/955-5,(

A\

UPPAAL Tutorial

Introduction

%
\/\/\/Almndre Savid

Paul Pettersson

RTSS'05
Collaborators
@UPPsala @AALborg
= Wang Vi » Kim G Larsen
= Paul Pettersson = Gerd Behrman
= John Hdkansson = Arne Skou
= Anders Hessel = Brian Nielsen
= Pavel Krcal = Alexandre David
= Leonid Mokrushin = Jacob Illum Rasmussen
= Shi Xiaochun = Marius Mikucionis

@Elsewhere

= Emmanuel Fleury, Didier Lime, Johan Bengtsson, Fredrik Larsson, Kére J
Kristoffersen, Tobias Amnell, Thomas Hune, Oliver Méller, Elena
Fersman, Carsten Weise, David Griffioen, Ansgar Fehnker, Frits
Vandraager, Theo Ruys, Pedro D'Argenio, J-P Katoen, Jan Tretmans, Judi
Romijn, Ed Brinksma, Martijn Hendriks, Klaus Havelund, Franck Cassez,
Magnus Lindahl, Francois Laroussinie, Patricia Bouyer, Augusto Burgueno,
H. Bowmann, D. Latella, M. Massink, G. Faconti, Kristina Lundqvist, Lars

Asplund, Justin Pearson...

Real-Time Systems

SEeNnsors

Ta r
9
Epm

Plant Controller Program
Continuous Discrete

actuators

Real-Time System
A system where correctness not only depends on the
logical order of events but also on their timing!!

E.g.: Air Bags, Cruise Control, ABS
Process Control, Production Lines, Robots

Real-time Protocols
‘% DVD/CD Players

Real-Time Model-Checking

Plant Controller Program

Continuous Discrete
sSensors

actuators

Ay — @D o

m&ra tasks
(automatic?)
Model of .
environment [@ @
(user-supplied) ‘
‘% Ny UPPAAL Model ‘

S
[

fZ[‘ Yes'f
@‘_\ = 4 '

> UPPAAL —

Requirement

Specification: F %i AZF

A - Model: Network of Timed Automata
F - Requirement: femporal logical formula, e.g.

N

» Invariant: something bad will never happen, something

may happen
» Liveness: something will eventually happen

_—T T~ No!

Diagnostic
Information

| Modeli

N

Lb?%@-‘ UPPAAL's Architecture

™
™
<:> xml q
xta

(Server) CLI

‘% Linux, Windows, Solaris, MacOS

~Outline Tutorial Day

» Session 1: Introduction > Session 3: Inside UPPAAL
(9:00-10:30) Advanced (13:30-15:00)
= Lecture * Lecture
+ Tool presentation + Virtual machine
* Modeling: Timed Automata w. * Sharing
extensions + Optimizations
* Query Language - Simulation
+ Symbolic Semantics * Modeling Patterns
* Demo/Exercise > Session 4: Beyond UPPAAL
> Session 2: Inside UPPAAL Basics (15:30-17:00)
(11:00_12:00) = |Lecture
= Lecture + UPPAAL Cora
+ Reachability Analysis + UPPAAL Tron
+ Difference Bounded Matrices - UPPAAL TIGA
+ Liveness checking + CoVer
+ Times
> Lunch Break + Open source modules
= Exercise

N

Modeling Formalisms
> Timed Automata
> Query Language
> Symbolic Semantics

UNIVERSITET AALBORG UNIVERSITY

L Ny
i o T e S

Timed Automata:

Light Control

press?
@ press? @ press? @

press?

WANT:

e pressed once = light

 pressed twice quickly = light will get brighter
 pressed again = light off.

Timed Automata:

nghT Control witn Timing

press?
X=>3

SOLUTION: Add real-valued clock x to
measure the delay between press events

Alur & Dill 1990

Timed Automata review

Action
used Clocks: x, y
n for‘ synchronization Guard
Boolean combination of integer bounds
e / on clocks
A — Reset
T x<=SLy=3 Action performed on clocks
a State
(location, x=v , y=u) where v,u are in R
x:=0 Transitions
i : c‘etenaﬂs (n,x=24,y=31415) —4 >
o (m, x=0, y=3.1415)
e 1 o~ s (1,24, y=3.1415) el.1)
pe'

(n,x=3.5, y=4.2415)

Invariants

Clocks: x, y
Transitions
_ = .2)
Location (n, x=2.4, y=3.1415)
Invariants
_ ery)

(n, x=2.4, y=3.1415)
(n, x=35, y=4.2415)

Invariants

ensure
progress!!

