
1

UPPAAL TutorialUPPAAL TutorialUPPAAL Tutorial
Modeling PatternsModeling Patterns

Alexandre David

Paul Pettersson

RTSS’05

In This Session
Some patterns to use well UPPAAL

Clearer models
More efficient models
Avoid pitfalls
Common tricks

2

Accelerating Cycles
Window

Problem: fragmentation of symbolic states.
Solution: accelerate cycles.

z: clock of environment

y: clock used by control program

The cycle L0,L1,L2 has the window [3,7] for y

The WINDOW of a cycle
C =(e1, e2, … , ek) is [a,b] iff

1. Every execution of C has
accumulated delay between a and b.

2. For any delay d between a and b
there exists an execution of C with
accumulated delay d.

Definition

Acceleratable Cycles

Let C =(e1, e2, … , ek) be a cycle and let y be a
clock, then (C,y) is an acceleratable cycle if:

1. Every invariant of C is of the form y<=n (or true)
2. Every guard of C is of the form y>=m (or true)
3. y is reset on all ingoing edges to src(e1)

Definition

Every acceleratable
cycle has a window.

Theorem

3

Accelerated Cycles

Theorem

3*3 ≤ 2*7

If y is reset on the first
edge in the accelerated
cycle C, then one execution
of the appended cycle
suffices!!

Efficiency

Acceleration of cycle
=

”Unfolding of cycle”

(w.r.t. a cycle A)

Variable Reduction
Intent: reduce state-
space by resetting
unused variables to a
known value (0).

Even if a variable is
meaningless in some
states, its value is still
part of the state.
Mostly applicable to
local variables.

4

Atomicity
Intent: to reduce the state-space by
avoiding interleavings.

May be needed from pure modeling point of
view too.
Useful in synchronization patterns.
Use committed locations.
For sequences of actions, better use C-like
code.

Synchronous Value
Passing

Intent: send data synchronously
between processes.

Typically between local variables.
Feature used: UPPAAL evaluate expressions
at the sender first.
Different variants depending on
• conditional/unconditional value passing,
• one/two way value passing.

Asymmetric

5

Synchronous Value
Passing – One-way

send(out) recv(&in)

cond(in)

Variable reduction

out in

Synchronous Value
Passing – Two-way

send1(out)
recv2(&in)

send2(out)
recv1(&in)

cond2(in)cond1(in)

Variable reduction

var=0

out out

in in

6

Synchronous Value
Passing – Two-way

Symmetric Encoding

2x

Urgent Edges
Intent: take an edge as soon as it is enabled
(without delay).

Condition on the edge, not the location.
Solution limit: no clock constraint (yet).

x≤2

i==1 i==2

x==2

urgent

time-out

urgent chan go;

7

Timers
Intent: code a classical timer that emits
a time-out event.

In principle time (in timers) decreases but
in UPPAAL it only increases.
More natural for some models.
Operations:
• start(value)
• expired?
• time-out event

Timers
Basic timer:

(re-)start
start!

expired?
active (bool)
active go?
(bool+urgent chan)
time-out event
timeout?

Not needed for clocks:
Active clock reduction takes care of this.

5

5

8

Timers
Parametric timer:

(re-)start(value)
start! var=value

expired?
active (bool)
active go?
(bool+urgent chan)
time-out event
timeout?

Declare ‘to’ with a tight range.

Bounded Liveness
Intent: Check for properties that are
guaranteed to hold eventually within
some upper (time) bound.

Provide additional information (with a valid
bound).
More efficient verification.
φ leadsto≤t ψ reduced to A□(b⇒z ≤ t)
with bool b set to true and clock z reset
when φ starts to hold. When ψ starts to
hold, set b to false.

9

Bounded Liveness
The truth value of b indicates whether
or not ψ should hold in the future.

φ

ψ

¬ψ

¬φ

b=true
z=0

b=false

b true, check z ≤ t

b=false

A[] (b imply z≤t)
b --> not b (for non zenoness)
E<> b (for meaningful check)

Zenoness
Problem: UPPAAL does not check for
zenoness directly.

A model has “zeno” behavior if it can take an
infinite amount of actions in finite time.
That is usually not a desirable behavior in practice.
Zeno models may wrongly conclude that some
properties hold though they logically should not.
Rarely taken into account.

Solution: Add an observer automata and check
for non-zenoness, i.e., that time will always
pass.

10

Zenoness

x≤1 x≤1
x=0

ZenoOK
Detect by
•adding the
observer:

Constant (10) can be anything
(>0), but choose it well w.r.t.
your model for efficiency.
Clocks ‘x’ are local.

•and check the property
ZenoCheck.A --> ZenoCheck.B

x ≥ 1x==1

Some Pitfalls
Unbounded integers

Model uses the full range.
Unsynchronized processes

Combinatorial explosion.
Unused active variables specially in
arrays

11

Tricks
How to copy a template?

Rename, save, rename to original, import.
State predicates (bool) evaluate to 0 or
1 and can be used as integers:

Mutual exclusion:
A[]P1.cs+P2.cs+P3.cs<=1

