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Abstract

Uppaal Tron is an online model-based testing tool for real-time sys-
tems. This user-manual documents the implementation features of the
tool and could also be used as a reference manual for building test adapters
for Tron. The reader should be familiar with Uppaal tutorial [1]. Basic
knowledge of process control in a shell and programming in C/C++ or
Java is assumed.
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1 Introduction

Uppaal Tron implementation started as part of Master thesis project and
continued as part of Ph.D. thesis project by Marius Mikučionis, supervised by
Kim G. Larsen and Brian Nielsen. The tool is being applied and evaluated in
research, education and industrial case studies and yet is being improved.

The manual is organized in the following way: we introduce the tool in this
section, discuss the system modeling assumptions, describe the test adapter
framework, explain the options and diagnostic messages and outline some future
work. We recommend to get accustomed to Tron through Section 1.3, proceed
with formal and practical framework setup in sections 1.4, 1.5, 2 and use sec-
tions 3, 4, 5 as reference manual. Faults and feature requests should be reported
to Uppaal bug tracking system: http://bugsy.grid.aau.dk/cgi-bin/bugzilla/index.cgi.

The following subsections describe features and requirements of Uppaal

Tron, look’n’feel of the tool and how to get started with the demo, finally
explain the formal concepts used in Tron.

1.1 Features

• Performs conformance testing: the tool checks whether the timed runs of
the system under test (SUT) are specified in the system model (similar
to timed trace inclusion) and no illegal (unexpected, unspecified) timed
behavior is observed.

• The emphasis is on testing the timed and functional properties. Time
is considered continuous, (input/output) events can happen at any real-
valued moment in time, but deadlines are constrained by integers (ratio-
nals). Test data generation is also possible, but (today) data types and
value selection are limited by modeling language.

• The specification is an Uppaal timed automata network partitioned into
a model of the system and a model of system’s environment assumptions.
The model can be non-deterministic, allowing reasonable freedom for sys-
tem implementations, modeling possible/tolerable time drifts, soft time
deadlines.

• Test primitives are generated directly from the model, executed and the
system responses checked at the same time, online (on-the-fly) while con-
nected to the SUT, thus avoiding huge intermediate test suites.

• During testing the tool follows the environment model which can have
various purposes:

1. fully permissive environment model allows to test full conformance;

2. a specific environment minimizes the testing effort for realistic level
of conformance;
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3. environment model as use cases guide through functionality of a par-
ticular interest;

4. environment model as pre-recorded test runs used to re-execute tests
for debugging or regression testing.

• Uppaal model-checking engine allows efficient and fast timed automata
model exploration.

• If the environment model is non-deterministic (very often it is) then choices
of inputs and time delays are randomized. So far, early experiments show
that randomization results in the best location, edge and variable value
coverage as opposed to heuristics based on location, edge, variable value
or combined strategies. This however does not mean that offline test gen-
eration techniques cannot be better.

• In general, testing the real-time conformance is undecidable, but under
digitization assumptions it is shown to be sound and complete in a time
limit.

1.2 Requirements

Minimal requirements:

1. Architecture: PC, Intel Pentium compatible.

2. Operating system: Linux (2.6 version recommended) or Microsoft Win-
dows NT/2000/XP/2003. Releases are tested on Debian GNU/Linux test-
ing/unstable and Windows XP Professional.

Binaries for Sun Solaris (SunOS 5.10) on Sparc can be provided upon request.
Optional:

3. Sun Java 5 or 6 Software Development Kit (SDK) for java examples.

4. Apache ANT for java examples.

5. Graphviz [3] utilities for model signal-flow diagrams layouts in pictures.

6. R language and environment for statistical computing and graphics for
displaying scheduling latency experiment results.

7. GhostViewer gv for displaying PostScript pictures generated from schedul-
ing latency experiment.

8. GNU Compiler Collection and GNU make for dynamic library adapters
(button example) on Linux.

9. Microsoft Visual Studio 2005 for dynamic library adapters (MSVC button
example) on Windows.

Other software assumed:

9. ZIP archive extractor: unzip on Linux and Windows Explorer or WinZIP
on Windows.
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10. Terminal or command line prompt: xterm with bash on Linux, cmd.exe
on Windows.

11. GNU tool set (GNU Make from Linux distribution or MinGW or Cygwin)
can be used to gain an advantage of automatic build and execution Makefile

scripts included with Tron distribution.

Linux software is available on Debian GNU/Linux via single command:
apt-get install sun-java6-jdk graphviz r-base gcc g++ make gv xterm

1.3 Getting Started

The section demonstrates how to use the tool by running a smart-lamp demo
with a few mutant examples. Other examples are available through Makefile
scripts which can be used with GNU make.

The following steps prepare to use the tool for your operating system.

1.3.1 Installation for Linux

1. Download Uppaal Tron from a Tron webpage. Choose “TRON-V for
Linux on Intel PC”, where V is the latest version number. Some versions
are marked as alpha (internal development releases) and beta (preview
releases for general public), which denote the maturity and the feature
completeness of the release. Please also see the version history on the
download page.

2. Start terminal or command line window: launch terminal application
xterm.

3. Check if the proper Java version is installed (i.e. if the environment vari-
able PATH is set correctly and GNU Java1 is not in the way): command
java -version should show something like the following:
java version "1.6.0"

Java(TM) SE Runtime Environment (build 1.6.0-b105)

Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)

4. Unpack Uppaal Tron: enter unzip uppaal-tron-V-linux.zip at com-
mand prompt.

5. Go to tron java directory: cd uppaal-tron-V-linux/java.

6. Start another terminal in the same directory: enter xterm &.

1.3.2 Installation for Windows

1. Download Uppaal Tron from a Tron webpage. Choose “TRON-V for
Windows”, where V is the latest version number. Some versions are
marked as alpha (internal development releases) and beta (preview releases
for general public), which denote the maturity and the feature complete-
ness of the release. Please also see the version history on the download
page.

1Some Linux distributions ship GNU Java as default Java, which is known not to
work with Tron SocketAdapter and can be changed to Sun Java by administrator via
update-alternatives or galternatives programs.
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2. Start terminal or command line window: click Start→Run, type cmd.exe

and hit ENTER.

3. Check if the proper Java version is installed (i.e. if the environment vari-
able PATH is set correctly: command java -version should show some-
thing like the following:
java version "1.6.0"

Java(TM) SE Runtime Environment (build 1.6.0-b105)

Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)

4. Unpack Uppaal Tron: use Windows Explorer or WinZIP to extract.

5. Go to tron java directory: cd uppaal-tron-V-linux/java.

6. Start another command line window in the same directory: enter start

cmd.exe at command prompt.

1.3.3 Smart-lamp Demo

Figure 1 shows the smartlamp test setup. The LightController is the main

grasp
release

levellevel

release
grasp

Figure 1: Smartlamp setup: LightController (in the middle) connected to Tron

(on the left), level view window and a mouse (on the right).

executable class. The application has two interfaces: for graphical user interface
(GUI) and for Tron. GUI shows level of the light as different color shades on a
light bulb, adjusts a level bar and draws level history chart. GUI window sends
grasp and release signals to LightController whenever GUI window is pressed
or released with left button of a mouse. The LightController console prints the
events happening in the application. Tron can be attached to LightController
via SocketAdapter with an equivalent interface of grasp and release as inputs
and level as output. Tron window shows the progress of the test run. The
following is a list of commands demonstrating smartlamp application and Tron

tests against it.
One can experiment with LightController via GUI without running Tron

by entering the following command line:
java -cp dist/smartlamp.jar com.uppaal.smartlamp.Main -M 0

To run Tron test demo in virtual time framework2 against smartlamp follow
these steps:

2Mouse clicks are ignored here since the user is not part of virtual time framework.
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1. Start smart-lamp at one command prompt:
java -cp dist/smartlamp.jar com.uppaal.smartlamp.Main -C localhost 8989

-M 0

-C localhost 8989 sets the virtual clock to TCP/IP socket located at local
host port 8989.

