
Real-time System Testing On-the-fly∗

Marius Mikucionis Brian Nielsen Kim G. Larsen
{marius,bnielsen,kgl}@cs.auc.dk

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7B, 9220 Aalborg Øst, Denmark

Introduction. The goal of testing is to gain confidence in a physical computer based system by
means of executing it. More than one third of typical project resources is spent on testing and still it
remains ad-hoc, based on heuristics, and error-prone. Moreover, it is estimated that 99% of processors
produced today are targeted for embedded applications. Real-time and embedded systems require a
special attention to timing where the moment of input and output event appearance is as important
as the event itself. Therefore a special attention must be paid to timing during testing. The goal
of conformance testing is to check whether the behavior of the system under test (IUT) is correct
(conforming) to that of its specification. We follow a model driven approach where a formal model
(or specification) defines the required (real-time) observable behavior of the IUT, and from this we
automatically derive and execute real-time test cases to determine whether the IUT is conforming.

A new approach to model based test generation is (on-line) on-the-fly testing that combines test gen-
eration and execution: only a single test primitive is generated from the model at a time which is
then immediately executed on the implementation. Then the output produced by implementation is
checked against the specification, and new test primitive is produced, and so forth until it is decided
to end the test. An observed test run is a timed trace consisting of an alternating sequence of (in-
put or output) actions and time delays. The main advantages of on-the-fly testing is that very long
and stressful test cases are executed, and that the state-space-explosion problem is reduced during
test generation, because only a limited part of the state-space need to be stored. On-the-fly test-
ing from Promela [3] and Lotos specifications for un-timed systems have been implemented in the
TORX [2] tool, and practical application to real case studies show promising results [2]. However,
TORX provides no support for real-time systems. We present the framework, the algorithm and the
tool for on-the-fly testing of real-time systems based on UPPAAL. UPPAAL is a timed automata
model checker developed jointly by a group of researches at Uppsala University and Aalborg Uni-
versity. We adopt the UPPAAL model specification language and extend the verification engine for
the on-the-fly testing. The most important feature of UPPAAL is the use the symbolic techniques to
handle real-valued clocks of timed automata.

Testing framework. The test framework consists of the implementation under test (IUT) and its
environment that is to be simulated by the tester. In our case the tester is a test computer equipped
with a test specification, an adopted UPPAAL engine and an adapter, see Figure 1. An IUT usually

abs_out

abs_in

out

in
T−UppAal

A
da

pt
er Implementation

Under Test

Test Specification:
TA Netw. of
Environment

TA Netw. of
Implementation

Environment

Figure 1: On-the-fly testing framework.

operates in a particular environment - a collection of conditions and assumptions that the IUT is
used under. Not every environment is realistic or reasonable and therefore only tests relevant to this

∗Funded by Basic Research in Computer Science.

1



environment should be executed. Moreover we may want to test how system would behave under very
specific conditions, e.g. try some test purpose which led to a failure. Therefore the test specification
is allowed to be a parallel composition of a model of the implementation and a model of environment.
The adapter component translates the abstract input and output representation (abs in, abs out) into
real actions (in, out) applied to and received from the IUT. We assume that the IUT and its model are
input enabled to be able to accept any input offered at any moment in time. The tester is allowed to
offer any input allowed by the environment from the test specification.

Conformance Relation. A conformance relation defines what IUT behaviors are considered correct
compared to its specification. SPIN [3] uses the non-timed conformance relation ioco. Similarly
we propose timed trace inclusion as conformance relation meaning that the timed traces of the IUT
must be included in the timed traces of specification. The conformance relation forms basis for a test
verdict - pass, fail or inconclusive. The intuition of a verdict is as follows:

• pass is given if all the observed outputs (including passage of time) were allowed by the speci-
fication. The passage of time implies that the IUT may stay silent (not produce an output) only
if allowed so by the specification;

• fail is given if some output observed was not permitted by the model of implementation;

• inconclusive is given if some output observed was not expected by the environment model (an
unpredicted event which prevented to reach the goal of the test).

The maximum duration of the test is defined in the test specification as a time-out for the testing.
We consider clocks to be of real-valued density. Therefore we reuse the symbolic techniques [6]
implemented in UPPAAL, which allows us to analyze continuum sets of clock values in compact data
structures.

Symbolic on-the-fly test algorithm. The test generation and execution algorithm is based on main-
taining the current reachable symbolic state set Z representing all states that the test specification can
possibly occupy after the timed trace observed so far. Knowing this allows us to choose appropriate
test primitives and to validate IUT outputs. Initially Z contains a single symbolic state 〈l̄0, 0̄〉 where
l̄0 is the initial location vector of timed automata network and 0̄ is the initial time zone where all
clocks are set to zero. See the details in Algorithm 1.

