A

UPPAAL Tutorial

Modeling Patterns

%
Wﬂdre Savid

Paul Pettersson
RTSS'05

In This Session

» Some patterns to use well UPPAAL
» Clearer models
= More efficient models
= Avoid pitfalls
= Common tricks

AN

Accelerating Cycles
Window

» Problem: fragmentation of symbolic states.
» Solution: accelerate cycles.

Definition
The WINDOW of a cycle

C=(e, e, .., e)is [ab] iff
1. Every execution of C has
accumulated delay between a and b.
2. For any delay d between a and b
there exists an execution of C with
accumulated delay d.

Acceleratable Cycles
Definition

Let C=(e, e, .., e,) beacycleand let y bea
clock, then (Cy) is an acceleratable cycle if:

Every invariant of C is of the form y<=n (or true)
Every guard of C is of the form y>=m (or true)
y is reset on all ingoing edges to src(e))

T

Every acceleratable
cycle has a window.

y>=3

Accelerated Cycles

}U\ z>=LARGE L%

Acceleration of cycle

“Unfolding of cycle"

Efficiency

If y is reset on the first
edge in the accelerated
cycle C, then one execution
of the appended cycle
sufficesl!

3a<2= (M E ¢ Acc(M,A) = ¢)

(w.r.t. a cycle A)

‘% 3*3 <2*7

Variab

> Intent: reduce state-
space by resetting
unused variables to a
known value (0).

» Even if a variable is
meaningless in some
states, its value is still
part of the state.

= Mostly applicable to

local variables.

le Reduction

Uugna

listflen]:=el,
notemptyl add? len++

len=0
el:=list[0]

empty!
len==0

rem!
len==1
len--,
i:=0

i<len

list[i]:=list[i+1],

++

Atomicity

>In‘ren‘r to reduce the state-space by
avoiding interleavings.

= May be needed from pure modeling point of
view too.

= Useful in synchronization patterns.
= Use committed locations.

= For sequences of actions, better use C-like
code.

Synchronous Value
Passing

>In‘ren‘r send data synchronously
between processes.
= Typically between local variables.

= Feature used: UPPAAL evaluate expressions
at the sender first.

= Different variants depending on
+ conditional/unconditional value passing,
* one/two way value passing.

&Asymme‘rric

Synchronous Value
Passing - One-way

out ——— in ConditionalSend1 ConditionalRecv1

Isend(ou’r) recv(&in) | —— c! c?
var=out jpr=vs
O cond(in)

8 |

Variable reduction

Synchronous Value
Passing - Two-way

ConditionalSend2 ConditionalRe w2

sendl(out)
recv2(&in)

cl c?
var=out in=var,
send2(out) >
recvl(&in)

©

j var=out
Variable reduction (var=0 >

O cond1(in) O cond2(in)

_y O

Synchronous Value
Passing - Two-way
Symmetric Encoding

SymmetricSendRecy

cl c?
var=out in=var,

var=out

ZX @) cond(var) @) cond2(in)

d? d!
in=var,
var=0

Y& —@—

Urgent Edges

» Intent: take an edge as soon as it is enabled

(without delay).
» Condition on the edge, not the location.

» Solution limit: no clock constraint (yet).
urgent chan go;

go!

‘% O “time-out .
timeout

Timers

» Intent: code a classical timer that emits
a time-out event.

= In principle time (in timers) decreases but
in UPPAAL it only increases.

= More natural for some models.
= Operations:

- start(value)

* expired?

* tfime-out event

Timers
Basic timer:
Expired
> (re-)start
start!
start?
> expired? x=0,

active (bool)
active go?

(bool+urgent chan) a7 Watting
> time-out event ’ ;X<=D
tlmeout7

Not needed for clocks:
Active clock reduction takes care of this.

Timers

> expired? S o
- active=true,
active (bool) 'to=var, active=false,

ffffffffff

active go? var=0 | 10=0
(bool+urgent chan) start? Waiting

> time-out event to=var, x<=to
timeout? var=0 |

Parametric timer:
Expired
> (re-)start(value)
start! var=value _
start? timeout!

‘% Declare 'to' with a tight range.

\ Bounded Liveness

> Intent: Check for properties that are
guaranteed to hold eventually within
some upper (time) bound.
» Provide additional information (with a valid
bound).
= More efficient verification.

= ¢ leadsto.; w reduced to Ao(b=2z < t)
with bool b set to fruve and clock z reset
when @ starts to hold. When y starts to
hold, set b to false.

\ Bounded Liveness

> The truth value of b indicates whether
or not Y should hold in the future.

A[] (b imply z=t)
b= b -->not b
Exb

~
~
\

Y ;) btrue, check zs t

v
-,
-

Zenohess

> Problem: UPPAAL does not check for
zenoness directly.

* A model has “"zeno" behavior if it can take an
infinite amount of actions in finite time.

* That is usually not a desirable behavior in practice.

= Zeno models may wrongly conclude that some
properties hold though they logically should not.

* Rarely taken into account.

» Solution: Add an observer automata and check
for non-zenoness, i.e., that time will always
pass.

AN

Zenonhess

oK o
Detect by
-1 *adding the A .<>@> B
observer:
xs1 xs1 Constant (10) can be anything

(>0), but choose it well w.r.t.
your model for efficiency.
Clocks 'x' are local.

+and check the property
ZenoCheck.A --> ZenoCheck.B

Sy Some Pitfalls

»Unbounded integers
» Model uses the full range.
»Unsynchronized processes
= Combinatorial explosion.

»Unused active variables specially in
arrays

AN

Tricks

»How to copy a template?
= Rename, save, rename to original, import.

» State predicates (bool) evaluate to O or
1 and can be used as integers:

» Mutual exclusion:
A[]JP1.cs+P2.cs+P3.cs<=1

%

11