-M 0 sets mutant 0 (correct implementation) to be run.

2. Start Tron from another command prompt:
../tron -Q 8989 -P 10,200 -F 300 -I SocketAdapter -v 9 LightContr.xml

-- localhost 9999

-Q 8989 creates virtual clock on TCP/IP socket at local host port 8989.

-P 10,200 limits the delay choices up to 10 or 200 time units (this prevents
choices of very long delays).

-F 300 tells to pre-compute a symbolic state set for 300 time units into
the future (allows more choices from the near future).

-I SocketAdapter tells to use built-in SocketAdapter.

-v 9 tells to (+1) to print only the progress of testing and (+8) backup
the state set for verdict diagnostics in case the test fails.

LightContr.xml tells to use LightContr.xml file as test specification.

-- localhost 9999 is a parameter to adapter, tells SocketAdapter to con-
nect to implementation on TCP/IP socket at local host port 9999.

Run test demo in real time:

1. Start smart-lamp on one command prompt (-C is not used):
java -cp dist/smartlamp.jar com.uppaal.smartlamp.Main -M 0

2. Start Tron on another command prompt (-Q is not set):
../tron -u 4000,4000 -P 10,200 -F 300 -I SocketAdapter -v 9 LightContr.xml

-- localhost 9999

Note that GUI mouse clicks can be used to alter the behavior of LightController
in real time, hence introducing behavior mutations which may be sensed by
Tron. See also Section 6 if Tron reports test failures on mutant M0 in real
time.

1.3.4 Smart-lamp Mutant Exercise

For the smart-lamp mutant exercise you need the model LightContr4.xml, and
the following command lines to start Tron and the controller:
../tron -Q 8989 -P 10,200 -F 300 -I SocketAdapter -v 10 LightContr4.xml --

localhost 9999

java -cp dist/smartlamp.jar com.uppaal.smartlamp.Main -C localhost 8989 -M

0

There are two built-in faulty mutants controlled by -M option: -M 1 and -M

2.
The easiest way to create your own mutants is to modify the existing Light-

Controller source and add mutants in the style of the existing mutants (a flag
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indicates what mutant to run, and use if (mutantID) statements to enable the
faulty code. One typically needs to edit the com/uppaal/smartlamp/SmartLamp.java
and/or com/uppaal/smartlamp/Dimmer.java files in src directory. Remember to
recompile the smartlamp once edited: ant clean jar

1.3.5 Offline Generated Tests

We recommend executing your preset input sequences using Tron by modeling
the test input/output sequence as a timed automaton and by replacing the envi-
ronment with this automaton. Depending on desired timing choices Tron can
be run in random, eager, lazy or bounded delay mode. An example is provided
in LightContr4.xml (Template: LightCov and Envy Closure, see system section
of the model). Start Tron as described below, try eager and other delay options:
../tron -Q 8989 -P eager -F 300 -I SocketAdapter -v 8 LightContr4.xml -- localhost

9999 silent

../tron -Q 8989 -P 10,200 -F 300 -I SocketAdapter -v 10 -w 20 LightContr4.xml

-- localhost 9999

../tron -Q 8989 -P random -F 300 -I SocketAdapter -v 8 LightContr4.xml -- localhost

9999 silent

../tron -Q 8989 -P lazy -F 300 -I SocketAdapter -v 8 LightContr4.xml -- localhost

9999 silent

1.3.6 Create Your Own Smart-lamp

Here you have to create both a model and an implementation. It is easiest to
start with the template given in onOffLight.xml and OnOffLightController.java:
java -cp dist/smartlamp.jar com.uppaal.autoofflamp.Main -C localhost 8989 -M

0

../tron -Q 8989 -P 10,200 -F 300 -I SocketAdapter -v 10 onOffLight.xml -- localhost

9999

1.3.7 Create Your Own Implementation

The package com.uppaal.dummy includes a minimal dummy implementation
that behaves like dummy.xml specification. TestIOHandler takes care of in-
put/output translation and communication, where DummyInterface declares
what kind of input methods Dummy implementation can handle and DummyListener

interface declares what output methods are available. Once the source of the
dummy is modified, the new implementation can be compiled by invoking ANT
rule ant clean jar which reads build.xml script, cleans the old byte code,
compiles and packages a new jar package in dist directory. The resulting pack-
age can be optimized and obfuscated with ProGuard by invoking ant clean

dist.

1.4 Relativized Timed Conformance

Tron uses rtioco as implementation relation to specification in order to evalu-
ate the correctness of a test experiment and to determine the test verdict. rtioco

is an extension to tioco which in turn has roots in ioco by Jan Tretmans [].
Explicit handling of environment assumptions is an essential feature which dis-
tinguishes rtioco from other timed conformance variations and still compatible
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with ultimate qualities of tioco . The environment assumptions give additional
information about specific kinds of implementation behavior and help tester to
focus on features of interest, closer reflect reality and hence reduce testing costs.

Definition 1 augments the formal definition of rtioco [7] with engineering
interpretation, which means that implementation p conforms to specification s

within the environment e if and only if the observations from test execution
on 〈e, p〉 are always included in possible observations described by specification
〈e, s〉 while running all possible traces of environment e.

Definition 1 Relativized timed input/output conformance relation for input
enabled timed input/output labeled transition systems p, s ∈ S and e ∈ E:

p rtiocoe s
def
= ∀σ ∈ TTr

(

e
)

.Out
(

〈e, p〉 after σ
)

⊆ Out
(

〈e, s〉 after σ
)

(1)

where:

S and E are the sets of timed input/output labeled transition systems that are
compatible with respect to observable inputs and outputs: S observable
outputs synchronize with observable inputs of E and vice-a-versa,

p,s and e are initial states of implementation under test, specification and
environment respectively,

TTr
(

e
)

is a set of timed input/output traces of e,

〈e, p〉 and 〈e, s〉 are parallel compositions of p and e, and s and e, respectively,
where processes synchronize on observable input/output action transitions,

〈e, p〉 after σ means executing an observable trace σ on implementation p within
environment e and returning the end state(s) of the system,

〈e, s〉 after σ means evaluating an observable trace σ on specification s within
environment e and returning a set of possible system specification states,

Out
(

states
)

return the list of possible output action and/or delay observations.

Notice that the definition mentions environment twice: firstly composed with
implementation (real physical entity) and secondly composed with specification
(virtual abstraction or modelled entity). Formally (and ideally) these environ-
ments are the same (hence only one e is needed), but in practice it is the tester’s
responsibility to transform the modelled environment into the real physical en-
tity, which means providing adapters with physical interface to implementation
and behaving like environment model.

