
1

UPPAAL TutorialUPPAAL TutorialUPPAAL Tutorial
Inside UPPAALInside UPPAAL

AdvancedAdvanced

Alexandre David

Paul Pettersson

RTSS’05

2

In This Session
Implementation of UPPAAL

Architecture
Data structures in practice
Optimizations techniques

Before: TA & semantics + algorithms.
Now: How it works.

2

3

Outline
Architecture of UPPAAL

Filters
Reachability + liveness + leadsto pipelines

Memory optimizations
Sharing
Minimal graph
To store or not to store

Other options/optimizations
Symmetry
Convex hull + Bitstate hashing

ArchitectureArchitectureArchitecture
PipelinesPipelines

3

5

Architecture of UPPAAL
Pipeline architecture

In terms of components and flow of data
Not with parallel processing units

Basic components
Sink
Source
Buffer
Filter

6

Pipeline Components
Source

Sink

Filter

State

Successor

Data

Buffer

4

7

Reachability Pipeline

Expression

Delay Extrapolation Active clock reduction

Accept? Dealloc

yes

no
PWList

TransitionSuccessor

Trace

Initial
state

8

Features
Reusable/exchangeable components
Flexible architecture
PWList = passed & waiting list

Unified structure
Early termination

Check property after successor
computation, not when taking states from
waiting list

5

9

Delay
Initial state pushed here
Future operation + invariant

Delay

Delay Extrapolation Active clock reduction

Accept? Dealloc

yes

noPWList

TransitionSuccessor

Trace

10

Extrapolation
Different algorithms (choice automatic)

Correctness depends on which kind of
constraints are used
Basic extrapolation:

Extrapolation
maxx

maxy

+ active clock reduction:
if bound = -∞ then free clock

Delay Extrapolation Active clock reduction

Accept? Dealloc

yes

noPWList

TransitionSuccessor

Trace

x

y maxx

maxy

x

y

6

11

PWList
PWList = unified passed and waiting list
Accept = add state if not included in
passed + waiting states
IN: add state to passed + waiting list
OUT: remove from waiting list

Accept?PWList

Delay Extrapolation Active clock reduction

Accept? Dealloc

yes

noPWList

TransitionSuccessor

Trace

12

Transition
& Successor

Transition computes possible
transitions, not states

Transition

Successor computes successor state

Successor

Possible resets
+ variable updates

Delay Extrapolation Active clock reduction

Accept? Dealloc

yes

noPWList

TransitionSuccessor

Trace

7

13

Implemented
Reachability Algorithm

Passed=Waiting={init}
If init == goal then stop

While Waiting not empty
S=pick state from waiting
for all successors si

• PWList += si
• if si == goal then stop

Inclusion check in ‘+=‘
One inclusion check
(instead of two)
Earlier termination than
classical reachability

init

goal

s1

S s2

Passed + Waiting List

Waiting

Successor
computation

14

Classical
Passed + Waiting Lists

Hash
table

States

Passed list

Hash
table

Waiting queue

Searching:
•pop state
•hash
•push to passed
(inclusion check)
•successor computation
•hash
•push to waiting queue
(inclusion check)

2 hash tables
2 inclusion checks
1 queue

8

15

PWList

Hash
table

States
Unified list

Waiting queue

Searching:
•pop state reference
•successor computation
•hash
•push to unified list
(inclusion check) and append
state reference

1 hash table
1 inclusion check
1 queue

16

Active Clock Reduction

x is only active in location S1

x>3x<5

x:=0

x:=0

S

Clock x is inactive at S if on all
paths from S, x is always reset
before being tested.

Definition

9

17

Active Clock Reduction

x>3x<5

S
g1

gkg2
r1

r2 rk
S1

S2 Sk

Clock x is inactive at S if on all
paths from S, x is always reset
before being tested.

Definition

()

() ()()iii

ii

rClocksSAct

gClocks
SAct

/

)(

U

U

U

=

Only save constraints on
active clocks.

18

Shortest Path Closure
Always maintained after operations to
avoid O(n3) whenever possible.
Vital for inclusion checking between
DBMs.

x1-x2<=-4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1-x2<=-4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2
2

5

3

x1 x2

x3x0

-4

4

2
2

5

3 3 -2 -2

1

Shortest
Path

Closure
O(n3)

10

19

Liveness Algorithm
Passed

ST Unexplored

A◊ φ

: φ

S

20

Liveness Pipeline

Delay Extrapol.+act. clock red.

Transition

Successor

Trace

Initial
state

Expression

Deadlocked?

Unbounded?

Accept?

Loop?

Passed

Stack

yes

yes

Waiting

11

21

Leadsto Pipeline

Initial
state Reachability Liveness

p leadsto q

Memory OptimizationsMemory OptimizationsMemory Optimizations
Sharing,Sharing,

When To Store,When To Store,
Minimal GraphMinimal Graph

12

23

Data Sharing
Key idea: Working states different
from stored states

Working states optimized for computation
Symbolic state = discrete part
(location+variables) + symbolic part (DBM).
Stored states optimized for memory
Stored state = <lockey,varkey,dbmkey>.

