A\

UPPAAL Tutorial

Inside UPPAAL

Advanced %

Alexandre David
Paul Pettersson
RTSS'05

In This Session

»Implementation of UPPAAL

= Architecture
= Data structures in practice
= Optimizations techniques

Before: TA & semantics + algorithms.
Now: How it works.

A :

Outline

> Architecture of UPPAAL

= Filters

= Reachability + liveness + leadsto pipelines
> Memory optimizations

= Sharing

= Minimal graph

= To store or not to store
» Other options/optimizations

= Symmetry
‘%- Convex hull + Bitstate hashing 3

A\

Architecture

Pipelines

\/\/\/%

Architecture of UPPAAL

>Pipeline architecture
= In terms of components and flow of data
= Not with parallel processing units
> Basic components
= Sink
= Source
= Buffer
= Filter

" 5

Pipeline Components

Source |—»

—» Sink

Data

—» Buffer —> <tate

Successor

—» Filter |—>»
‘% 6

Inmal
state

Delay .-, Extrapolation Active clock reduction

Trace
1 PWList Dealloc ||
| | Successor 1« Tr'ansiﬂon4—é>

‘% Expression .

Features

> Reusable/exchangeable components
> Flexible architecture
»PWList = passed & waiting list

= Unified structure

»Early termination

= Check property after successor
computation, not when taking states from

waiting list

AN 8

> Initial state pushed here
» Future operation + invariant

—> Delay —
] ?

»Different algorithms (choice automatic)

= Correctness depends on which kind of
constraints are used

= Basic extrapolation:

max,
max —>» Extrapolation —»

+ active clock reduction:
if bound = -~ then free clock

X
‘% 10

> QOUT: remove fr

»PWList = unified passed and waiting list
> Accept = add state if not included in
passed + waiting states

»IN: add state to passed + waiting list

om waiting list

PWList

‘% !

©

1

» Transition com
transitions, not states

» Successor com

putes possible

—» Transition—»

—

putes successor state

Successor —»

>

Possible resets ‘ ' ‘
+ variable updates 12

Implemented
Reachability Algorithm

> Passed= WGITlngz{lan} Passed + Waiting List 900\
» If init == goal then stop Successor @
> While Waiting not empty computation
» S=pick state from waiting O O
» for all successors s;
+ PWList += s, @8O0 |0
+ if s;== goal then stop
» Inclusion check in '+=' ®©0 0|0
> One inclusion check @0 OO
(instead of two)

. o init
» Earlier termination than Q ©0 /
‘%}ssical reachability
13

Classical
.Passed + Waiting Lists

Hash| ---8 Searching:
table — @ epop state

L 1 ehash

—] B spush to passed

] Passed list / (inclusion check)

] / % eSUCCESSOr computation
Hash MZD:D ’71,” ehash N
table A= FH 1 -7 epush to waiting queue

o ! (inclusion check)

- ' 2 hash tables

ﬁ:ﬁ:ﬁ:ﬁ:ﬁ 2 inclusion checks
... 1 queue
‘% Waiting queue 9 14

Hash

table |

PWList

— States e s .
] Unified list Searching:

pop state reference
esUCCESSOr computation

*hash

epush to unified list
(inclusion check) and append
state reference

Waiting queue
1 hash table

1 inclusion check
1 queue
15

Active Clock Reduction

Definition
Clock x is inactive at S if onall

paths from S, x is always reset
before being tested.

16

Active Clock Reduction

S Definition
g1 Clock x is inactive at S if on all
/ G2 gk paths from S, x is always reset
ri Q o Vi before being tested.
K Act(S) =
U, Clocks(g;)
U
U, (Act(S,)/ Clocks(r,))
o e

17

“ b

Shortest Path Closure

> Always maintained after operations to
avoid O(n3) whenever possible.

> Vital for inclusion checking between

DBMs.
X1-x2<=-4
x2-x1<=10 Shortest
X3-x1<=2 Path
X2-x3<=2 Closure
X0-x1<=3 o(nd)
x3-x0<=5

AN

Liveness Algorithm

proc Eventually(Sg,¢) = sT
ST:=0 Passed
Passed := 0 Lo
Search(delay(So,)
exit(true)

end

proc Search(S) =

loop(S,ST) then exit(false) fi

=S A

push(ST, S)

if unbounded(S) Vv deadlocked(S) then

exit (false)

if VS’ € Passed: S € S

then foreach §': S = 5’ do
Search(delay (S, —¢))

Unexplored

A0 b

if
S5

od
i
Passed := Passed U {pop(ST)}
end

\\\% 19

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Initial
state

Delay » Extrapol.+act. clock red.

A

Transition

v

’ Trace ‘ ’ Wiaiting

A

10

Leadsto Pipeline

p leadsto q

Initial
state

Reachability Liveness —»

= m

A\

Memory Optimizations
Sharing,

When To Store,
Minimal Graph %

~—_

11

Data Sharing

>Key idea: Working states different
from stored states

= Working states optimized for computation
Symbolic state = discrete part
(location+variables) + symbolic part (DBM).

= Stored states optimized for memory
Stored state = <lockey,varkey,dbmkey>.

" 23

Data Sharing

Symbolic state Symbolic state .
for computation for storage (PWList) Sharing of data

)

Location vector .
save Discrete

—==
Variables load lockey 7 storage
varkey)

- inCIUSion? -\
«—>)
Symbolic

storage

~

~ 24

12

Data Sharing

> In practice: 80% reduction.
» Easy to change storage implementation
to favor speed or memory.

