
Merging DBMs Efficiently

Alexandre David
Aalborg University

Plan

 Framework
 Timed Automata
 DBMs & Federations
 Why Merging DBMs?

 Merging DBMs
 The Problem
 The Different Algorithms
 Experiments

Warming Up:
Timed Automata in a Nutshell

push? push?

push?

push?

Lamp

Userpush!

init

low
high

x:=0

x>5

x<=5

What is it all about?

 Difference Bound Matrix: Data structure
for representing clock constraints, i.e.,
zones.

 DBMs represent convex zones.
Note: canonical form.

 Some operations (subtractions) may
result in non-convex zones, i.e., DBMs
must be split.

 Federations: unions of zones (DBMs).

Example of a DBM

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2

Example of a Federation

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2 +matrix of the second DBM

Disjoint
Cannot be simplified

Example of a Federation

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2 +matrix of the second DBM

Can be simplified

Example of a Federation

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2 +matrix of the second DBM

Cannot be simplified

Why Merging DBMs?
 State explosion: “Split” states give “split”

successors etc...
 Even if it is costly (see algorithms), it

does work. Justified by operations that
make it possible.

 Note: We have not used alternative representations
yet on our experiments, e.g., CDDs. We do our best
with what we have, i.e., federations.

up
Cannot simplify Can simplify

The Problem

 Given a Federation, is it possible to
simplify it?
 Remove included DBMs
 Merge adjacent DBMs

 Sure it is possible but how do you
choose your DBMs? How many DBMs
can you merge?

Removing DBMs

 DBM inclusion (cheap) or exact inclusion
(more expensive).

Note: In practice we have
dimension n.

Merging DBMs - Principle

 Check if convex_hull(A,B) == A|B
 Problem: 2n ways of choosing DBMs (2,

3, … , n). We don’t know how many
DBMs we can merge together.

More complex
configurations
in practice.

Let’s Do It!

 Algorithms:
 Reduce: Inclusion checking.
 ExpensiveReduce: Exact inclusion

checking.
 2-merge: Merge 2 by 2.
 N-merge: Dynamically find N DBMs to

merge.
 Partitioned N-merge: Find partitions and

apply N-merge + expensiveReduce.
 ConvexReduce: Recompute the federation.

2-merge

 N2 pairs to try.
 Use cheap test based on 2 necessary

conditions (not sufficient):
 2 opposite constraints of 2 DBMs must be

equal, e.g., aij = bij and aji = bji.

 Intersection of adherence is not empty.

 Then we try the merge with the convex
hull – needs subtractions.

2-merge

OK ij

Not OK ji

2-merge

Not OK ij + ji

2-merge

Not OK ij + ji

2-merge

 Adherence:
 x < 3 and x ≥ 3 ⇒ x ≤ 3 and x ≥ 3

3

 We also check for DBM inclusion.
 Finally if the conditions are met, we

check if convex_hull(A,B)-(A|B) is empty.

N-merge
 Relaxed 2-merge: only one compatible constraint.
 Algorithm (inclusion check ommitted):

 For all i < n, for all j < n & j > i:
 union := DBM[i]

if 2-merge DBM[j] := DBM[i]|DBM[j] &
 retry on all j
else if “1/2-merge” union |= DBM[j]

 C := convex_hull(union)
 For all j < n: if DBM[j] included in C, union |= DBM[j]
 If R := C-union is empty replace union by C

 Else if size(C-(C-union)) < size(union) replace union by C-(C-
union)

 Else ExpensiveReduce on union.

n2

Partition N-merge

 Algorithm:
 Find a partition of our federation
 Fixpoint on the sub-sets of

 N-merge
 Followed by ExpensiveReduce if there was a

reduction

ConvexReduce

 Idea: Recompute the federation and
reduce “fragmentation”.

 Algorithm:
 C = convex_hull(Fed)
 F = C-(C-fed)
 Fed = F if size(F) < size(Fed)

Experiments: Does it work?
 We need a real case example where

federations are heavily used and there is
much split:
 Timed game reachability algorithm,

backward & forward [CDFLL05].
 Current work: Applying this algorithm to

jobshop scheduling.
 Experiments on one instance with and

without uncertainties – difficult instance.
 Question: Is there a winning strategy?

Based on The DBM Library
 New API based on past experience and

new needs:
 optimizations for the “close” operation
 new extrapolations
 federations

 Written in C, C interface to DBMs and
federations.

 Federation C++ class.
 Dual Xeon 2.8GHz, 4GB RAM, Linux 2.4.

Without Uncertainties - Easy

44.6M5.3sNo Reduce

19.9M2.1sConvexReduce
19.9M2.4sPartition N-merge
19.9M2.4sN-merge

19.9M2.0s2-merge
21.1M2.5sExpensiveReduce
20.8M2.2sReduce

MemoryTime

2.1s
2.4s

2.4s
2.0s

2.0s
1.9s

1.9s
+N-
mrg

Without Uncertainties - Easy

 Small federations.
 Small difference between methods.
 Reduce still important.
 2-merge best.
 Only one bottleneck in the experiment

that really matters.

With Uncertainties - Difficult

918M12%:4051sNo Reduce

532M415sConvexReduce
525M345sPartition N-merge
526M372sN-merge

572M92%:11897s2-merge
784M32%:48831sExpensiveReduce
732M26%:7147sReduce

MemoryTime

201s
339s

372s
190s

257s
201s

203s
+N-
mrg

With Uncertainties - Difficult

 2-merge best for simple cases, as
before.

 Partition & N-merge best for complex
cases. If we generate the strategy, N-
merge is best.

 One bottleneck that really matters.

Conclusion

 It works and it is very important to
reduce federations.

 Best method (cheap/expensive)
depends on the application.
 Expensive method on critical bottlenecks.

 Efficient in practice.

References

 [CDFLL05] Efficient on-the-fly algorithms
for the analysis of timed games.
CONCUR’05, LNCS 3653, pp 66-80.

 UPPAAL: www.uppaal.com.

