in case a certain property is not satisfied. For a failed invariant
property this is commonly a trace to the state violating the invariant. Providing
a short trace increases the value of a trace. One of the features of UPPAAL is
that when the algorithm from Fig. 2 is used with a breadth-first search order,
the trace to the error state is the shortest possible, since all states that can be
reached with a shorter trace have been explored before. It would be nice to have
this feature also in a distributed version of the tool. However, as described above,
the order of a distributed state space search is non-deterministic, and this may
lead to non-minimal traces. Fortunately, with little extra computational effort a
shortest trace can be found regardless of the search order. The idea is to record
for each symbolic state its “depth”, i.e., the length of the shortest trace leading
to this state. When a violating state is found the algorithm does not stop, but



instead continues to search for violating states that can be reached with a shorter
trace. We need to make sure that the inclusion checks performed on the waiting
and passed lists do not discard potential violating states. When a new state
(I, D) is added to the waiting or passed list, we normally compare it to every
state (I, D') on the list, and if an inclusion exists we keep the larger of the two
states. In order not to discard potential traces, we add the restriction that a
state is only replaced/discarded if it does not have a smaller depth than the
state it is compared to. The same idea is used for the decision whether or not
to explore a state when looking it up in the passed list: we only decide not to
explore a state if its clock constraints are included in the clock constraints of
another state with the same location vector and at the same time does not have
a smaller depth than the state it is included in. The corresponding line in the
algorithm changes to:

if D ¢ D' or depth(l, D) < depth(l, D’) for all (I, D') € PassSED then

With these changes the algorithm in Fig. 3 can find shortest traces independently
of the ordering used on the waiting list. As described above we have implemented
a heuristic which approximates breadth-first search. In Section 4, we demonstrate
that when using this heuristic the extra cost for finding the shortest trace is minor
and we keep good speedups.

4 Experimental Results

For implementing communication between nodes we have used the Message Pass-
ing Interface (MPI) [14]. This facilitates porting and running the program on
different kinds of machines and architectures. We have conducted experiments on
a Sun Enterprise 10000 with 24 333Mhz processors, which has a shared memory
architecture, and on a Linux Beowulf cluster of 10 450Mhz Pentium III CPUs.

4.1 Nondeterminism and Search Orders

One of the first examples the distributed UPPAAL was tried on, was a model of
a batch plant [9] constructed to verify schedulability of a production process.
The verification, which on one processor took several hours, surprisingly took
less than five minutes on 16 nodes. This super linear speedup came as a surprise
to us. Verifying schedulability in this model means searching for a state where
all batches have been processed. For this particular model we had previously
identified depth-first search as the fastest strategy on one node, and therefore we
used a distributed depth-first search. In this particular model, the verification
benefited from the nondeterministic search order. The distributed depth-first
search did not find the same state as the verification on a single processor, and
in fact the number of states searched was not the same in the two cases. It
should be possible to achieve a similar effect with the sequential algorithm by
introducing randomness into the search order. First experiments with using a
kind of random depth-first search have been promising.



Because of this property of checking for a particular state (or a set of states),
we have in the remaining experiments chosen to generate the complete state
space of the given system using a distributed breadth-first search. Generating
the complete state space reduces the impact of the nondeterministic search order
because one cannot find a “lucky” path which finds the state searched for quickly.
This makes the results from different runs comparable.

4.2 Speedup Gained

We have chosen to focus our experiments around four UPPAAL examples: the
start-up algorithm of the DACAPO [13] protocol which is quite small but had
some interesting behavior as will be discussed later; a communication protocol
used in B&O audio/video equipment (CP)[7]; a power-down protocol also used
in B&O audio/video equipment (PD)[6]; and a model of a buscoupler (which
thus far has not been published). The reason not to look further at the model of
the batch plant is that the state space was too big to be generated completely.
All other known UPPAAL examples were also tried, but these were so small that
the complete state space can be generated in a matter of seconds using a few
processors, and were therefore considered too small to be of interest.

The examples were run on the Sun Enterprise on 1, 2, 3,4, 5, 8,11, 14, 17, 20
and 23 nodes; and on the Beowulf on 1 to 10 nodes to the extend it was possible
(only the DACAPO model could be run on a single node because of memory
usage). Since the search order (and thereby the work done) is non-deterministic
we repeated one experiment several times. The observed running times!' and
number of states generated varied less than 3%. Running the experiments only
once therefore seemed reasonable.