G
Y Timed Automata: Example

guard

location \

action
reset-set

N

(T

location

eeeeeeeee

@\ Timed Automata: Example

2 4 6 8 10

(T

Invariant

@\ Timed Automata: Example

Lz

@\ Timed Automata: Example

Invariant

with (finite)

N
|

integer variables
j(_—>::32 y<=4 Two-way synchronization
al a7 trrrrreeeaass on complementary actions.
=2 Closed Systems!

Example transitions

tau
/1, mi1,........., x=2, y=3.5, i=3,.....) —— (IZ2,m2,......x=0, y=3.5,i=7,.....)

Stopable
Area

[10,20]
[3,5]

Queue

(LTI Gate

Train Crossing

Communication via channels and
shared variable.

Stopable
Area

[10,20]

Queue empty

nonempty
W hd, add,re Gate

10

Scheduling with UPPAAL

&L damaged bride (max 2 men) with mines
i

Unsafe Side Safe Side

If possible find schedule for all four men
to reach safe side in 60 min.

Br'idge Problem

process Viking1 process Viking2
U NSAFE :"ﬁ 1-=0 ‘,‘:r\“‘ﬂﬂ' u_over :\nﬁe T ;:T\mady u_over

take ! 5 take ! 10

g ;E L‘% y=1 y=0
% release ! release ! release ! release !
y==5 ~ L==1 =10 = L==1
5 102 i e take ! o take !
ove: ready yi=0 safe over ready yi=0 safe

process Torch process Viking3 process Vikingd

unsafe

> Can be modeled

‘%and solved with timed automata in UPPAAL.

1

Timed Automata in UPPAAL

> Timed Automata with Invariants
= urgent action channels,
* urgent and committed locations,
» data-variables (with bounded domains),
* arrays of data-variables,
= constants,

* guards and assignments over data-variables and
arrays...,

» femplates with local clocks, data-variables, and
constants.

%C subset

Declarations in UPPAAL

> The syntax used for declarations in UPPAAL is similar
to the syntax used in the C programming language.

» Clocks:
= Syntax:

= clock x1, .., xn ;

* Example:
= clock x, y; Declares two clocks: x and y.

N

12

Declarations in UPPAAL
(cont.)

> Data variables

= Syntax:

* int nl, . ; Integer with “default” domain.

= int[l,u] n1, . ; Integer with domain "I” to “u”.

= int ni[m], .. ; Integer array w. elements n1[0] to
ni[m-1].

= Example;

= Int a, b;
* int[0,1] a, b[5][6];

» Actions (or channels):

= Syntax:

* chan a, .. ; Ordinary channels.

= urgent chan b, .. ; Urgent actions (see later)
= Example:

= chan a, b;
= urgent chan c;

N

13

» Constants
= Syntax:

Declarations UPPAAL

(const.)

= const int cl = nl;

Example:
= const int[0,1] YES

= 1;

= const bool NO = false;

Clock Assignments

X=n

n
Variable Asstents X<=5

4

Timed Automata in UPPAAL

Location Invariants

Linv:= x<?| X <=nlinv,inv

/ [

T — Exor clock natural number “and”
=EXp x>=5 && y>3
Expr:=i|i[Expr]

n|—Expr| al

Expr + Expr| Xx=0

Expr—Expr| -

Expr*Expr| <=1

4

Expr/ Expr| - ggg

(e ?Expr:Expn)| 9
L o)

0= 0elgalg. g
Oc:=X®N|X®y-+n Clock guards
gd :=EXxpr op Expr Data guards
Qe{<, <=,==,>=>}

opef<,<===>=>1=}

14

Timed Automata in UPPAAL

Clock Assignments Location Invariants

X=n Linv::=X<n| x<=nliny,inv

n
Variable Ass@ments <=5 T

 Exor Actions: “and”
- p- _ \N x>=5,y=1 «“a" name of action
Expr::=i|i[Expr < o &l G 6

n|—Expr]| al * one or zero per edge

Expr + Expr| X =0

Expr—Expr| ~

Expr*Expr| <=1

Expr/Expr| 1 94 op ef<,<===>=>,1=}
w% o1 g2 93

(ga ?Expr: Expr)
o

Broadcast Synchronization

> Declared like
broadcast chan a, b, c[2];

> If ais abroadcast channel:
= al = Emmision of broadcast
» a? = Reception of broadcast

> A set of edges in different processes can
synchronize if one is emitting and the others are
receiving on the same b.c. channel.