24

Data Sharing

Location vector

Variables

DBM

Symbolic state
for computation

lockey
varkey
dbmkey

Symbolic state
for storage (PWList)

save

load

inclusion?

Discrete
storage

Symbolic
storage

Sharing of data

13

25

Data Sharing
In practice: 80% reduction.
Easy to change storage implementation
to favor speed or memory.

Compression of integer paired with minimal
graph
Convex hull is a special storage

26

PWList & Sharing
In Figures

[SPIN03]

14

27

State-space Reduction
When to Store?

No loop => The passed
list is not needed for
termination.

Loops => Only symbolic
states involving loop-
entry points need to be
saved in the passed list.

28

To Store Or Not To
Store?

Audio Protocol

117 statestotal

81 statesentrypoint

9 states

Time OH
less than 10%

[CAV03]
(need to
re-explore
some states)

15

29

Minimal Graph

x1-x2<=-4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1-x2<=-4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2
2

5

3

x1 x2

x3x0

-4

4

2
2

5

3

x1 x2

x3x0

-4

2
2

3

3 -2 -2

1

Shortest
Path

Closure
O(n3)

Shortest
Path

Reduction
O(n3) 3

Space worst O(n2)
practice O(n)

(DBM)

(Minimal graph, a.ka.
compact data structure)

30

Graph Reduction
Algorithm

G: weighted graph
1. Equivalence classes based

on 0-cycles.

16

31

Graph Reduction
Algorithm

G: weighted graph
1. Equivalence classes based

on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

32

Graph Reduction
Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

3. Shortest Path Reduction
=

One cycle pr. class
+

Removal of redundant edges
between classesCanonical given order of clocks

G: weighted graph

17

Other OptimizationsOther OptimizationsOther Optimizations
Symmetry,Symmetry,

Active Clocks,Active Clocks,
ApproximationsApproximations

34

Symmetry Reduction

Exploitation of full
symmetry may give
factorial reduction.
Many timed systems
are inherently
symmetric.
Computation of
canonical state
representative using
swaps.

[Formats 2003]

SWAP: 1 2 ; 3 4

18

35

Symmetry Reduction
[Formats 2003]

36

Support For Symmetry
Scalar set based symmetry reduction

typedef scalarset[4] pid_t;
scalarset[n] = {0,…,n-1}
int[0,4] = set of integers
Template sets process P[i:pid_t](...) {(i)}
Iterators for (i:pid_t) { a[i+1]=0 }

Quantifiers forall (i:int[0,4]) a[i+1]==0
exists (i:int[0,4]) a[i+1]==1

Selection select i: int[0,4]; guard...

Martijn Henriks, Nijmegen U

19

37

Over-approximation
Convex Hull

x

y

Convex Hull

1 3 5

1

3

5

38

Under-approximation
Bitstate Hashing

Passed list = bit vector.
1 bit per state.
Index = hash(state) (discrete & symbolic
parts)

Waiting list = symbolic states.
PWList += state

If vector[hash(state)] == 0
waiting += state
vector[hash(state)] = 1

20

39

Re-using
The State-space

Several properties
to check:
A[] prop1
A[] prop2
…
Search in existing
passed list (from
previous checks)
first.
Expand missing
states (not all states
stored).

init

goal3Passed + Waiting List

Passed

goal1

goal2

40

Virtual Machine
Expressions (guards & actions) are
compiled to bytecode and executed by a
virtual machine.
Stack machine, minimal instruction set,
peep-hole optimization.
Open the door to other optimizations or
use of 3rd party VM.

Nips (Michael Weber): VM for Promela matches performance of Spin.

21

41

Distributed UPPAAL
Distributed implementation of
UPPAAL on PC-cluster [CAV'00,
PDMC'02, STTT'03].
Applications

Synthesis of Dynamic Voltage
Scaling strategies (CISS).
Real-time leader election
protocol for mobile ad-hoc
networks (Leslie Lamport) -
25GB in 3 min!

Running on NorduGrid.
Local cluster: 50 CPUs and 86GB
of RAM
To be used as inspiration for
verification GRID platform
within ARTIST2. Gerd Behrmann

42

Distributed UPPAAL
Local
PWList ->
local
inclusion
check.
Distribute
states.
Several
“pipelines”
instances.

goal

s1

S s2

Passed + Waiting List

Waiting

Successor
computation

goal

s1

S s2

Passed + Waiting List

Waiting

Successor
computation

goal

s1

S s2

Passed + Waiting List

Waiting

Successor
computation

goal

s1

S s2

Passed + Waiting List

Waiting

Successor
computation