When generating the complete state space for a number of examples using
distributed breadth-first search a general pattern occurred. In most cases the
number of states generated increased with the number of nodes, and in all cases
the smallest number of states was generated using one node. It therefore seems
that in most cases breadth-first is close to the optimal search order for generating
the complete state space. In most cases the increase in the number of states was
minor (less than 10%), but for a few examples the increase was substantial. In
the DACAPO example the number of states more than doubled — from 45000
states to more than 110000 states using 17 nodes (see Table 1).

To counter this effect, we applied the heuristic described in Section 3.2 and
used a priority queue to order the states waiting on each node such that the
states with the shortest path to the initial state is searched first. Not only did
this counter the increase in the number of states, it actually decreased the num-
ber of states generated in some cases. This shows that there is still room for
improvement with respect to the search order even when using a single proces-
sor. Table 1 and 2 show the effect of applying the heuristic to our examples. As

! When talking about the running time we always consider the time of the slowest
node.



Table 1. States generated with (Priority) and without (FIFO) use of heuristic on Sun
Enterprise.

# States

DACAPO CP Buscoupler PD

FIFO| Priority FIFO| Priority FIFO| Priority FIFO| Priority
1 45001 44925| 3466548| 3010244| 6502 804| 6436543| 7992048| 7992098
2 45754 44863| 5505161| 3027728 8042882| 6199274| 8004165| 8003477
3 69141 45267| 5472878 3070491| 8064519| 6243785 8001670| 7997859
4

5

62541 45177| 5454067| 3086016 8123748| 6171125| 8004717 8004439
78008 45667 5583368| 3077890 8651090| 6481067| 8002412 7998607

8 77396 46510| 5452888| 3113378| 8359647| 6185288| 8004898| 8004898
11 84598 46318| 5642463| 3059169 8968257| 6184329| 8004888| 8004892
14| 108344 49741 5653134| 3102709 8914300| 6278855| 8004888| 8004888
17 110634 52247\ 5270822| 3082967 9049252| 6243571 8001813| 7996979
20 98266 47573| 5449055| 3111333| 9271401 6251283| 8004881| 8004880
23| 104945 52457 5535724| 3065916 9146026| 6103629| 8004714| 8004651

Table 2. States generated with (Priority) and without (FIFO) use of heuristic on
Beowulf.

# States
DACAPO IR Buscoupler PD

noorder order| mnoorder order| noorder order| mnoorder order
1 45858 45748 N/A N/A N/A N/A N/A N/A
2| 48441 46899 N/A| 3028368 N/A|  N/A N/A|  N/A
3 74882 47671 5605882| 3053837 N/A N/A N/A N/A
4 62398 47640 5533159| 3058230| 15832617|12794520| 9473496| 9409935
5 79899 47678 5454676| 3060070| 16637609|13603603| 9432828| 9287527
6 92678 49438| 5684749| 3133769| 20443824|13896789| 9511548| 9482742
7 97065 49739 5702856| 3074131| 20329057|13797531| 9513477| 9441041
8 97662 50477 5358514| 3106414 22430748|14442925| 9527173| 9488775
9 92642 49284| 5449403| 3071827| 21086691|14455201| 9535657| 9515920
10 92400 48821 5532205| 3060705| 20704595|15507978| 9526732| 9500000




can be seen from the tables, the heuristic performs well in three of the four ex-
amples and in the PD example it has no effect. We also tried to use a distributed
depth-first search order, and to ’reverse’ the heuristic to first explore the states
with the longest path to the initial state during distributed depth-first search. In
both cases the number of states generated was increased substantially. Therefore
these search orders were discarded for the remaining experiments.

An important question is of course how well the distribution of the search
scales in terms of number of nodes. Tables 3 and 4 show the running times
in seconds for the different examples on the Sun Enterprise and the Beowulf,
respectively. When running on the Sun Enterprise we were able to generate the
complete state space on a single node for all the examples. We can therefore
calculate the speedup with respect to running on a single node. The speedups
we have calculated are normalized with respect to the number of states explored,
to clarify the effect of the distribution. The speedup for ¢ nodes is calculated as

time on one node/ states on one node
time on i nodes/ states on i nodes

where time on one node is the time for generating the complete state space using
the distributed version running on one node, and time on i nodes is the time of
the slowest node when running on % nodes.