> A process can always emit.
> Receivers must synchronize if they can.

‘%? No blocking.

Urgent Channels: Example 1

> Suppose the two edges in
automata P and Q should be
taken as soon as possible.

> I.e. as soon as both automata
are ready (simultaneously in
locations |1 and st).

» How to model with invariants
if either one may reach I1 or
st first?

Urgent Channels: Example 1

> Suppose the two edges in
automata P and Q should be
taken as soon as possible

> I.e. as soon as both automata
are ready (simultaneously in
locations |1 and st).

» How to model with invariants
if either one may reach I1 or
st first?

> Solution: declare action "a"
as urgent.

16

Urgent Channels

urgent chan hurry;

Informal Semantics:

» There will be no delay if transition with urgent action can
be taken.

Restrictions:
* No clock guard allowed on transitions with urgent actions.
« Invariants and data-variable quards are allowed.

Urgent Channel: Example 2

> Assume i is a data variable.

» We want P to take the transition
from I1 to 12 as soon as i==b.

17

> Assume i is a data variable.
» We want P to take the transition
from I1 to 12 as soon as i==b.

» Solution: P can be forced to take
transition if we add another

automaton:
ol

where "go" is an urgent channel,
and we add "go?" fo transition
1112 in automaton P.

> Assume that we model a simple

media M: paﬁ
1
. i b a?
x:=0
that receives packages on Ca
channel a and immediately sends \&¥
them on channel b. E'——o

X.

> P models the media using clock QP
3

18

Assume that we model a simple _
media M: Pa Q(. I1 ;
l1

I [VI a? .
x:=0
that receives packages on Ca Ch
channel a and immediately sends \&&
them on channel b. ETZO b!

> P models the media using clock | g?
X. 3
» Q models the media using Q

urgent location.
% P and Q have the same behavior.

Urgent Location

Click “Urgent” in State Editor.

Informal Semantics:
* No delay in urgent location.

Note: the use of urgent locations reduces the number of
clocks in a model, and thus the complexity of the analysis.

N

19

i==0
alal
i:=1

> Assume: we want to model a
process (P) simultaneously
sending message (a) to two

i==0 receiving processes (when i==0).

a > P' sends "a" two times at the

(n same time instant, but in location

"n" other automata, e.g. Q may

al interleave (which is wrong):

G O

Committed Location: Ex. 1

sending message (a) to two
i==0 receiving processes (when i==0).
al > P' sends “a" two times at the
(n same time instant, but in location
"n" other automata, e.g. Q may
al interleave (which is wrong):

O

> Solution: mark location n
“committed” in automata P'
(instead of "urgent").

, » Assume: we want to model a
i 6 process (P) simultaneously
1

20

Click “Committed” | State Editor.

Informal Semantics:
* No delay in committed location.

* Next transition must involve automata in committed
location.

Note: the use of committed locations reduces the number of
clocks in a model, and allows for more space and time efficient

Nalysis.

> Assume: we want to pass
the value of integer "k" I Q:
from automaton P to _ G
variable "j" in Q. t=k

> The value of k can is <n a?
passed using a global h ji=t
integer variable “t". al

> Location "n" is committed g? @
to ensure that no other
automat can assign "1"

before the assignment
\\j::_rll.