= Compression of integer paired with minimal
graph
= Convex hull is a special storage

" 25

PWList & Sharing
In Figures

Model Before Unification Unication & Sharing

Audio <0.5s 2M < 0.5s 2M <0.5s 2M
Engine < 0.5s 3M < 0.5s AM <0.5s 5M
Dacapo 3s ™ 3s 5M 3s 5M
Cups 43s 116M 37s 107M 36s 26M
BC 428s 631M 359s 641M 345s 165M
Master 306s 616M 277s 558M 267s 153M
Slave 440s 735M 377s 645M 359s 151M
Plant 19688s > 4G 9207s 2771M 8513s 1084M

[SPINO3]
26

13

Ll
=)

State-space Reduction
When to Store?

> No loop => The passed > Loops => Only symbolic
list is not needed for states involving loop-
termination. entry points need to be

saved in the passed list.

=D

R

117 states
81 states

9 states

Time OH
less than 10%0

(need to
re-explore
some states)

[CAVO3]

Audio Protocol

14

o e@ @)
Reduction
o(n3) 3
() ()

Minimal Graph

-4 4
X1-X2<=-4 Shortest
x2-x1<=10 Path
Xx3-x1<=2 Closure
X2-x3<=2 o(n3)
X0-x1<=3
x3-x0<=5

-4

(DBM)

Space worst O(n?)

2 practice O(n)

(Minimal graph, a.ka.

‘% compact data structure)
29

Graph Reduction
Algorithm

G: weighted graph

@i@

N 30

1. Equivalence classes based
on 0-cycles.

15

Graph Reduction
Algorithm

G: weighted graph

\ 1. Equivalence classes based
on 0-cycles.

e
\ . 2. Graph based on
/ | Safe to remove redundant edges

N 31

Graph Reduction
Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
Safe to remove redundant edges

3. Shortest Path Reduction

One cycle pr. class
+

Removal of redundant edges

Canonical given order of clocks between classes
N 32

16

A

Other Optimizations

Symmetry,
Active Clocks,

\—/AQ;XI.%

&

> Exploitation of full
symmetry may give
factorial reduction.

[Formats 2003]

SWAP: 152 ; 3>4

Symmetry Reduction

M 5 variables

> Many timed systems f
are inherently
symmeftric.

» Computation of

canonical state
representative using
swaps.

AN

17

Symmetry Reduction

[Formats 2003]
1000 1000
100 f
/ X - 100
@ 10
o
E 4
P
| £ R
/ ,9_1—4*// 410
f ,-—B/'/
wlill
01 7 Z(
| Time —+—
éfﬁj] Time (prototype) —%—
Memolw v |'-31-Ijt;;ple'\ —=—

0.01 1 Il P Il 1 1
4 B B 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Processes
35

Time [s]
Memory [MB]

scalarset[n] = {O0,...,.n-1}

int[0,4] = set of integers

Template sets process P[Li:pid_t](--.) {(i)}
= Tterators for (i:pid_t) { a[i¥1]=0 }

Quantifiers forall (i:int[0,4]) a[i+1]==0
exists (i:int[0,4]) a[i+1]==1

Selection select i: int[0,4]; guard...

> Scalar set based symmetry reduction
» typedef scalarset[4] pid_t;

Martijn Henriks, Nijmegen U
36

/

18

37

Bitstate Hashing

>Passed list = bit vector.
= 1 bit per state.

» Index = hash(state) (discrete & symbolic
parts)

» Waiting list = symbolic states.

»>PW.List += state

= If vector[hash(state)] == 0
waiting += state

\% vector[hash(state)] = 1

19

Re-using
\ The State-space
> Several properties ﬁ,ssec“ Waiting List 981\

to check:
A[] prop1 goal, Q
A[] prop2 Q’O O O
> Search in existing CID*Q'Q O
passed list (from 902 "
previous checks) Q’Q’O O
first. @00 O
» Expand missing N
states (not all'states ™" @@ rossys /
stored).

39

Virtual Machine

»Expressions (guards & actions) are
compiled to bytecode and executed by a
virtual machine.

» Stack machine, minimal instruction set,
peep-hole optimization.

»Open the door to other optimizations or
use of 37 party VM.

Nips (Michael Weber): VM for Promela matches performance of Spin.
‘% 40

20

-~ Distributed implementation of
UPPAAL on PC-cluster [CAV'00,
PDMC'02, STTT'03].

- Applications
. Synthesis of Dynamic Voltage
Scaling strategies (CISS).

. Real-time leader election
protocol for mobile ad-hoc
networks (Leslie Lamport) -
2568B in 3 min!

> Running on Nordu6rid.
Local cluster: 50 CPUs and 86GB
of RAM

» To be used as inspiration for B
Nerificaﬁon GRID platform
ithin ARTIST2. Gerd Behrmann

41

Distributed UPPAAL

o > Local o
Passed + Waiting List ! . Passed + Waiting List
Successor % IPWI—IIST _> Successor
compufa‘ri oca computati
I . inclusion O
® 0 O O “check. @0 0|0

)

O

ﬁ'md + Waiting LlsT %\ > DIS tribute Passed + Waiting List %\

Successor STG*CS. Successor
P@‘@ > Severc{l““*"—--»?f’.'f‘_p_”_*_‘g)?”fg o6
\ @OO ________ “pipelines”| | ...~
@00 |0 “insfances.|| ©© OO
ONCHORNG®) ONCHONNG
o 00O O ONCHONNG

J

42

21