Let us examine possible cases and see why this relation is good for defining
the correctness of timed behavior in black-box testing:

1. Definition is provided for timed labeled input/output transitions, which
means that it is applicable to a broad class of timed systems (e.g. hybrid
systems), not just the ones modelled by timed automata and is indepen-
dent of modelling formalisms. Definition also does not go deeper nor dwells
about the structure of p, s and e processes: no assumptions about them
are made, high-level abstract specifications s and e are possible allowing
all kinds of non-determinism, does not measure the state of p directly
allowing black-box testing, s, e and p can be composed of many parallel
processes which allow modular designs of the system and the specification.
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2. Follows common intuition that outputs should be observed as they are
described in the specification: neither too early nor too late if allowed at
all. If tester observes delay δ ∈ R≥0 followed by output o ∈ Aout from
implementation after trace σ then it means δ ∈ Out

(

〈e, p〉 after σ
)

and

o ∈ Out
(

〈e, p〉 after σδ
)

. The tester should compute the largest delay d

such that d ∈ Out
(

〈e, s〉 after σ
)

and check whether δ ≤ d:

• if δ ≤ d is false then it means that specification did not allow to
delay for δ times, and p does not conform to s. However, if o ∈
Out

(

〈e, p〉 after σd′
)

for some d′ ≤ d, then it means that output is
allowed but observed too late (later than required after d′).

• if δ ≤ d is true then o ∈ Out
(

〈e, p〉 after σδ
)

has to be checked:

– if true then output o is allowed and should be appended to σ

trace

– if false then output o is not allowed. However if there is d′ such
that o ∈ Out

(

〈e, p〉 after σd′
)

and d′ > δ then it is likely that o is
allowed but is observed too early (earlier than delay d′). Another
possibility is that there exists d′′ < δ after which o is allowed,
then observation can be classified as o is allowed but observed
too late (later than after delay d′′).

3. Definition allows incremental test trace construction, see the output ob-
servation discussion above which also holds for input events.

4. Relation considers only the traces that are possible in environment e which
gives us the power to test the selected timed behavior. The input enable-
ness of e guarantees that any output produced by p or s is accepted and
not refused, hence does not influence the correctness. There are two in-
teresting extreme cases of environments:

(a) Universal environment eU which allows all observable timed traces:
TTr

(

eU

)

= (Ainp ∪ Aout ∪ R≥0)
∗. Then p rtiocoeU

s coincides with
timed trace inclusion and is equivalent to p tioco s.

(b) Silent environment eS which does not allow any inputs but merely
consumes outputs and lets the time pass: TTr

(

e
)

= (Aout ∪ R≥0)
∗.

This is the same as Ainp = ∅ where tester is allowed only to observe
the behavior of implementation. Such activity is equivalent to passive
monitoring of the system.

In theory black-box timed testing is undecidable due to (timed trace) lan-
guage inclusion checking problem, however in [7] the online test generation al-
gorithm for real-time systems is shown to be sound and also complete (exhaus-
tive) under input-enableness, observability and digitization assumptions if given
enough time. The assumptions are important only for theoretical completeness
and can be relaxed in practice.

1.5 Online Test Setup

We consider closed systems, where implementation together with its environ-
ment can be isolated from the rest of the world. Figure 2a shows typical system
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setup during the system deployment: environment is a plant that needs to be
steered and controlled, and implementation is a software/hardware controller
taking inputs from the sensors embedded in the environment and producing
output to actuators influencing the environment. Notice that we take the per-
spective of the controller or implementation when talking about inputs and
outputs.

Implementation

(plant controller)

Environment

(plant under control)

input

output
Actuators

Sensors

(a) System during deployment.

Tester Adapter
Implementation

under test

input"in"

"out" output

Environment

(b) IUT’s perspective during testing.

Tester Adapter Implementation

input"in"

"out" output

Environment Implementation Under Test

(c) Tester’s perspective during testing.

Figure 2: Implementation during deployment and testing.

In Figure 2b we replace the environment, sensors and actuators with a tester
and a test adapter in order to test such controller. In generic test setup the
adapter translates abstract input messages into physical actions and recognizes
physical outputs and encodes them into abstract messages understood by the
tester. The adapter is always implementation specific, moreover adapter imple-
mentation may also contain faults, hence we arrive to Tron test setup shown
as tester’s perspective in Figure 2c where the adapter is shifted to be a part of
the implementation under test. We rely on the assumptions that adapter is fast
enough to mimic sensors and actuators and tester is fast enough to emulate the
environment and therefore provide fair tests.

The system model provided as test specification should also reflect the phys-
ical setup and partitioning of component-processes as shown in Figure 2c. The
inputs are controlled by the tester and the outputs are controlled by the imple-
mentation. While modelling the IUT requirements and environment assump-
tions is rather straightforward, the model of an adapter is often overlooked.
In Tron framework we follow the semantics of time automata specification
defined as labelled transition systems, where events (edge-transitions) happen
atomically and instantaneously. Therefore we also treat an event as a single
point in time and space, where the time defines when the event happened (rela-
tively to the start of testing), space-location defines a component of the system
and action label identifies an edge of the component process. Notice that a
simple electronic signal traveling via wire corresponds to a series of events at
different locations of the wire. Ultimately, physical reality does not allow mea-
suring location and time of event precisely (precise timing cannot be measured
if the location is known precisely and precise location cannot be measured at
precise timing), moreover it is not possible nor desired to provide models at such
detailed level, hence a reasonable abstraction is needed which still captures the
important details.

First, we propose to split input/output action into two events: 1) when
input action is sent by the tester (output action is sent by implementation)
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and 2) when input action is received by implementation (output action received
by tester); this will make sure that input and output actions can pass each
other as in asynchronous distributed systems. Second, model the adapter as an
event buffer. One size buffer is a cell shown in Figure 3a and n-size buffer is a
parallel composition of n cells composed in a sequence as in Figure 3b. Based

event[i]!x[i]=0
event[i−1]?

idle

in_transit
x[i]<=delay

(a) Cell.

event[i]!x[i]=0
event[i−1]?

idle

in_transit
x[i]<=delay

event[i]!x[i]=0
event[i−1]?

idle

in_transit
x[i]<=delay . . .

event[i]!x[i]=0
event[i−1]?

idle

in_transit
x[i]<=delay

i == 1 i == 2 i == n

(b) n-size buffer.

Figure 3: Buffer automata for the adapter model, where x[i] is a clock.

on a concrete value of delay and on assumptions on how many actions can
be generated at the same time, one can find minimal buffer size n and using
[6, 5] techniques prove that such buffer is a correct abstraction of a physical one
(down to atomic details).

While the input part of adapter is important for the implementation input-
enableness assumptions and reflecting the possible delay in signal, the output
part of adapter is merely delaying the output but has severe performance penalty
if the buffer is large, hence should be kept as simple as possible.

Tron uses interval time-stamping in order to solve the problem of precise
time-measuring: the action is time-stamped at the tester’s interface to adapter
and the time-stamp is converted to model time interval, whose bounds are the
closest integers to measured time-stamp. This reflects our notion that we don’t
really know when the event actually happened, but somewhere in the interval,
and allows us to compute an over-approximation of actual behavior of the sys-
tem. The over-approximation enforces the principle “behavior is correct unless
proved otherwise” and it does allow some non-conforming behavior to pass the
test, but we think that it is reasonable given that the observability (ability to
measure the timings) and controllability (ability to feed inputs at precise timing)
are not perfect as one could expect in theory.

2 Test Specification

A Tron test specification consists of the following items:

• Uppaal model containing requirements for environment and IUT pro-
cesses,

• input/output channel interface between environment and IUT processes,

• model time unit definition and

• amount of time dedicated for testing.

11



room
compressor

sensor
controller
switch

turn_off()
turn_on()

temp(T)

under test
implementationenvironment

Figure 4: Fridge model setup.

