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Real-Time Systems

SEeNnsors

Ta r
9
Epm

Plant Controller Program
Continuous Discrete

actuators

Real-Time System
A system where correctness not only depends on the
logical order of events but also on their timing!!

E.g.: Air Bags, Cruise Control, ABS
Process Control, Production Lines, Robots

Real-time Protocols
‘% DVD/CD Players

Real-Time Model-Checking

Plant Controller Program

Continuous Discrete
sSensors

actuators

Ay — @D o

m&ra tasks
(automatic?)
Model of .
environment [@ @
(user-supplied) ‘
‘% Ny UPPAAL Model ‘
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> UPPAAL —

Requirement

Specification: F %i AZF

A - Model: Network of Timed Automata
F - Requirement: femporal logical formula, e.g.

N

» Invariant: something bad will never happen, something

may happen
» Liveness: something will eventually happen

_—T T~ No!

Diagnostic
Information

| Modeli

N




Lb?%@-‘ UPPAAL's Architecture

™
™
<:> xml q
xta

( Server ) CLI

‘% Linux, Windows, Solaris, MacOS

~Outline Tutorial Day

» Session 1: Introduction > Session 3: Inside UPPAAL
(9:00-10:30) Advanced (13:30-15:00)
= Lecture * Lecture
+ Tool presentation + Virtual machine
* Modeling: Timed Automata w. * Sharing
extensions + Optimizations
* Query Language - Simulation
+ Symbolic Semantics * Modeling Patterns
* Demo/Exercise > Session 4: Beyond UPPAAL
> Session 2: Inside UPPAAL Basics (15:30-17:00)
(11:00_12:00) = |Lecture
= Lecture + UPPAAL Cora
+ Reachability Analysis + UPPAAL Tron
+ Difference Bounded Matrices - UPPAAL TIGA
+ Liveness checking + CoVer
+ Times
> Lunch Break + Open source modules
= Exercise

N




Modeling Formalisms
> Timed Automata
> Query Language
> Symbolic Semantics
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Timed Automata:

Light Control

press?
@ press? @ press? @

press?

WANT:

e pressed once = light

 pressed twice quickly = light will get brighter
 pressed again = light off.




Timed Automata:

nghT Control witn Timing

press?
X=>3

SOLUTION: Add real-valued clock x to
measure the delay between press events

Alur & Dill 1990

Timed Automata review

Action
used Clocks: x, y
n for‘ synchronization Guard
Boolean combination of integer bounds
e / on clocks
A — Reset
T x<=SLy=3 Action performed on clocks
a State
( location, x=v , y=u) where v,u are in R
x:=0 Transitions
i : c‘etenaﬂs (n,x=24,y=31415) —4 >
o (m, x=0, y=3.1415)
e 1 o~ s (1,24, y=3.1415 ) el.1)
pe'

(n,x=3.5, y=4.2415)




Invariants

Clocks: x, y
Transitions
_ = .2)
Location (n, x=2.4, y=3.1415)
Invariants
_ ery)

(n, x=2.4, y=3.1415)
(n, x=35, y=4.2415)

Invariants

ensure
progress!!

G
Y Timed Automata: Example

guard

location \

action
reset-set

N
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location

eeeeeeeee

@\ Timed Automata: Example

2 4 6 8 10

(T

Invariant

@\ Timed Automata: Example
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@\ Timed Automata: Example

Invariant

with (finite)

N
|

integer variables
j(_—>::32 y<=4 Two-way synchronization
al a7 trrrrreeeaass on complementary actions.
=2 Closed Systems!

Example transitions

tau
/1, mi1,........., x=2, y=3.5, i=3,.....) —— (IZ2,m2,......x=0, y=3.5,i=7,.....)




Stopable
Area

[10,20]
[3,5]

Queue

(LTI Gate

Train Crossing

Communication via channels and
shared variable.

