A\

UPPAAL Tutorial
Beyond UPPAAL

f
\/Mndm -

Paul Pettersson
RTSS'05

> “Classic": real-time
verification

> Cora: real-time scheduling

» Tron: online real-time
testing

» Tiga: timed game

> Times: schedulability
analysis

» CoVer: test case L
generation =

AN

* Presented today

http.//www.uppaal.com

» Real Time Scheduling e

LPPAAL fov Planming and Scheduing

» Optimality
* Reachability
= Safety

Cost Optimal T
Reachability Analysis @ ===

AN

http://www.cs.aau.dk/~behrmann/cora/

UPPAAL Tron

> Real Time Testing UPPAALTRON
» Off-line Test F '
Generation

= On-line Test
Generation and o
Execution ==

| UPPAAL Tiga
> Timed Games

= Optimal winning
strategies
» Controller synthesis

http://www.cs.aau.dk/~adavid/tiga/

AN

» Schedulability
Analysis

* Schedule synthesis
» Code synthesis

http.//www.timestool.com

= Coverage observer

UPPAAL CoVer

» Conformance Testing
= Test suite generation

CcO \/ER
S
‘:‘“T.__..._. o SRR
=1 =
I —]

http.//www.hessel.nu/CoVer/

Open Source Im’rla‘rlves

> DBM Library (6PL) uPPAAL DBM Library
/77‘7‘,0 //WWW cs.aau. a’k/~aa’awd/UDBM/ [el

] Subfrac'rlons & reduction
techniques

= Ruby binding (with
graphlcal viewer)

» Used in UPPAAL
> UTAP (UPPAAL TA
parser library, LGPL)

. ﬁgl';r http://www.cs.auc. dk/~be/7rmann/ufap/ R
Bpor“r for full syntax of | =27 e
A e

> Soon GUIL XML : sl ol
‘%omponem‘s s i

UPPAAL Tron
Light Controller Example

Switch

UPPAAL Tron
Online Testing

> Released on May 16, 2004
[Fates'04]

> Black-box conformance
testing of real-time systems.

> Online generation and
execution of timed test traces
from given TA model.

> Explicit modelling of
environment

= allowing for more relevant
testing

= Allowing for more efficient ~ ENV Imp

‘% testing (quiding)

UPPAAL Tron
Online Testing

Implementation

GET T

- |

e |
weakCoffee!

J.
strongCoffee!

weakCoffea?
strongCoffee?

Symbolic state set:
{{.I-‘{ihp.” ‘E- £ 5 ”}}

EnvOutput: {coin} -
Envinput: () Wait for output (delay)

ImpOutput: () or offer input?

TRON

Online State Estimation

Timed Automata State-set explorer
Specification maintain and analyse a set of
symbolic states in real timel

Untimed Games

> Find a memoryless
winning strategy ! ®
= taking controllable edges

to reach the Goal @H@

= that is memoryless

> Rule: 2-player game, ©)
controller can choose
only controllable

transitions 4
» Winning run: — Controllable
* reachability states\G = J ——> Uncontrollable
‘%- safety statesB = & —> Strategy

Timed Games

> Similar with timed > 1
constraints
= Choose controllable

® [

x<1

iti i i < xX22
vt | @@
* Find memoryless winning x> 1
strategy (3) x<1
> Algorithm: x<1
Timed version of Liu & Smolka

98 4 x<1

Forward reachability + ——> Controllable
Backward fixed-point — S Uncontrollable

computation
[CONCUR05] — > Strategy

Time Optimality
Winning Strategy

> Assume
* The game is winning
» We know an upper bound B for

the minimal time needed to Result:
reach the goal
> Modification Minimum time
required = 2

» Add a clock t (initially
unconstrained)

» Add the global invariant + < B

GIVEN System moves S, =
' Controller moves C, and property ¢ Egne e S 0
FIND strategy s. such that s¢||S e Tt | e | 57 [25 [
satisfies ¢ S L/ e/

<

Real-time Scheduling

e Only 1 “BroBizz” UNSAFE
e Cheat is possible

(drive close to car with “Bizz”)

SAFE

CAN THEY MAKE IT TO SAFE
‘% WITHIN 70 MINUTES ???

Real-time Scheduling

UNSAFE

Solve
Scheduling Problem
using UPPAAL

10

GEz

Cost-Rates

Cost Optimal SCheduliﬁﬁgﬁﬁ

UNSAFE

H/
n3
S rd
c1 \
\ unsafe | __, y =0 °
take |
A — [Pas:
release! e
les: :
’ relea
y>=5
re take !
yE=25 y = 0 L _ 1 Safe
: sale ‘

Linearly Priced SR CORA
Optimal Scheduling

x<;/\ X<3: cost’=0
< : cost+=4 @
\ﬁ y>2’ X<2
& {x=0} 5 ‘
= T
A g location €
nimum cost of reaching
\ mi
Find the

5
o T (b,x=y=0) 8—2 (b,x=y=2.5)T> (a,x=0,y=2.5)

Y&Cilost of Execution Trace: Sum of costs: 4 +5+0=9

11

/

URFA

E earliest landing time

T target time

L latest time

e cost rate for being early
| cost rate for being late

d fixed cost for being late

Planes have to keep separation
distance to avoid turbulences e
caused by preceding planes

Runway

‘% cputime (secs) 1.97 1.53

= L)

Example: Aircraft -
Landing

problem instance] 1] 2] 3 4 b 6| 7
number of planes| 10| 15| 20 20 20 30 44
number of types 2 2 2 2 2 4 2
optimal value 700| 1480| 82 [~ 3100| 24442

1|{explored states 481] 2149| 92 5693 15069 122| 66!
cputime {secs) 4.19|25.30|11.05)§ 87.67| 220.22| 0.60|4.2
optimal value 90| 210| 6 640 660 bb4
2||lexplored states | 1218| 1797| 66 28821 47993 9035 9
cputime (secs) [17.87(39.92(11.02

optimal value 1] 1] 130 170

3||lexplored states 24| 46 207715 189602 6AN/A
cputime (secs) 0.36] 0.70 1.71§14786.19|12461.47| 0.6
optimal value 1] 1}

4flexplored states | N/JA|N/A|N/A 65 64| N/A[N/A

12

@\ How CORA Works

> Special variables in CORA:
= cost: the cost as mentioned
* heur: heuristic value to guide the search

* rem: lower bound on the remaining time to reach
the goal

> Priced zones [CAVO1]
> Guided search (with the heuristic variable)

» Branch & bound algorithm to prune the state-
space from worse current solutions - in
practice much fewer states may be explored

Ncompared to non-cost version)

13