We will use the fridge system from Figure 4 as a running example to demon-
strate how typical system model is composed for testing using Tron. The fridge
system consists of five processes: room, sensor, controller, switch and compres-
sor. The room process controls the room temperature of the fridge: a sample
room automaton is displayed in Figure 5b. The sensor process identifies whether
the sensed temperature is High, Med or Low, see the timed automaton in Fig-
ure 5c. The controller process is controlling whether the compressor should be
turned On or Off via shortcutting a switch, see Figure 5d. The switch process
is relaying the signal to compressor by turn on and turn off like automaton in
Figure 5e. The compressor process is responsible for notifying the room about
the change of conditions in the fridge, i.e. if compr is true then the heat is taken
away by the circulating liquid and if false then the heat is leaked into the fridge,
see Figure 5f and Figure 5b. Assume that we want to test the software running
in the controller component of our fridge system. The only way to connect to
controller is through the sensor and switch interfaces as there is no “direct”
connection with the controller process. Notice that the sensor and the switch
introduce the communication latency3, which is reflected by the upper bound of
d time units in sensor and switch automata. Hence, the controller, the switch
and the sensor models belong to the IUT requirements as there is no way to
separate them. The rest of the processes (the room and the compressor) belong
to assumptions about environment of IUT.

2.1 Properties of the Model

Tron allows non-determinism in the model. For some models the resulting
state space can even be beyond the verification. For example, the requirements
for the controller in Figure 5d are non-deterministic in two ways:

1. in action: the location up is allowed to be reached after Med or High
actions. Similarly the location dn can be reached from on by any of Low
or Med actions. Modeling that the IUT is allowed to implement either
sequence.

2. in time: the controller may stay in locations up and dn for any time
duration up to r time units. Modeling allowed reaction time tolerance.

Moreover the communication latency in adapter adds even more unavoidable
(concurrency) non-determinism to the IUT requirements. Similarly the envi-
ronment processes can also be non-deterministic, e.g. the room is allowed to

3Even tiniest latency is relevant as it models the concurrent nature of independent input
and output signals.
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// IUT requirements:
const int r=15;
int sensed=0;
clock x, sn;
chan High, Med, Low, On, Off;
// observable ( test interface ) part :
chan temp; // inputs
int T=0; // data bound to input
chan turn on, turn off ; // outputs
// environment assumptions:
const int p=5;
const int s=30;
const int d=1;
clock sw, rm;
bool compr;

(a) Global declarations.
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and rm>p

compr
and rm>p

temp! temp!

rm<s
T=T+1,
rm=0

T=T−1,
rm=0
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Med!

Low!

sensed=T,
sn=0

sensed<=0

sensed>5

sensed<=5
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sensingidle
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sn=0
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(c) sensor

Med?
Med?

Low?
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x:=0

x:=0

x:=0 up
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Med?
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High?
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(d) controller

sw<d

sw<d

disconnecting

connecting

idle

turn_off!Off?

turn_on!On?

sw=0sw=0

sw=0sw=0

(e) switch

turn_off?

compr=true
turn_on?

compr=false

(f) compressor

Figure 5: Model of the refrigeration system, fridge.xml.

update the temperature in any periods of time between p and s time units. The
sensor automaton makes sure that the input (temperature changes) will always
be accepted by IUT part if offered no more often than d time units intervals.
Similarly the compressor automaton can accept the output at any time.

The more non-deterministic environment model is, the more discriminative
power it has. Generic environments which allow any input fed at any time are
the most discriminative, although they are not always practical in testing. Our
room and compressor automata model a more realistic environment, where the
room temperature is responsive to the state of compressor. We can also replace
the room and the compressor by an automaton modelling a concrete test case
which could drive the system into interesting states.

The IUT model should be at least weakly input enabled (ability to consume
any input at any time) although there are no precise guidelines on how strictly
this requirement should be enforced and Tron will try to obey the assumptions
in IUT model. The environment model is not required to be input enabled (to
accept any output at any time from IUT) and the verdict inconclusive will be
given if the environment state can not be updated with unexpected IUT output.
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2.2 Partitioning of the Model

Input/output channels partition the Uppaal model processes and variables into
environment and implementation. The goal of partitioning is to ensure that the
setup of real environment and IUT is correctly reflected in the model and only
the observable channels are used for communication between the two. The
duration of model time unit specifies how much of the real world time in mi-
croseconds elapses when Uppaal clock gets incremented by one. The maximum
amount of desired testing time is specified by “timeout for testing” in model
time units (one Uppaal clock increment).

Currently the procedure for partitioning the system is by specifying in-
put/output channel interface. The partitioning should be consistent (no pro-
cess/variable should be assigned to both environment and IUT) and complete
(all processes should belong to either environment or IUT). Given a user defined
set of observable I/O channles, Tron attempts to partition a model of a whole
system by iteratively applying the following rules:

• Events on input/output channels are observable and events on other chan-
nels (that are not declared as inputs/outputs) are non-observable or in-
ternal.

• Internal channel belongs to environment if it is used by an environment
process. Respectively, internal channel belongs to IUT if it is used by
IUT process. The model is inconsistent and cannot be partitioned if the
internal channel is used by both environment and IUT.

• Process belongs to the environment if it uses the internal environment
channel respectively. Respectively, process belongs to IUT if it uses the
internal environment channel.

• A variable belongs to the environment if it is accessed by an environment
process without observable input/output channel synchronization. Re-
spectively, a variable belongs to the IUT if it is accessed by IUT process
without observable input/output channel synchronization. A variable is
not categorized (allowed to be either) if accessed consistently during ob-
servable input/output channel synchronization.

• Process belongs to environment if it accesses environment variable without
observable channel synchronization. Respectively, process belongs to IUT
if it accesses IUT variable without observable channel synchronization.

If the partitioning is not consistent or incomplete Tron will complain with
warnings.

Tron also uses the partitioning to identify environment invariants from IUT
invariants for accurate environment emulation, where otherwise all invariants
would be treated globally (according to Uppaal timed automata semantics)
and IUT invariant would force Tron to take action before it is violated. When
interface configuration is done, Tron outputs the list of environment processes
whose invariants are used in environment emulation.

In practice to help getting the partitioning accepted by Tron, the -i dot

option can be used to produce a decorated signal flow diagram that can be
visualized by graphviz [3] tools. This option expects I/O channels fed by the
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following EBNF rule:
"input" (channel)∗ "output"(channel)∗

The option will also accept the text following the preamble rule from Figure 16
(all parameters in parenthesis are ignored). The end of the input stream is
detected by keywords precision or timeout, or simply by end-of-file signal.
The output stream can be laid-out and visualized graphically by dot4 [2]. The
diagram shows how processes are communicating similarly to UML deployment
diagram [] except that associations are displayed as arrows indicating the direc-
tion of signal flow. Diagrams have the following legend:

b represents a process.

f represents a data variable (clock or integer).

& represents an internal channel.

&F represents an observable channel.

→ represents a signal flow: from a process to a channel – the process is trans-
mitting on the channel, from a channel to a process – the process is re-
ceiving on channel, from a process to a variable – the process is updat-
ing (writing to) the variable, from a variable to a process – the process
is reading value of the variable. The transmitting and updating arrows
are bold. The label above arrow enumerates the simultaneous channel
synchronizations during data update, dash denotes an update without a
channel synchronization (internal transition).

blue items (processes, variables and channels) belong to IUT.

green items (processes, variables and channels) belong to environment.

gray items may belong to either IUT or environment. Gray data variables are
good candidates for value passing over channel.

red items could not be partitioned consistently or have some suspicious prop-
erties (like variable is updated but is never read).