Stopable
Area

[10,20]

Queue empty

nonempty
W hd, add,re Gate

10



Scheduling with UPPAAL

&L damaged bride (max 2 men) with mines
i

Unsafe Side Safe Side

If possible find schedule for all four men
to reach safe side in 60 min.

Br'idge Problem

process Viking1 process Viking2
U NSAFE :"ﬁ 1-=0 ‘,‘:r\“‘ﬂﬂ' u_over :\nﬁe T ;:T\mady u_over

take ! 5 take ! 10

g ;E L‘% y=1 y=0
% release ! release ! release ! release !
y==5 ~ L==1 =10 = L==1
5 102 i e take ! o take !
ove: ready yi=0  safe over ready yi=0 safe

process Torch process Viking3 process Vikingd

unsafe

> Can be modeled

‘%and solved with timed automata in UPPAAL.

1



Timed Automata in UPPAAL

> Timed Automata with Invariants
= urgent action channels,
* urgent and committed locations,
» data-variables (with bounded domains),
* arrays of data-variables,
= constants,

* guards and assignments over data-variables and
arrays...,

» femplates with local clocks, data-variables, and
constants.

%C subset

Declarations in UPPAAL

> The syntax used for declarations in UPPAAL is similar
to the syntax used in the C programming language.

» Clocks:
= Syntax:

= clock x1, .., xn ;

* Example:
= clock x, y; Declares two clocks: x and y.

N
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Declarations in UPPAAL
(cont.)

> Data variables

= Syntax:

* int nl, . ; Integer with “default” domain.

= int[l,u] n1, . ; Integer with domain "I” to “u”.

= int ni[m], .. ; Integer array w. elements n1[0] to
ni[m-1].

= Example;

= Int a, b;
* int[0,1] a, b[5][6];

» Actions (or channels):

= Syntax:

* chan a, .. ; Ordinary channels.

= urgent chan b, .. ; Urgent actions (see later)
= Example:

= chan a, b;
= urgent chan c;

N
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» Constants
= Syntax:

Declarations UPPAAL

(const.)

= const int cl = nl;

Example:
= const int[0,1] YES

= 1;

= const bool NO = false;

Clock Assignments

X=n

n
Variable Asstents X<=5

4

Timed Automata in UPPAAL

Location Invariants

Linv:= x<?| X <=nlinv,inv

/ [

T — Exor clock natural number “and”
=EXp x>=5 && y>3
Expr:=i|i[Expr ]

n|—Expr| al

Expr + Expr| Xx=0

Expr—Expr| -

Expr*Expr| <=1

4

Expr/ Expr| - ggg

(e ?Expr:Expn)| 9
L o )

0= 0elgalg. g
Oc:=X®N|X®y-+n Clock guards
gd :=EXxpr op Expr Data guards
Qe{<, <=,==,>=>}

opef<,<===>=>1=}

14



Timed Automata in UPPAAL

Clock Assignments Location Invariants

X=n Linv::=X<n| x<=nliny,inv

n
Variable Ass@ments <=5 T

 Exor Actions: “and”
- p- _ \N x>=5,y=1 «“a" name of action
Expr::=i|i[Expr < o &l G 6

n|—Expr]| al * one or zero per edge

Expr + Expr| X =0

Expr—Expr| ~

Expr*Expr| <=1

Expr/Expr| 1 94 op ef<,<===>=>,1=}
w% o1 g2 93

(ga ?Expr: Expr)
o

Broadcast Synchronization

> Declared like
broadcast chan a, b, c[2];

> If ais abroadcast channel:
= al = Emmision of broadcast
» a? = Reception of broadcast

> A set of edges in different processes can
synchronize if one is emitting and the others are
receiving on the same b.c. channel.

> A process can always emit.
> Receivers must synchronize if they can.

‘%? No blocking.




Urgent Channels: Example 1

> Suppose the two edges in
automata P and Q should be
taken as soon as possible.

> I.e. as soon as both automata
are ready (simultaneously in
locations |1 and st).

» How to model with invariants
if either one may reach I1 or
st first?