Table 3. Run time with (Priority) and without (FIFO) use of heuristic on Sun Enter-
prise.

# Run time

DACAPO CP Buscoupler PD

FIFO| Priority FIFO| Priority FIFO| Priority FIFO| Priority
1 8.6 9.0 804.0 732.0 2338.6| 2213.8 3362.8| 3195.4
2 5.2 5.0 725.8 351.6 1506.5 861.4 1507.1| 1101.2
3 5.4 3.7 446.4 238.6 773.0 559.4 943.0 649.8
4 3.9 2.9 317.9 175.2 596.4 413.4 713.4 467.6
5 4.0 2.5 266.9 142.0 501.2 342.5 453.5 373.1
8 2.8 2.1 152.8 86.8 283.0 202.3 231.6 226.9
11 2.6 1.9 121.7 65.3 221.4 148.0 159.9 161.4
14 2.7 2.0 95.5 53.9 172.2 118.0 127.3 133.4
17 2.7 2.1 74.2 43.1 145.2 97.7 106.9 102.4
20 2.4 2.3 66.5 38.8 127.6 83.6 93.0 92.1
23 2.2 24 60.2 34.3 1124 72.7 76.9 79.6

For the DACAPO example the speedup decreases from being linear already
in the case of 5 nodes. However, it only takes 2.5 seconds to generate the com-
plete states space using 5 nodes. Since the states space is small not all nodes
can be kept busy and relatively much time is spent to start and close down the
exploration. Therefore, a poor speedup was to be expected. For the CP example



Table 4. Run time with (Priority) and without (FIFO) use of heuristic on Beowulf.

# Run time

DACAPO CP Buscoupler PD

FIFO| Priority FIFO| Priority FIFO| Priority FIFO| Priority
1 3.88 4.15 N/A N/A N/A N/A N/A N/A
2 3.20 3.16 N/A| 682.57 N/A N/A N/A N/A
3 3.49 237 934.44| 349.86 N/A N/A N/A N/A
4 2.88 2.02 540.19| 218.94| 1060.09| 799.69 616.85| 541.89
5 2.71 1.64] 390.02] 169.93 836.09| 646.02 413.45| 401.30
6 2.62 1.52 337.79| 144.50| 1796.23| 563.08 453.20) 377.39
7 2.55 2.47 285.30| 124.69 811.78| 476.69 343.49| 315.69
8 2.51 1.39 200.50 97.84 782.28| 440.87 283.07| 27441
9 2.23 1.38 178.75 87.38 619.84| 394.91 244.72| 242.16
10 2.00 1.19 173.07 82.44 536.74| 387.27 214.03| 217.98

the speedup is close to linear. However, for the buscoupler and the PD examples
the speedup is super linear, which is surprising since the speedup has been nor-
malized with respect to the total number of states. Figure 4 shows the graphs
for the speedups of the CP and buscoupler examples. We are not sure about the
reason for these super linear speedups. For the Sun Enterprise machine, access-
ing main memory is considered to be a bottleneck. When the number of nodes
used in an exploration increases so does the amount of cache available (each
node has 4Mb of cache). Since UPPAAL spends much time looking up states
in the passed and waiting lists, faster access to larger parts of these lists may
increase the speed substantially. This conjecture is supported by the fact that
the examples with the largest number of states (and therefore most accesses to
the passed and waiting lists) gain the largest speedup. The same kind of super
linear speedups were not encountered by Stern and Dill [15]. As mentioned in
their paper, Mury has implemented a wide range of techniques for minimizing
the state space. This means that, compared to UPPAAL, Mury spends less time
on looking up states and accessing memory, and therefore Mury does not gain
the same speedup from the larger cache.