The error stream is allocated for warnings and errors. The verbosity of error
stream is controlled by -v option: 0 (none), 1 (only errors), 2 (only errors and
warnings), 3 (diagnostic trace of partitioning with errors and warnings).

Example. Suppose the system model is provided in fridge.xml file and
the test interface is specified in fridge.trn file shown in Figure 6a. Then the
partitioning image fridge.eps and partitioning diagnostics can be obtained by
the following bash command line:

tron fridge.xml -i dot -v 3 < fridge.trn | dot -Tps -o fridge.eps

The command executes Tron with system model fridge.xml, asks for parti-
tioning in dot format (-i dot), sets the error stream verbosity level to all diag-
nostics (-v 3), feed the interface description as input stream from fridge.trn

file. The output stream with graph data is redirected to dot process which is
asked to produce PostScript (-Tps) image of the graph layout and write it to
fridge.eps file (-o fridge.eps). The user should observe diagnostics in the
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input temp(T);
output turn on(),

turn off ();
precision 1000;
timeout 10000;

(a) fridge.trn

Inputs: temp
Outputs: turn_off, turn_on
Adding ”room” using ”temp” by rule ”transmitters on

input channels belong to Env”
Adding ”compressor” using ”turn off” by rule ”receivers

on output channels belong to Env”
Adding ”sensor” using ”temp” by rule ”receivers on input

channels belong IUT”
Adding ”High” because of ”sensor” by rule ”internal

channel belongs to IUT if it is used by IUT”
Adding ”Low” because of ”sensor” by rule ”internal

channel belongs to IUT if it is used by IUT”

(b) Diagnostics sample.

Figure 6: The files in automatic model partitioning

error streams whose content is similar to Figure 6b. The first two lines of Fig-
ure 6b show the input and output channels separated by comma. The later lines
show which items were partitioned using a particular rule. If the partitioning is
not successful, the user should look at the diagnostics, find the first line where
process, channel or variable was assigned to wrong side and fix the problem in
the model. Figure 7 shows the sample image of the partitioning. The image
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Figure 7: Decorated signal flow diagram (fridge.eps) of the system model.

might have different layout each time it is generated as dot gets different initial
random seed.

4The other utilities can also be useful, but dot usually gives the best results as quality of
the layout depends on the minimization of edge crossings (NP-hard problem).
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3 System Adaptation for Testing

The test system developer must provide a test adapter in order to adapt the
system for testing. The adapter is responsible for translating symbolic input
descriptions into concrete physical input actions, recognizing physical outputs
and translating them back to symbolic output representations that testing tool
understands. The Tron driver implements Reporter interface which is used to
configure test interface (define observable inputs and outputs in the model) and
report the outputs detected by adapter. The TestAdapter interface is used by
Tron driver to feed the inputs. Figure 8 shows the interface between Tron and
the test adapter: the Tron driver exports a Reporter interface which is refer-
enced by adapter component and adapter is exporting a TestAdapter interface
which is referenced by driver component. The connection establishment, test
interface configuration and physical I/O are adapter implementation specific.

UPPAAL
engine

ad
ap

te
r

IU
T

d
ri

ve
r

UPPAAL TRON
Reporter

TestAdapter

inputs

outputs

configuration

Figure 8: Adapter API and physical interface.

The adapter is specified by -I name command line option where name is
the name of the adapter. If the adapter is provided in a dynamically linked
library then the name refers to the library file name. The adapter may support
command line arguments too: the adapter parameters are specified at the end
of Tron command line starting with double dash --, otherwise the adapter will
get an empty list of arguments.

Table 1 summarizes advantages and disadvantages of adapter APIs. Textual
API (Section 3.5) is probably the easiest way to communicate with Tron which
does not require any software development skills except knowledge of the trace
format, however it is slow due to continuous I/O stream parsing and encoding.
DLL API (Section 3.1) is the fastest as adapter and Tron share the same
memory space and hence I/O copying is minimized, however it requires low level
C programming knowledge, careful memory management and tedious thread
programming. TCP/IP (Section 3.3) seems to be a fair trade off between the
previous two: it can be used with almost any programming language, it provides
perfect process isolation and it is relatively fast.

Adapter API DLL TCP/IP Textual
Technology Executable linking Networking Standard I/O streams
Performance Fastest Limited by network Slow due to parsing
Flexibility Architecture specific Cross platform Platform independent
Isolation All resources shared Remote process Operating system
Tools C/C++ Socket programming Text editor, Tron

Table 1: Brief comparison of supported adapter APIs.

In addition we provide sample Java adapter implementation using TCP/IP
API in a way that it hides the complexity of socket programming and provides
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pure Java API (Section 3.4).

3.1 Dynamically Linked Library (DLL) Interface

Dynamic library interface is the most intimate connection to Tron as the user-
supplied adapter is loaded into Tron process address space and events are
transfered via function calls. The adapter name is a path to a dynamically
linked library file. The path can be either absolute or relative: at first, Tron

driver attempts to load a library at specified path as host’s dynamic linker
(ld.so(8) on Linux) is configured (e.g. use LD LIBRARY PATH etc.) and if
it fails it attempts to load it relatively from the current directory assuming that
the file is in the current directory. Here we will assume that the C language is
chosen to develop a dynamic library adapter.

Figure 9 shows the symbol signatures that Tron expects to be exported in
the dynamically linked library. The extern "C" scope specifies that C-function
name mangling should be used instead of C++ (needed if compiled by g++).
The C++ name mangling is very different across various compilers (and their
versions) hence is discouraged for portability purposes, although the internal im-
plementation can be a mixture of C and C++ code. The function adapter new

is called by Tron to initialize the adapter. The function takes a pointer to
Reporter structure (Tron driver interface, see Figure 11) and command line
arguments. It should create a TestAdapter interface to the adapter (see Fig-
ure 10) and configure Reporter interface. Function adapter delete is called
by Tron to cleanup and release the resources associated with adapter, nor-
mally it contains at least a call to TestAdapter destructor. The library should

extern ”C” {
TestAdapter∗ adapter new(Reporter∗ r, int argc, const char∗ args[]);
void adapter delete(TestAdapter∗ adapter);

}

Figure 9: Dynamically linked library (DLL) interface functions.

be compiled in such a way that the functions appear as dynamic symbols, i.e.
use -shared -fPIC -DPIC options for GCC to compile and use objdump -T to
inspect what symbols are exported.

Figure 10 shows the TestAdapter interface to the adapter. The start and
perform function pointers should be assigned to point to the code that initiates
testing (allocate necessary resources, establish connection, reset IUT, etc.) and
perform an input action. The testing time starts counting when the function
call from start returns. The perform function is responsible for delivering the
input to IUT, it takes three parameters: channel identifier chan, the number of
parameters n and an variable value array data of size n. The channel identifiers
should be acquired from the Reporter interface during the adapter new call
and the parameter count should be consistent with the number of variables
bound to the particular channel. The input action is time-stamped by before
and after perform function call time-stamps. The easiest way to implement
TestAdapter interface is to inherit it (or extend in Java terms), provide start

and perform (non-member) function implementations (which probably access
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struct TestAdapter {
void (∗start)(TestAdapter∗ adapter);
void (∗perform)(TestAdapter∗ adapter, int32 t chan, uint16 t n,

const int32 t data[]);
Reporter∗ const rep;
TestAdapter(Reporter∗ r): rep(r) { start = 0; perform = 0; }

};

Figure 10: TestAdapter: C-interface to adapter (tron/adapter.h).

adapter-implementation members) and set the start and perform function
pointers to the function implementations. It is expected that perform executes
fast without blocking, e.g. it should just put the input event into the queue
(perhaps protected by POSIX thread mutex lock) and return, whereas another
adapter thread should read from the queue and deliver the actual input. Note
that TestAdapter constructor sets the NULL as default values for start and
perform function pointers to ensure that the developer sets them to meaningful
addresses.
Important: the TestAdapter::perform function implementation should not
call Reporter::report now function as the adapter may deadlock.