21

More Expressions

» Operators (not clocks):
* Logical:

- && (logical and), || (logical or), ! (logical negation),

= Bitwise:
+ " (xor), & (bitwise and), | (bitwise or),
Bit shift:
+ <« (left), » (right)
* Numerical:
+ % (modulo), ? (max)
= Assignments:
o 4z, -z, %z [z, "=z, «=, s

» Prefix and postfix:

‘% + ++ (increment), -- (decrement)

More on Types

» Multi dimensional arrays
* eg. int b[4][2];
> Array initialiser:
" eg.intb[4]:={1,2,3,4};
> Arrays of channels, clocks, constants.
" eg.
= chan a[3];
= clock c[3];
= const k[3]{1,2,3};
» Broadcast channels.
* e.g. broadcast chan a;

22

<

Declarations

ocuments and Setting: X in-gate.xml - UPPAAL =] 3]
File Templates View GQueries Options Help

Lablaaaia-me

System Editor | Sirulatar | Verfier |

Drag ot " |

4 train-gate * For more details shout this example, see i
* "auromatic Verification of Real-Time Communicating Systems by Constraint Solwving™,

* by Wang ¥i, Paul Pettersson and Mats Daniels. In Proceedings of the 7th International
* Conference on Formal Description Technicues, pages 223-238, North-Holland., 1994,

=
Process assignments
% System definition const § 5/ /4 # trains + 1

int[0,m] el; Constants
chan appr, stop, go, leave: .
onan empty, notempty, hi, add, rem; Bounded integers

J Tranm-gate X

Global declaations slock %3 Channels

U Clocks

3 rangake 0.0 list(HI, 1 .

T-# Global declaralions el0 N sty den 32 Arrays

B8 Train

' # Declarations
- Gate
£ 8 e Templates
_ Processes
[Trainl:=Train{el, 1];
~# System defirition Trainiel, 2} Systems
Train{el, 3);

Traind:=Trainf(el, 4): "

-5 IntQusus systen

Declarations

Trainl, TrainZ, Train3, Traind,
Process assignments

Gate, Queue;

Templates

i

> Templates may be

parameterised:

= int v; const min;
const max

= int[O,N] e; const id

> Templates are instantiated
to form processes:

Drag aut

4 train-gate
-~ # Global declarations

Declarations
-5 Gate

=5 IntQueus
Declarations

Queue: =Intlueueiel) ;

» Trainl:=Train(el, 1);
* Train2:=Train(el, 2);

& System definition

23

Extensions

Select statement Forall / Exists expressions

> models a non-deterministic » forall (x:int[0,42])

choise expr
> x - int[0,42] true if expr is true for a//
values in [0,42] of x
Types]]
» exists (x:int[0,4]) expr
true if expr is true for some
> Record fypes values in [0,42] of x

> Type declarations

> Meta variables:

Example:
not stored with state forall
meta Int X; (x:int[0,4])array[x];

%

/

Modeling Formalisms
> Timed Automata
> Query Language
> Symbolic Semantics

UPFSALA [((8
UNIVERSITET AALBORG UNIVERSITY

g 1990 2000 T .

L CLASSIC

24

Query Language

> A subset of the logic Timed
Computation Tree Logic (TCTL).

»Can be efficiently implemented

7 &
0 Ry

P’s compu-

P: tation tree:

/

Quantifiers in TCTL

> E - exists a path ("E" in UPPAAL).

> A - for all paths (A" in UPPAAL).

> G - all states in a path ("[]" in UPPAAL).
> F - some state in a path ("<>" in UPPAAL).

» The following combination are supported:
= A[1, A<>, E<>, E[].-

N

E<> p - "p Reachable”

»E<> p-itis possible to reach a state in
which p is satisfied.

A
Fuy

Q is true in (at least) one reachable state.

A[]p - "Invariantly p"

> A[] p - p holds invariantly.

Py
g
pp % p
» P is true in all reachable states.

N

26

A<> p - "Inevitable p”

> A<> p - p will inevitable become true

* the automaton is guaranteed to eventually reach a

state in which p is true.
A
p p
AR
‘§ is frue in some state of all paths.

E[]p - "Potentially
Always p"

> There exists a path in which p is true in all

Nmms.