On the Beowulf it was in most cases not possible to generate the complete
state space using only one processor. We have therefore chosen to present the
amount of work done, where work for i nodes is defined as the time on i nodes
times i divided by the number of states on i nodes, to normalize with respect
to the number of node generated. A horizontal then corresponds to a linear
speedup. As expected the line for the DACAPQO example increases, so we do
not have a linear speedup. The speedup looks better for the CP on the Beowulf
example but since we do not have the time on one node (this could not complete
due to memory shortage) it is hard to judge whether the work is approaching
the work in one node or really is decreasing below that. The same is the case for
the buscoupler and the PD example. Figure 5 shows the work for the CP and
buscoupler examples. One interesting point to notice is that for six nodes without



the heuristic the buscoupler performs very poorly (we have no explanation for
this behavior).

The explanations we suggest for the super linear speedups we encounter on
the Beowulf are the same as for the Sun Enterprise: access to a larger amount
of local (cache) memory.

4.3 Distribution Functions and Locality

In most of the experiments, states are distributed evenly among nodes using the
hash function from UpPAAL. However, for small models we observed that some
nodes explore twice as many states as others because some location vectors have
more reachable symbolic states than others, which means that some nodes have
more states allocated than others. Counting the number of different location
vectors on the different nodes, the distribution again looks uniform. This effect
does not show up in larger models.

We ran experiments for different distribution functions: a function hashing
on the discrete part of a state (DO0), a function hashing on the complete state
(D1), a function hashing on the integer variables (D2), and a function hashing
on every second location (D3). We also ran experiments for different settings of
the state space reduction technique described in Section 3.3, where only states
that are actually stored in the passed list are mapped to different nodes: storing
all states (S0), storing non-committed or loop entry points (S1), and storing only
loop entry points (S2). Table 5 shows for the buscoupler and the power-down
models the percentage of states explored on the same node they were generated
on. These experiments were run on the Sun Enterprise with 8 CPUs, but similar
results were obtained using the Beowulf cluster.

Table 5. Percent of locally explored states for different distribution and storage policies
for the buscoupler model (left) and the power-down protocol (right) when verified on
a Sun Enterprise using 8 nodes.

Bus | DO | D1 | D2 | D3 PD | DO | D1 | D2 | D3
S0 | 14% | n/a | 52% | 42% S0 | 4% | n/a | 76% | 22%
S1 |36% | n/a | 60% | 58% S1 |34% | n/a | 76% | 48%
S2 |55% | n/a | 62% | 62% S2 | 60% | n/a | 78% | 86%

For the buscoupler with DO and SO we almost obtain the expected uniform
distribution (100%/8 = 12.5%). This was not the case for the power-down model
although the total load on the nodes was uniform. None of the D1 experiments
terminated within a reasonable time frame. This was expected since much fewer
inclusion checks can succeed with this distribution function and hence a much
higher number of symbolic states will be generated. Both S1/S2 and D2/D3
improve locality. What cannot be seen is that both S1 and S2 increase the
number of states generated (for the buscoupler to such an extend that S2 is



actually slower than S0). D2 is surprisingly uniform while increasing locality,
but the load distribution of D3 was observed to be highly non-uniform, resulting
in poor performance. For the buscoupler D2 and S1 turned out to be the fastest
combination. For the power-down model D2 and S2 turned out to be the fastest
combination.

4.4 Generating Shortest Traces

For the buscoupler system we tried the version finding the shortest trace on four
different properties (finding a particular state not generating the complete state
space) on the Sun Enterprise. The speedups are displayed in Fig. 6. As for the
DACAPO system the speedup for properties one and two suffer from too few
states being explored. The speedup for properties three and four are much better
but here more states are searched to find the state satisfying the property. So
we can conclude that also the version finding shortest trace scales quite well, as
long as sufficiently many states need to be generated.

5 Conclusions

This paper demonstrates the feasibility of distributed model checking of timed
automata. A side effect of the distribution was an altered search order, which
in turn increased the number of symbolic states generated when exploring the
reachable state space. We have proposed explicit ordering of the states in the
waiting list as an effective heuristic to improve the scalability of the approach.
In addition we propose an algorithm for finding shortest traces that performs
well in a distributed model checker.

In several cases we obtained super linear speedups. We have suggested some
explanations, but more work is needed to clarify the observed phenomena. Im-
portantly, some of our results suggests possible improvements to the sequential
state space exploration algorithm for timed automata.
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