;! 1 Merging DBMs Efficiently

Alexandre David
Aalborg University



;$ ||||P an

mill Ul
= Framework

= Timed Automata
= DBMs & Federations
= Why Merging DBMs?
= Merging DBMs
= The Problem
= The Different Algorithms
= Experiments



Warming Up:
H“ITimed Automata in a Nutshell

il

push?
xX>5

init

User




J. What is it all about?
.

mill Ul
® Difference Bound Matrix: Data structure

for representing clock constraints, i.e.,
Zones.

= DBMs represent convex zones.
Note: canonical form.

= Some operations (subtractions) may
result iIn non-convex zones, I.e., DBMs
must be split.

= Federations: unions of zones (DBMSs).



i

i Example of a DBM

XX, <=0 | X=X, <=-2 | X=X,<=-1
X,-X, <=8 | X=X, <=1 | %x,-%x,<=0




Example of a Federation

;

X=X, <=0 [ XX, <=-2 | X=X, <=-1
X-%, <=6 [x,-X,<=0 [X-X,<=3
X,- X, <=8 [ XX, <=1 | x,-x,<=0

xi'xj<=cij

+matrix of the second DBM

:X‘I

Disjoint
Cannot be simplified



¢ Example of a Federation
La

XX, <=0 | X=X, <=-2 | X=X,<=-1

X-%,<=6 |X,-X, <=0 |X;-X,<=3 X;-X;<=C;

X,-X, <=8 | X=X, <=1 | %x,-%x,<=0

X, | +matrix of the second DBM

Can be simplified




Example of a Federation

.

X=X, <=0 [ XX, <=-2 | X =X,<=-1
X-%,<=6 | X,-x,<=0 |X;-X,<=3
X,-X, <=8 | X=X, <=1 | %x,-%x,<=0

xi'xj<=cij

+matrix of the second DBM

Cannot be simplified




$ Why Merging DBMs?

= State explosion: “Split” states give “split”
successors efc...

= Even if it is costly (see algorithms), it
does work. Justified by operations that

make it possible.
\ ,rlify

Cannot simplify
_
= Note: We have not used alternative representations
yet on our experiments, e.g., CDDs. We do our best
with what we have, i.e., federations.

up




¢ The Problem

i

= Given a Federation, is it possible to
simplify it?
= Remove included DBMs
= Merge adjacent DBMs

= Sure it is possible but how do you

choose your DBMs? How many DBMs
can you merge?




m.Removing DBMs

A

= DBM inclusion (cheap) or exact inclusion
(more expensive).

Note: In practice we have
dimension n.




‘i II\/Ierging DBMs - Principle

= Check if convex_ hull(A,B) == A|B

= Problem: 2" ways of choosing DBMs (2,
3, ..., n). We don't know how many
DBMs we can merge together.

. . More complex

configurations
In practice.




x$ Let’s Do It

mil A
= Algorithms:

= Reduce: Inclusion checking.

= ExpensiveReduce: Exact inclusion
checking.

= 2-merge: Merge 2 by 2.
= N-merge: Dynamically find N DBMs to
merge.

= Partitioned N-merge: Find partitions and
apply N-merge + expensiveReduce.

= ConvexReduce: Recompute the federation.




L$ "|2-merge

mil A
= N2 pairs to try.

= Use cheap test based on 2 necessary
conditions (not sufficient):
= 2 opposite constraints of 2 DBMs must be
equal, e.g., a; = b; and a; = b;.
= |ntersection of adherence is not empty.

= Then we try the merge with the convex
hull — needs subtractions.



OK ij

Not OK ji




Not OK ij + j




Not OK ij + j




‘é u=2-merge

= Adherence:
s x<3andx=30 x<3andx=3

3
® \We also check for DBM inclusion.

= Finally if the conditions are met, we
check if convex_hull(A,B)-(A[B) is empty.



\i |||N_merge

"B Relaxed 2-merge: only one compatible constraint.

= Algorithm (inclusion check ommitted):
= Foralli<n, forallj<n&j>i: n?
= union := DBM[i]
if 2-merge DBM([j] := DBM[i]|DBM[j] &
retry on all |
else if “1/2-merge” union |= DBM]j]
= C :=convex_hull(union)
= For all j < n: if DBM[j] included in C, union |= DBM][j]
= |[f R := C-union is empty replace union by C

Else if size(C-(C-union)) < size(union) replace union by C-(C-
union)

Else ExpensiveReduce on union.




‘i Partition N-merge

= Algorithm:
= Find a partition of our federation

= Fixpoint on the sub-sets of
* N-merge

= Followed by ExpensiveReduce if there was a
reduction



¢ ConvexReduce
L B

mil i
= |dea: Recompute the federation and

reduce “fragmentation”.
= Algorithm:
= C = convex_hull(Fed)
" F = C-(C-fed)
" Fed = F if size(F) < size(Fed)



¢ Experiments: Does it work?
o

= \We need a real case example where
federations are heavily used and there is
much split:

= Timed game reachability algorithm,
backward & forward [CDFLLOS].

= Current work: Applying this algorithm to
jobshop scheduling.

= Experiments on one instance with and
without uncertainties — difficult instance.

= Question: Is there a winning strategy?



| Based on The DBM Library
L EN

" % New API based on past experience and

new needs:

= optimizations for the “close” operation
= new extrapolations

= federations

= Written in C, C interface to DBMs and
federations.

" Federation C++ class.
" Dual Xeon 2.8GHz, 4GB RAM, Linux 2.4.



\$ Without Uncertainties - Easy

+N-:Time Memoryr
No Reduce mog| 5.3s 44 . 6M
Reduce 1.9s| 2.2s 20.8M
ExpensiveReduce 2.0s| 2.5 21.1M
2-merge 2.0s| 2.0s 19.9M
N-merge 2.4s| 2.4s 19.9M
Partition N-merge 2.4s| 2.4s 19.9M
| ConvexReduce 2.13:" 2.1s

19.9M|




¢ Without Uncertainties - Easy
L B

mill Ul
= Small federations.

» Small difference between methods.
= Reduce still important.
= 2-merge best.

= Only one bottleneck in the experiment
that really matters.



With Uncertainties - Difficult

LA
+N-:Time Memoryr
No Reduce 208810515 918M
Reduce 201s[147s 732M
ExpensiveReduce 25758315 784M
2-merge 190s|897s 572M
N-merge 37253725 526M
Partition N-merge 3395|3455 3525M
| ConvexReduce 2015|4155 532M |




J. With Uncertainties - Difficult
.

mil i
= 2-merge best for simple cases, as

before.

= Partition & N-merge best for complex
cases. |If we generate the strategy, N-
merge Is best.

= One bottleneck that really matters.



¢ Conclusion
L Ex

mil A
= |t works and it is very important to

reduce federations.

= Best method (cheap/expensive)
depends on the application.

= Expensive method on critical bottlenecks.
= Efficient in practice.



¢ References
g

= [CDFLLOS] Efficient on-the-fly algorithms
for the analysis of timed games.
CONCUR'05, LNCS 3653, pp 66-80.

= UPPAAL: www.uppaal.com.