27

Local Properties

> A[lp, A<>p, E<>p, E[1p - pis alocal property

> Syntax:

. dataguard clock guard
automata location

p::=a.l | gd | gc | deadlock |

pand p | por p | not p |
p imply p | Cp)

process name

/

Modeling Formalisms
> Timed Automata
> Query Language
> Symbolic Semantics

/

28

Symbolic States
From Infinite to Finite

State Symbolic state (set)
(n, x=3.2, y=2.5) (n, 1-x4, 1.y- 3)
Zone:
conjunction of
y y X-y<=n, x<=>n
X ' X

Symbolic Transitions

using Zones

1<=x, I<=y

y 1<:y<:3 y —2<:x-y<:3
delays to 0
1
- X
\ 3<x, 1<=y
. -2<=X-y<=3
C conjuncts to

y:=0 X

. 3<x, y=0
q projects to
‘% Thus (n,1<=x<=4,1<=y<=3) =a => (m,3<x, y=0) I
58

29

Zones = Conjuctive
constraints

» A zone Z is a conjunctive formula:

9149,&..4&qg,
where g; is a clock constraint:

» Use a zero-clock x, (constant 0)
» A zone can be re-written as a set:
{xi-x; ~ b | ~is<or<,ij<n}
» This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

Solution set as semantics

>Let Z be a zone (a set of constraints)

>Let [Z]={ u | uis a solution of Z }
» The semantics

(We shall simply write Z instead [Z])

N

30

Operations on Zones

> Strongest post-condition (Delay): SP(Z) or ZT
» [ZT]={u+d| d € R, ue[Z]}

> Weakest pre-condition: WP(Z) or Z! (the dual of ZT)
= [Z{]={u| u+rde[Z] for some deR}

> Reset: {x}Z or Z(x:=0)
= [{x}Z] = {u[0/x] | u €[Z]}

> Conjunction
" [Z4g] [Z]N[d]

N

(T
> The set of zones is closed under all
constraint operations (including x:=x-c or
X:=X+C)
» That is, the result of the operations on a

Zohe is a zohe
» That is, there will be a zone (a finite object

An important theorem
onh Zones

i.e a zone/constraints) fo represent the sets:

[ZT], [Zl], {x)Z]

N

31

> Delay: (n,Z) 2 (n,Z") where Z'= ZT A inv(n)

» Action: (n,Z) — (m,Z') where Z'= {x}(Z ~g)

. X:=0
if g

> Successors(n,Z)={(m,Z) | (n,Z) >—>(m,Z), Z+2}
. (Sorzn)eﬂme we write: (n,Z2)>(m,Z) if (m,Z') is a successor of
n,

Now, we have a search
problem

(No,Zo)

/1N

@ Reachable?

32

~ End of Session 1 ~

Urgent Channels

>

No delay if the
synchronization edges can be
taken |

No clock guard allowed.
Guards on data-variables.

Declarations:
urgent chan a, b, c[3];

N

Urgency & Commitment

Urgent Locations

» No delay - time is freezed!

» May reduce number of
clocks!

Committed Locations

> No delay.
> Next transition MUST
involve edge in one of the
rocesses in committed
ocation
> May reduce considerably
state space

33

list[i] =0, 1= 0

Shiftciown

Expressions

list{len]:=e,

e=listi0]
hd?

listfil =listfi+1],

used in

guards,
invariants,
assignments,
synchronizations
properties

Expressions

1= 1D
NAT

' (" Expression ')’

UnaryOp Expression
Expression BinOp Expression
Expression "?’ Expression

ID .’ ID

Fo.

Expression '"[’ Expression ']’

Expression AssignOp Expression

F

Fxpression

Expression "++’ | "++’ Expression

Expression "--" | '—-—' Expression

F—roporr "not’

Binary
I e I T
S L B I VA BEE
K | ror] r<<r | I>>r | rgg!
fand® | for’ | "imply’

Assignment

r .

I = N A = r/=r

Pl=ro| rg=T | r0=r | Tg=r | Ies=t

!>f
!&!

!ll!

35

7wl

~

Guards:

> It is side-effect free, type
correct, and evaluates to
boolean

» Only clock variables, integer
variables, constants are
referenced (or arrays of
such)

> Clocks and differences are
only compared to integer
expressions

» Guards over clocks are
essentially conjunctions (i.e.
disjunctions are only allowed

%ver integer conditions)

Guards, Invariants,
Assignments

Assignments

» It has aside effectandis
type correct

» Only clock variable, integer
variables and constants are
referenced (or arrays of
such)

» Only integer are assigned to
clocks

Invariants

» It forms conjunctions of
conditions of the form x<e
or x<=e where X is a clock
reference and e evaluates to
an integer

36

