
Merging DBMs Efficiently

Alexandre David
Aalborg University

Plan

 Framework
 Timed Automata
 DBMs & Federations
 Why Merging DBMs?

 Merging DBMs
 The Problem
 The Different Algorithms
 Experiments

Warming Up:
Timed Automata in a Nutshell

push? push?

push?

push?

Lamp

Userpush!

init

low
high

x:=0

x>5

x<=5

What is it all about?

 Difference Bound Matrix: Data structure
for representing clock constraints, i.e.,
zones.

 DBMs represent convex zones.
Note: canonical form.

 Some operations (subtractions) may
result in non-convex zones, i.e., DBMs
must be split.

 Federations: unions of zones (DBMs).

Example of a DBM

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2

Example of a Federation

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2 +matrix of the second DBM

Disjoint
Cannot be simplified

Example of a Federation

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2 +matrix of the second DBM

Can be simplified

Example of a Federation

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2 +matrix of the second DBM

Cannot be simplified

Why Merging DBMs?
 State explosion: “Split” states give “split”

successors etc...
 Even if it is costly (see algorithms), it

does work. Justified by operations that
make it possible.

 Note: We have not used alternative representations
yet on our experiments, e.g., CDDs. We do our best
with what we have, i.e., federations.

up
Cannot simplify Can simplify

The Problem

 Given a Federation, is it possible to
simplify it?
 Remove included DBMs
 Merge adjacent DBMs

 Sure it is possible but how do you
choose your DBMs? How many DBMs
can you merge?

Removing DBMs

 DBM inclusion (cheap) or exact inclusion
(more expensive).

Note: In practice we have
dimension n.

Merging DBMs - Principle

 Check if convex_hull(A,B) == A|B
 Problem: 2n ways of choosing DBMs (2,

3, … , n). We don’t know how many
DBMs we can merge together.

More complex
configurations
in practice.

Let’s Do It!

 Algorithms:
 Reduce: Inclusion checking.
 ExpensiveReduce: Exact inclusion

checking.
 2-merge: Merge 2 by 2.
 N-merge: Dynamically find N DBMs to

merge.
 Partitioned N-merge: Find partitions and

apply N-merge + expensiveReduce.
 ConvexReduce: Recompute the federation.

2-merge

 N2 pairs to try.
 Use cheap test based on 2 necessary

conditions (not sufficient):
 2 opposite constraints of 2 DBMs must be

equal, e.g., aij = bij and aji = bji.

 Intersection of adherence is not empty.

 Then we try the merge with the convex
hull – needs subtractions.

2-merge

OK ij

Not OK ji

2-merge

Not OK ij + ji

2-merge

Not OK ij + ji

2-merge

 Adherence:
 x < 3 and x ≥ 3 ⇒ x ≤ 3 and x ≥ 3

3

 We also check for DBM inclusion.
 Finally if the conditions are met, we

check if convex_hull(A,B)-(A|B) is empty.

N-merge
 Relaxed 2-merge: only one compatible constraint.
 Algorithm (inclusion check ommitted):

 For all i < n, for all j < n & j > i:
 union := DBM[i]

if 2-merge DBM[j] := DBM[i]|DBM[j] &
 retry on all j
else if “1/2-merge” union |= DBM[j]

 C := convex_hull(union)
 For all j < n: if DBM[j] included in C, union |= DBM[j]
 If R := C-union is empty replace union by C

 Else if size(C-(C-union)) < size(union) replace union by C-(C-
union)

 Else ExpensiveReduce on union.

n2

Partition N-merge

 Algorithm:
 Find a partition of our federation
 Fixpoint on the sub-sets of

 N-merge
 Followed by ExpensiveReduce if there was a

reduction

ConvexReduce

 Idea: Recompute the federation and
reduce “fragmentation”.

 Algorithm:
 C = convex_hull(Fed)
 F = C-(C-fed)
 Fed = F if size(F) < size(Fed)

Experiments: Does it work?
 We need a real case example where

federations are heavily used and there is
much split:
 Timed game reachability algorithm,

backward & forward [CDFLL05].
 Current work: Applying this algorithm to

jobshop scheduling.
 Experiments on one instance with and

without uncertainties – difficult instance.
 Question: Is there a winning strategy?

Based on The DBM Library
 New API based on past experience and

new needs:
 optimizations for the “close” operation
 new extrapolations
 federations

 Written in C, C interface to DBMs and
federations.

 Federation C++ class.
 Dual Xeon 2.8GHz, 4GB RAM, Linux 2.4.

Without Uncertainties - Easy

44.6M5.3sNo Reduce

19.9M2.1sConvexReduce
19.9M2.4sPartition N-merge
19.9M2.4sN-merge

19.9M2.0s2-merge
21.1M2.5sExpensiveReduce
20.8M2.2sReduce

MemoryTime

2.1s
2.4s

2.4s
2.0s

2.0s
1.9s

1.9s
+N-
mrg

Without Uncertainties - Easy

 Small federations.
 Small difference between methods.
 Reduce still important.
 2-merge best.
 Only one bottleneck in the experiment

that really matters.

With Uncertainties - Difficult

918M12%:4051sNo Reduce

532M415sConvexReduce
525M345sPartition N-merge
526M372sN-merge

572M92%:11897s2-merge
784M32%:48831sExpensiveReduce
732M26%:7147sReduce

MemoryTime

201s
339s

372s
190s

257s
201s

203s
+N-
mrg

With Uncertainties - Difficult

 2-merge best for simple cases, as
before.

 Partition & N-merge best for complex
cases. If we generate the strategy, N-
merge is best.

 One bottleneck that really matters.

Conclusion

 It works and it is very important to
reduce federations.

 Best method (cheap/expensive)
depends on the application.
 Expensive method on critical bottlenecks.

 Efficient in practice.

References

 [CDFLL05] Efficient on-the-fly algorithms
for the analysis of timed games.
CONCUR’05, LNCS 3653, pp 66-80.

 UPPAAL: www.uppaal.com.