Urgent Channels: Example 1

> Suppose the two edges in
automata P and Q should be
taken as soon as possible

> I.e. as soon as both automata
are ready (simultaneously in
locations |1 and st).

» How to model with invariants
if either one may reach I1 or
st first?

> Solution: declare action "a"
as urgent.

16



Urgent Channels

urgent chan hurry;

Informal Semantics:

» There will be no delay if transition with urgent action can
be taken.

Restrictions:
* No clock guard allowed on transitions with urgent actions.
« Invariants and data-variable quards are allowed.

Urgent Channel: Example 2

> Assume i is a data variable.

» We want P to take the transition
from I1 to 12 as soon as i==b.

17



> Assume i is a data variable.
» We want P to take the transition
from I1 to 12 as soon as i==b.

» Solution: P can be forced to take
transition if we add another

automaton:
ol

where "go" is an urgent channel,
and we add "go?" fo transition
1112 in automaton P.

> Assume that we model a simple

media M: paﬁ
1
. i b a?
x:=0
that receives packages on Ca
channel a and immediately sends \&¥
them on channel b. E'——o

X.

> P models the media using clock QP
3

18



Assume that we model a simple _
media M: Pa Q(. I1 ;
l1

I [ VI a? .
x:=0
that receives packages on Ca Ch
channel a and immediately sends  \&&
them on channel b. ETZO b!

> P models the media using clock | g?
X. 3
» Q models the media using Q

urgent location.
% P and Q have the same behavior.

Urgent Location

Click “Urgent” in State Editor.

Informal Semantics:
* No delay in urgent location.

Note: the use of urgent locations reduces the number of
clocks in a model, and thus the complexity of the analysis.

N
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i==0
alal
i:=1

> Assume: we want to model a
process (P) simultaneously
sending message (a) to two

i==0 receiving processes (when i==0).

a > P' sends "a" two times at the

(n same time instant, but in location

"n" other automata, e.g. Q may

al interleave (which is wrong):

G O

Committed Location: Ex. 1

sending message (a) to two
i==0 receiving processes (when i==0).
al > P' sends “a" two times at the
(n same time instant, but in location
"n" other automata, e.g. Q may
al interleave (which is wrong):

O

> Solution: mark location n
“committed” in automata P'
(instead of "urgent").

, » Assume: we want to model a
i 6 process (P) simultaneously
1

20



Click “Committed” | State Editor.

Informal Semantics:
* No delay in committed location.

* Next transition must involve automata in committed
location.

Note: the use of committed locations reduces the number of
clocks in a model, and allows for more space and time efficient

Nalysis.

> Assume: we want to pass
the value of integer "k" I Q:
from automaton P to _ G
variable "j" in Q. t=k

> The value of k can is <n a?
passed using a global h ji=t
integer variable “t". al

> Location "n" is committed g? @
to ensure that no other
automat can assign "1"

before the assignment
\\j::_rll.

21



More Expressions

» Operators (not clocks):
* Logical:

- && (logical and), || (logical or), ! (logical negation),

= Bitwise:
+ " (xor), & (bitwise and), | (bitwise or),
Bit shift:
+ <« (left), » (right)
* Numerical:
+ % (modulo), ? (max)
= Assignments:
o 4z, -z, %z [z, "=z, «=, s

» Prefix and postfix:

‘% + ++ (increment), -- (decrement)

More on Types

» Multi dimensional arrays
* eg. int b[4][2];
> Array initialiser:
" eg.intb[4]:={1,2,3,4};
> Arrays of channels, clocks, constants.
" eg.
= chan a[3];
= clock c[3];
= const k[3]{1,2,3};
» Broadcast channels.
* e.g. broadcast chan a;

22
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Declarations

ocuments and Setting: X in-gate.xml - UPPAAL =] 3]
File Templates View GQueries Options Help

Lablaaaia-me

System Editor | Sirulatar | Verfier |

Drag ot " |

4 train-gate * For more details shout this example, see i
* "auromatic Verification of Real-Time Communicating Systems by Constraint Solwving™,