Algorithm 1 Test generation and execution. Initially Z := {〈l̄0, 0̄〉}.

while timeout > 0 do choose (randomly) one of the following two:
action: // offer an input

a := ChooseAction(EnvOutput (Z))

send a to implementation
Z := After (Z, a)

delay: // wait for an output
δ := ChooseDelay(Z)

sleep for δ time units and wake up on output o

if o occurs at δ′ ≤ δ then
Z := After (Z, δ′)

if o /∈ ImpOutput(Z) then return fail
else if o /∈ EnvInput(Z) then return inconclusive
else Z := After (Z, o)

timeout := timeout − δ′

else // no output occurred within δ time
Z := After (Z, δ)

if Z = ∅ then return fail
timeout := timeout − δ

return pass

The functions used in Algorithm 1 query the UPPAAL engine for the return values:

• After computes a closure of symbolic states after all potential environment and IUT internal
actions and returns the next set of reachable symbolic states that can be reached after per-

2



forming an input or output test event1 or a delay. Due to non-determinism in the specification
this requires a representation as set of symbolic states as opposed to a single state and single
symbolic state, and the underlying algorithms for computing it are un-trivial, and cannot be
presented due to space limitations. After returns an empty set if the delay or action was not
allowed by the specification.

• EnvInput, EnvOutput and ImpOutput compute the applicable input and output actions for the
model of respectively the environment and the model of implementation;

• ChooseDelay and ChooseAction selects a delay and an action applicable to IUT when it is in
some state mentioned in Z. The ChooseAction and ChooseDelay functions currently selects
actions or delays at random.

Different strategies can be applied to guide the test generation to “interesting” or uncovered states
by changing the model of environment, “choose” functions and adopting them to a particular test
purposes. The best results are expected in symbiosis with [5], [7] and other future works in this area.

Status and future work. The current work on the on-the-fly test generator resulted in the first pro-
totype of T-UPPAAL (Testing-UPPAAL) [1], which showed promising results in generating test from
simple system models, such as train-gate controller [4]. The concept is realizable, and functional, and
the performance of the symbolic state set computation algorithms appear fast enough for many realis-
tic real-time systems. However, very large specification with an extreme amount of non-deterministic
behavior may need significant time to compute the reachable symbolic state set, and may need im-
proved algorithms.

The future T-UPPAAL prototype development includes enhanced test generation and execution algo-
rithm with further test event selection strategies and improved clock synchronization between the tool
and IUT. The data value passing protocol described in [1] must be implemented to enable the data
value communication between the tool and the IUT. Also we plan to apply it to realistic embedded
and real-time systems and protocols.

References
[1] Marius Mikucionis and Egle Sasnauskaite. On-the-fly Testing Using UPPAAL. Aalborg University. Dis-

tributed Systems and Semantics unit, Department of Computer Science. Master thesis, June 2003. URL:
http://www.cs.auc.dk/∼marius/master.pdf

[2] R. de Vries, J. Tretmans, A. Belinfante, J. Feenstra, L. Feijs, S. Mauw, N. Goga, L. Heerink, and A. de Heer.
Côte de Resyste in PROGRESS. In STW Technology Foundation, editor, PROGRESS 2000 - Workshop
on Embedded Systems, pages 141-148, Utrecht, The Netherlands, October 13 2000.

[3] Rene de Vries, Jan Tretmans. On-the-Fly Conformance Testing Using Spin. University of Twente. For-
mal Methods and Tools group, Department of Computer Science. P.O. Box 217, 7500 AE Enschede, The
Netherlands.

[4] Wang Yi, Paul Pettersson and Mats Daniels. Automatic Verification of Real-Time Communicating Sys-
tems by Constraint Solving. In Proceedings of the 7th International Conference on Formal Description
Techniques, pages 223-238, North-Holland. 1994.

[5] Anders Hessel, Kim G.Larsen, Brian Nielsen, Paul Pettersson, Arne Skou. Time-optimal Real-Time Test
Case Generation using UPPAAL. To appear in the 3rd International Workshop on Formal Approaches to
Testing of Software (FATES’03). Montreal, Canada,

[6] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal
Implementation Secrets. In Proceedings of the 7th International Symposium on Formal Techniques in Real-
Time and Fault Tolerant Systems (FTRTFT’02), 2002. URL: http://www.uppaal.com/

[7] Brian Nielsen and Arne Skou. Automated Test Generation from Timed Automata. In proc. TACAS 2001 -
Tools and Algorithms for the Construction and Analysis of Systems (Tiziana Margaria and Wang Yi Eds.),
343–357, Genova, Italy, April 2–6, 2001.

1We call the observable channel synchronization a an action, since the action may carry more information than a channel
synchronization alone.

3