Figure 11 shows the Reporter interface to Tron driver. In the beginning
of testing, the adapter new should use it to configure the driver by specifying
input and output channels, attaching variables, setting the model time unit
and timeout values. Functions getInputEncoding and getOutputEncoding

declare a channel as observable input and output respectively. They also re-
turn a non-negative integer value denoting the channel identifier to be used in
perform, report now and other function calls. Functions addVarToInput and
addVarToOutput associate the variable names with given channels: the speci-
fied variable values will be attached to each event on the given channel as data
parameters in perform and report now function calls. All functions return

struct Reporter {
void (∗report now)(Reporter∗, int32 t chan, uint16 t n, const int32 t data[]);
int32 t (∗getInputEncoding)(Reporter∗, const char∗ inputChanName);
int32 t (∗getOutputEncoding)(Reporter∗, const char∗ outputChanName);
int32 t (∗addVarToInput)(Reporter∗, int32 t chan, const char∗ variable);
int32 t (∗addVarToOutput)(Reporter∗, int32 t chan, const char∗ variable);
int32 t (∗setTimeUnit)(Reporter∗, const int64 t& microsecs per unit);
int32 t (∗setTimeout)(Reporter∗, int32 t timeout in units);
const char∗ (∗getErrorMessage)(Reporter∗, int32 t error code);

};

Figure 11: Reporter: C-interface to Uppaal Tron driver (tron/adapter.h).

non-negative integer value upon success and a negative value indicates an er-
ror code. Function getErrorMessage can be used to extract a character string
explanation of the error code.

Figure 12 shows the interaction between Tron and adapter library. First
Tron asks operating system to load the specified adapter DLL and lookup the
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adapter functions. Then Tron calls adapter new which configures the testing
interface by calling back the Reporter interface. When adapter new returns,
Tron partitions the model and calls start to start testing. The following

Reporter

driver

Linker

ld.so

TestAdapter

DLL

IUT

device

dlopen() load, attach

libhandle

dlsym(adapter new) lookup

&adapter new

dlsym(adapter delete) lookup

&adapter delete

adapter new()

configures test interface

getInputEncoding()

chanId

getOutputEncoding()

chanId

addVarToOutput()

0 (success)

setTimeUnit()

0 (success)

setTimeout()

0 (success)
(start/connect)

allocateadapter

partition start()

initialize

reset

timestamp perform()

enqueue

signal/notify/send

consumeoutput

report now()

enqueue

verdict adapter delete()

cleanup

dispose/disconnect

dlclose() detach, unload

msc Order of events in establishing DLL adapter connection and sample input/output.

Figure 12: Sample event sequence in dynamic library adapter during testing.
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actions are executed during the sample test run:

allocate: the adapter allocates resources and starts threads necessary to estab-
lishing physical connection to IUT.

partition: Tron checks whether model time unit and testing timeout param-
eters are set (exits with error message if they are not set) and attempts to
partition the system model. The partitioning errors are reported to stan-
dard error stream, but testing is not stopped assuming that the developer
knows what she is doing.

initialize: the adapter finishes any initializations left and resets the IUT into
an initial state.

timestamp: Tron looks-up at its clock and records the moment of absolute
test start, further time-stamps will be relative to this moment.

enqueue at TestAdapter: the adapter transfers (copies) necessary informa-
tion about an input, schedules an immediate execution of the input event
and returns immediately. Note that it may be dangerous to call IUT rou-
tine directly as it may result in producing an immediate output and may
deadlock the adapter protocol, however it is fine for another IUT thread
to produce output while adapter is enqueueing input.

consume: IUT receives and consumes the input.

enqueue at Reporter: the driver records the moment of the output event,
copies the event into the queue and returns immediately.

verdict: Tron comes up with a verdict, records the test run statistics and
prepares to terminate. Note that verdict is executed before cleanup in
order to preserve the test results against potential faults in a cleanup
code.

cleanup: the adapter terminates connection to IUT and releases resources it
has allocated before. Note that adapter’s structures (during allocation and
I/O handling) should be allocated separately and the adapter may use its
own memory allocator (independently of what Tron is using), hence it
is ordered to cleanup its own memory separately. It is recommended that
adapter memory is allocated statically (e.g. use static arrays for buffers)
and dynamic allocations avoided as much as possible.

3.2 TRON Loaded as Dynamically Linked Library

Sometimes it is desired that the implementation or adapter would be the main
executable and TRON is the library. We provide libtron.so 5 executable
library to accomplish just that.

The interface is basically the same as dynamically linked library in Sec-
tion 3.1 except that TRON is loaded from libtron.so and its main func-
tion with all usual command line parameters is called explicitly. The main
executable needs to include header tron/adapter.h and to be linked with

5Linux only for now.
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-ltron option. The main program has to call set main adapter new and
set main adapter delete to register the adapter functions that are normally
exported for DLL (see Section 3.1). The main function of TRON is then called
by invoking tron main function which should specify the adapter called “main”,
i.e. use -I main command line option. The TRON library libtron.so has to be
available during compilation and runtime, which can be accomplished by copy-
ing it to system library directory (/usr/lib/) or setting the LD LIBRARY PATH

environment variable accordingly (consult ld manual). The compiler and linker
may request specific version of libtron.so, e.g. 1.5, which is usually called
libtron.so.1.5 (and libtron.so is just a symbolic link to it).

A complete setup with source files and GNU makefile script is provided in
button-main example.

3.3 TCP/IP Socket Interface

Tron has a build-in adapter called SocketAdapter to communicate with remote
IUTs (or yet another adapter framework) via TCP/IP sockets. The adapter
requires arguments to configure the socket layer. It may either configured as
client (initiator of connection to adapter/IUT) or a server (awaits connections
from adapter/IUT). This adapter is easier to develop and use than DLL as it
does not require platform specific knowledge and provides process isolation. The
provided API and configuration procedure is similar to that of DLL interface
described in Section 3.1 except it is network packet based.

SocketAdapter expects arguments, either a) port number to create server
socket and listen for incoming connections or b) a hostname and a port number
of the remote listening socket.

Once the connection is established the adapter consists of two threads: one
listening (for outputs) and the other sending inputs, hence input-output com-
munication can be completely asynchronous.

The listening thread responds to the packet-commands listed below. The
commands can be put into one or across several network packets, but Tron

is sending one packet per command (since 1.4 beta 3). In the beginning the
SocketAdapter listens for the configuration commands which start with one-
byte command identifier and are synchronous (i.e. Tron will immediately reply
with a result). Once requestStart command is sent, Tron time-stamps the
start of testing and adapter switches to asynchronous mode for test execution.

getInputEncoding registers the specified channel as input and returns the iden-
tifier for that channel.

Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Request: 1 N chanName (N bytes)

Reply: chanId or error

getOutputEncoding registers the specified channel as output and returns the
identifier for that channel.

Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Request: 2 N chanName (N bytes)

Reply: chanId or error

addVarToInput binds specified variable to an input channel. Returns the result
(success or error) of an operation.

22



Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Request: 3 chanId N varName (N bytes)

Reply: error code

addVarToOutput binds specified variable to an output channel. Returns the
result (success or error) of an operation.

Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Request: 4 chanId N varName (N bytes)

Reply: error code

setTimeUnit sets the value of one model time unit in real world units. Returns
the result (success or error) of an operation.

Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Request: 5 seconds microseconds

Reply: error code

setTimeout sets the timeout for testing value in model time units. Returns the
result (success or error) of an operation.

Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Request: 6 timeout

Reply: error code

requestStart finalizes adapter configuration, partitions the model, and starts
asynchronous testing phase. Returns 0 telling that testing phase has been
started, or terminates the connection and exits if configuration errors are
found.

Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Request: 64

Reply: 0

getErrorMessage requests the description of an error code (issued during con-
figuration). Returns a message string explaining the error code.

Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Request: 127 error code

Reply: N message (N bytes)

unrecognized command. If Tron fails to recognize a command (X ∈ {0}∪
[7, 63]∪ [65, 126]∪ [128, 255]) during adapter configuration it will send back
a string with explanation, close the connection and exit.

Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Request: X

Reply: -1 N message (N bytes)

Asynchronous test execution commands are listed below.

perform Tron sends an input command to a remote adapter. In virtual time,
the remote adapter should acknowledge the reception by sending a reply
(make sure the remote socket is protected from simultaneous writes as
acknowledgement may interfere with output reporting). If virtual time
framework is not used, then no acknowledgement is needed.

Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Sends: chanId varN varVal (N×4 bytes)

Expects in virtual time: acknowledgment
Expects in real time:
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report now The remote adapter sends an output command from IUT. In vir-
tual time, Tron will acknowledge the reception, thus the sender thread
should wait for it. If virtual time is not used, then there will be no ac-
knowledgement sent. Make sure that socket write operation is protected
from multiple thread access as several outputs may clash.

Bytes: 0 1 2 3 4 5 6 7 8 9 ...
Send: chanId varN varVal (N×4 bytes)

Expect in virtual time: acknowledgment
Expect in real time:

The following is a list of entities used in SocketAdapter protocol:

N is an unsigned byte meaning the number of bytes the next entity in the
packet is occupying (like in n-string format).

chanName a character string meaning a channel name used in Uppaal model.
The terminating zero can be omitted (like in n-string format).

chanId is a signed 32-bit integer identifying a channel in the Uppaal model.
The identifier is greater than zero and bound by the total number of
channels in the system. Values less or equal to zero are reserved for error
codes (see error below in this list).

varName is a character string meaning a variable name used in Uppaal model.
The terminating zero can be omitted (like in n-string format).

seconds is a signed 32-bit integer meaning the number of seconds in one time
unit (precision).

microseconds is a signed 32-bit integer meaning the number of microseconds
which is added to the amount of seconds to get the full value of one time
unit (precision).

timeout is a signed 32-bit integer meaning the number of time units before
testing timeout (end of testing) is registered (and verdict test passed is
issued).

error is a signed 32-bit integer meaning an error code when previous operation
has failed. The error code is less or equal to zero, negative means error and
the description can be retrieved by getErrorMessage command. Zero and
positive values mean success and positive values mean channel identifier
(chanId).

message is a character string describing an error state.

varN is an unsigned 16-bit integer meaning the number of variable values that
follow right after it.

varVal is an array of N signed 32-bit integers meaning the variable values
bound to a channel synchronization.

acknowledgement is 32-bit signed integer, used only in virtual time to ac-
knowledge the reception of an input/output event by both (Tron and
adapter) sides. The packet is marked with the 31st (the most significant)
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bit set to 1. After the 31st bit is cleared (set to 0) the resulting integer
means the number of input/output packets received since last reception.
The current implementation transfers only one input/output event per
packet, hence the integer is typically set to one. Note that this does not
conflict with channel identifiers as they are always positive and have 31st

bit set to 0.

All numbers are converted from native host to network (big-endian) byte
order (see htons(3) and htonl(3)) before sending over network.

3.4 Sample Java Interface

The Tron distribution includes a smart lamp example which uses the SocketAdapter
at Tron side and provides a reference implementation of SocketAdapter pro-
tocol in Java. The Java interface is made to be similar to C function interface
discussed in Section 3.1 which implements and hides the SocketAdapter trans-
port layer. The initialization process is slightly different, as the Java program
is started independently from Tron process, also the error handling is done
via more convenient Java exception mechanism, where error codes are automat-
ically decoded. The Tron distribution also includes JavaDoc comments and
generated HTML documentation of this Java interface.

Figure 13 shows the Reporter interface for Java programs. The base class
VirtualThread denotes that it is also suitable for virtual time framework (see
Section 3.6 for details). In order to establish a connection to Tron, one

public class Reporter extends VirtualThread {
public Reporter(Adapter adapter, int port);
public Reporter(Adapter adapter, String host, int port);
public int addInput(String channel) throws TronException, IOException;
public int addOutput(String channel) throws TronException, IOException;
public void addVarToInput(int channel, String variable)

throws TronException, IOException;
public void addVarToOutput(int channel, String variable)

throws TronException, IOException;
public void setTimeUnit(long microsecs)

throws TronException, IOException;
public void setTimeout(int timeout in units)

throws TronException, IOException;
public String getErrorMessage(int error code);
public void report(int chanId);
public void report(int chanId, int[] params);
public boolean isConnected();
public void disconnect();
public void shutdown();
public void run();

}

Figure 13: Reporter: Java interface to Tron driver.

must provide a reference to the Adapter interface implementation and call the
Reporter constructor. The first constructor creates server socket on a specified
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port number and creates a waiting thread. The second constructor just starts
a waiting thread. The connection is established by the waiting thread either
by accepting another connection or connecting to a remote socket depending
on the constructor used, and once the connection is established it will ask the
Adapter object to configure the testing interface via the Adapter.configure

method.
The configuration should consist of calls to adding input and output channels

(addInput and addOutput), associating variables with channels (addVarToInput,
addVarToOutput) and setting the timing information (setTimeUnit, setTimeout)
as in Section 3.1. The methods may throw IOException upon usual socket
connection problems or TronException (see Figure 15) if bad parameters are
supplied.

The Reporter interface also provides two versions of report method to
report about the produced output: the first one should be used if output does
not have any variable values associated and the second one requires the list of
variable values in the params array. The method isConnected returns true if
the connection is established. The method disconnect disconnects the current
tester with a possibility for another connection and shutdown disconnects and
stops the waiting thread leaving no possibility for further connections. The
method run is used by the waiting thread and normally should not be used
(unless developer knows what she is doing).

The Adapter interface consists of two methods: configure for configuring
test interface for new tester connection and perform for accepting the inputs
from tester. The parameter chanId is the identifier of a channel received from
Reporter.addInput calls and params is an array of attached variable values.

public interface Adapter {
public void configure(Reporter reporter) throws TronException, IOException;
public void perform(int chanId, int[] params);

}

Figure 14: Adapter: Java interface to adapter.

public class TronException extends IOException {
public TronException(String message) { super(message); }

}

Figure 15: TronException thrown upon testing interface configuration error.