* by Wang ¥i, Paul Pettersson and Mats Daniels. In Proceedings of the 7th International
* Conference on Formal Description Technicues, pages 223-238, North-Holland., 1994,

=
Process assignments
% System definition const § 5/ /4 # trains + 1

int[0,m]  el; Constants
chan appr, stop, go, leave: .
onan empty, notempty, hi, add, rem; Bounded integers

J Tranm-gate X

Global declaations slock %3 Channels

U Clocks

3 rangake 0.0 list(HI, 1 .

T-# Global declaralions el0 N sty den 32 Arrays

B8 Train

' # Declarations
- Gate
£ 8 e Templates
_ Processes
[ Trainl:=Train{el, 1];
~# System defirition Trainiel, 2} Systems
Train{el, 3);

Traind:=Trainf(el, 4): "

-5 IntQusus systen

Declarations

Trainl, TrainZ, Train3, Traind,
Process assignments

Gate, Queue;

Templates

i

> Templates may be

parameterised:

= int v; const min;
const max

= int[O,N] e; const id

> Templates are instantiated
to form processes:

Drag aut

4 train-gate
-~ # Global declarations

# Declarations
-5 Gate

=5 IntQueus
Declarations

Queue: =Intlueueiel) ;

» Trainl:=Train(el, 1);
* Train2:=Train(el, 2);

& System definition

23



Extensions

Select statement Forall / Exists expressions

> models a non-deterministic » forall (x:int[0,42])

choise expr
> x - int[0,42] true if expr is true for a//
values in [0,42] of x
Types ] ]
» exists (x:int[0,4]) expr
true if expr is true for some
> Record fypes values in [0,42] of x

> Type declarations

> Meta variables:

Example:
not stored with state forall
meta Int X; (x:int[0,4])array[x];

%

/

Modeling Formalisms
> Timed Automata
> Query Language
> Symbolic Semantics

UPFSALA [((8
UNIVERSITET AALBORG UNIVERSITY

g 1990 2000 T .

L CLASSIC
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Query Language

> A subset of the logic Timed
Computation Tree Logic (TCTL).

»Can be efficiently implemented

7 &
0 Ry

P’s compu-

P: tation tree:

/

Quantifiers in TCTL

> E - exists a path ( "E" in UPPAAL).

> A - for all paths (A" in UPPAAL).

> G - all states in a path ("[]" in UPPAAL).
> F - some state in a path ( "<>" in UPPAAL).

» The following combination are supported:
= A[1, A<>, E<>, E[].-

N




E<> p - "p Reachable”

»E<> p-itis possible to reach a state in
which p is satisfied.

A
Fuy

Q is true in (at least) one reachable state.

A[]p - "Invariantly p"

> A[] p - p holds invariantly.

Py
g
pp % p
» P is true in all reachable states.

N

26



A<> p - "Inevitable p”

> A<> p - p will inevitable become true

* the automaton is guaranteed to eventually reach a

state in which p is true.
A
p p
AR
‘§ is frue in some state of all paths.

E[]p - "Potentially
Always p"

> There exists a path in which p is true in all

Nmms.

27



Local Properties

> A[lp, A<>p, E<>p, E[1p - pis alocal property

> Syntax:

. dataguard clock guard
automata location

p::=a.l | gd | gc | deadlock |

pand p | por p | not p |
p imply p | Cp)

process name

/

Modeling Formalisms
> Timed Automata
> Query Language
> Symbolic Semantics

/

28



Symbolic States
From Infinite to Finite

State Symbolic state (set)
(n, x=3.2, y=2.5) (n, 1-x4, 1.y- 3)
Zone:
conjunction of
y y X-y<=n, x<=>n
X ' X

Symbolic Transitions

using Zones

1<=x, I<=y

y 1<:y<:3 y —2<:x-y<:3
delays to 0
1
- X
\ 3<x, 1<=y
. -2<=X-y<=3
C conjuncts to

y:=0 X

. 3<x, y=0
q projects to
‘% Thus (n,1<=x<=4,1<=y<=3) =a => (m,3<x, y=0) I
58

29



Zones = Conjuctive
constraints

» A zone Z is a conjunctive formula:

9149,&..4&qg,
where g; is a clock constraint:

» Use a zero-clock x, (constant 0)
» A zone can be re-written as a set:
{xi-x; ~ b | ~is<or<,ij<n}
» This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

Solution set as semantics

>Let Z be a zone (a set of constraints)

>Let [Z]={ u | uis a solution of Z }
» The semantics

(We shall simply write Z instead [Z] )

N
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Operations on Zones

> Strongest post-condition (Delay): SP(Z) or ZT
» [ZT]={u+d| d € R, ue[Z]}

> Weakest pre-condition: WP(Z) or Z! (the dual of ZT)
= [Z{]={u| u+rde[Z] for some deR}

> Reset: {x}Z or Z(x:=0)
= [{x}Z] = {u[0/x] | u €[Z]}

> Conjunction
" [Z4g] [Z]N[d]

N

(T
> The set of zones is closed under all
constraint operations (including x:=x-c or
X:=X+C)
» That is, the result of the operations on a

Zohe is a zohe
» That is, there will be a zone (a finite object

An important theorem
onh Zones

i.e a zone/constraints) fo represent the sets:

[ZT], [Zl], {x)Z]

N

31



> Delay: (n,Z) 2 (n,Z") where Z'= ZT A inv(n)

» Action: (n,Z) — (m,Z') where Z'= {x}(Z ~g)

. X:=0
if g

> Successors(n,Z)={(m,Z) | (n,Z) >—>(m,Z), Z+2}
. (Sorzn)eﬂme we write: (n,Z2)>(m,Z) if (m,Z') is a successor of
n,

Now, we have a search
problem

(No,Zo)

/1N

@ Reachable?

32



~ End of Session 1 ~

Urgent Channels

>

No delay if the
synchronization edges can be
taken |

No clock guard allowed.
Guards on data-variables.

Declarations:
urgent chan a, b, c[3];

N

Urgency & Commitment

Urgent Locations

» No delay - time is freezed!

» May reduce number of
clocks!

Committed Locations

> No delay.
> Next transition MUST
involve edge in one of the
rocesses in committed
ocation
> May reduce considerably
state space

33



list[i] =0, 1= 0

Shiftciown

Expressions

list{len]:=e,

e=listi0]
hd?

listfil =listfi+1],

used in

guards,
invariants,
assignments,
synchronizations
properties




Expressions

1= 1D
NAT

' (" Expression ')’

UnaryOp Expression
Expression BinOp Expression
Expression "?’ Expression

ID .’ ID

Fo.

Expression '"[’ Expression ']’

Expression AssignOp Expression

F

Fxpression

Expression "++’ | "++’ Expression

Expression "--" | '—-—' Expression

F—roporr "not’

Binary
I e I T
S L B I VA BEE
K | ror ] r<<r | I>>r | rgg!
fand® | for’ | "imply’

Assignment

r .

I = N A = r/=r

Pl=ro| rg=T | r0=r | Tg=r | Ies=t

!>f
!&!

!ll!
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Guards:

> It is side-effect free, type
correct, and evaluates to
boolean

» Only clock variables, integer
variables, constants are
referenced (or arrays of
such)

> Clocks and differences are
only compared to integer
expressions

» Guards over clocks are
essentially conjunctions (i.e.
disjunctions are only allowed

%ver integer conditions)

Guards, Invariants,
Assignments

Assignments

» It has aside effectandis
type correct

» Only clock variable, integer
variables and constants are
referenced (or arrays of
such)

» Only integer are assigned to
clocks

Invariants

» It forms conjunctions of
conditions of the form x<e
or x<=e where X is a clock
reference and e evaluates to
an integer

36