3.5 Interactive Text Interface

Tron has a build-in adapter called TraceAdapter for interacting via standard
input and output streams. The adapter uses ANTLR [8] generated parser to
recognize textual commands, which may seem suboptimal, but it is an ideal
tool to experiment with an Uppaal model in virtual time framework, where
test traces can be rerun and re-inspected for clues on what went wrong during
real test execution.
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TraceAdapter accepts two optional arguments: path to a file containing the
trace preamble and trace interpretation mode. The trace preamble provides the
test interface definition which configures Tron and prepares test driver for test
execution. The file format should follow the grammar depicted in Figure 16,
where The terminals ChanID, VarID and INT stand for channel name (identifier
as in Uppaal model), variable name (identifier as in Uppaal model) and inte-
ger number accordingly. Figure 6a shows an example of trace preamble. The

preamble: inputs outputs precision timeout ;
inputs : "input" ( siglist )? ";" ;
outputs : "output" ( siglist )? ";" ;
precision : "precision" INT ";" ;
timeout : "timeout" INT ";" ;

siglist : signature ("," signature)∗ ;
signature : ChanID "(" ( idlist )? ")" ;
idlist : VarID ("," VarID)∗ ;

Figure 16: EBNF grammar for file provided to TraceAdapter as argument.

interpretation mode can be either: -t for testing (default), -m for monitoring or
-e for emulation. The testing mode declares input channels as inputs and out-
put channels as outputs. The monitoring mode declares all channels as outputs
(even the ones declared in input section) which in effect puts Tron into position
where no inputs are generated and only the validity of outputs and delays is
checked. The monitoring mode can be used to re-execute the trace as it was
observed on a test driver level (see -D option in Section 4.1 and Section 4.2 to
obtain such traces). The emulation mode declares all channels as inputs (even
the ones declared in output section) which has an effect that Tron is in charge
of generating all observable events on its own where user can control only the
time delays (when run in virtual time). The emulation mode can be used to
generate random tests without having built any implementation.

Figure 17a shows the grammar of language the TraceAdapter is expecting
from standard input. The trace consists of a sequence of commands. Current
TraceAdapter implementation supports three types of commands:

input asks the adapter to delay and wait until one of the input actions is
received, all not mentioned inputs are going to be ignored.

output asks the adapter to deliver one output action while expecting to also
receive specified input actions at the same time6.

delay prepares to delay for a specified time moment while expecting the delay
to be interrupted by specified inputs at specified times. The timestamp
may give an interval of time, where the TraceAdapter chooses the exect
time moment on a random basis. TraceAdapter terminates with an error
message if unexpected (not mentioned, or at wrong time) input arrives.
Instead of elaborate list of expected input actions one may want to spec-
ify symbol * which stands for “expect anything” (not mentioned in the
grammar).

6FIXME: current implementation does not check the inputs.
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trace : (command)∗ ;
command : "input" expect ("," expect)∗ ";"

| "output" action ("," action)∗ ";"

| "delay" timestamp ("," expect)∗ ";"

;

action : ChanID "(" ( valuelist )? ")" ;
valuelist : INT ("," INT)∗ ;

expect : action (timestamp)? ;
timestamp: ("@")? "[" time "," time "]" ;
time : FLOAT | INT ;

(a) EBNF grammar of trace.

delay [2.0,3.0];

output trigger();

delay 11.0, reply()[0.0,10.0];

delay [0.0,1.0];

output send(4);

input receive(16);

output one2many();

delay [11.0, 15.0];

output many();

input reply()[0.0,0.0];

input reply()[0.0,0.0];

delay 10.0;

(b) Trace from tracer example.

Figure 17: Grammar and a sample trace for TraceAdapter input stream.

The moments in time can be specified in various ways by using timestamp rule:
optional symbol @ specifies that timing should be calculated on absolute time
basis, i.e. the proceeding numbers mean the time moments from the start of
testing, otherwise the numbers are relative to the current time moment, then
the interval of two time points follow, where the time can be expressed in integer
number (interpreted as microseconds) or in floating point number (interpreted
in model time units). Figure 17b shows a sample trace.

Exercise. Make your own model of a system with periodic behavior and
compose a few traces to “test” some interactive I/O properties of your model,
make one trace file per property. Use repeater script from tracer example to
produce infinite traces from your trace fragments.

3.6 Virtual Time Framework

The purpose of the virtual time framework is to provide “lab” conditions for
testing software where the value of a global reference clock is controlled and
detached from physical time. Such framework allows to test time delays spec-
ified in software in ideal conditions where the time spent on computation and
communication is treated as zero. If the computation and or communication
time is known and needed to be taken into account, then such delays can be
replaced by “timed-wait” calls and an abstraction of control software can be
tested under ideal conditions.

The virtual time framework is implemented using one global virtual clock,
whose value is incremented only when all threads (registered in the framework)
request to delay and block until specified timeout expires. The clock value is
incremented to the smallest time value needed to unblock at least one thread,
and then the corresponding threads are unblocked to proceed. This simple
idea is implemented using monitor programming paradigm within a subset of
POSIX [4] thread functions (Portable Operating System Interface 1003.1b-1993
realtime extension).

Figure 18 shows the usage of monitor paradigm in producer-consumer prob-
lem implemented in C++ (Figure 18a) and Java 5 (Figure 18b) programming
languages.
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#include <pthread.h>
#include <deque>
class MyMonitor {

pthread mutex t lock;
pthread cond t cond;
std :: deque<int> buffer;
MyMonitor():

lock(PTHREAD MUTEX INITIALIZER),
cond(PTHREAD COND INITIALIZER) {}

void put(int value) { // produce
pthread mutex lock(&lock);
buffer .push back(value);
pthread cond broadcast(&cond);
pthread mutex unlock(&lock);

}
int get() { // consume

int value;
pthread mutex lock(&lock);
while (buffer.empty())

pthread cond wait(&cond, &lock);
value = buffer. front ();
buffer .pop front();
pthread mutex unlock(&lock);
return value;

}
}

(a) Sample monitor in C/C++.

import java.util.Vector;
class MyMonitor {

Vector<Integer> buffer;
MyMonitor() {

buffer = new Vector<Integer>();
}
/∗ produce items with put(item) ∗/
synchronized void put(int value) {

buffer .add(new Integer(value));
notifyAll ();

}
/∗ consume items with get() ∗/
synchronized int get()

throws InterruptedException
{

while (buffer.isEmpty())
wait();

return buffer.remove(0).intValue();
}

}

(b) Sample monitor in Java.

Figure 18: Sample monitor implementations for producer-consumer problem.

A few common thread-programming rules to avoid trouble:

• Unlocking order should be in reverse order of locking, i.e. lock acquisition
and release should be nested like scopes to prevent circular dependencies
and hence deadlocks.

• Condition signalling/broadcasting should be protected by an associated
mutex lock, otherwise signals may be lost.

• A single mutex can be associated with many conditions, but each condition
should be associated with only one mutex, i.e. the condition should be
protected by the same mutex lock in all cases when it is used.

Exercise. Make a mutant of your IUT where one of the above rules does
not hold and run Tron test against it. (Do not change the adapter code as it
might kill Tron as well.)

The following sections explain how to adopt the implementation for virtual
time framework.

3.6.1 Dynamic Library IUT

Tron binary itself exports a set of functions necessary to implement POSIX-like
monitor. Figure 19 shows the list of POSIX functions to be replaced by Tron

implementations in order to work with virtual clock, please lookup the POSIX
programmer’s manual (included in most Linux distributions) of these functions
for detailed descriptions.

Figure 20 shows the list of symbols Tron is exporting. The symbols re-
fer to corresponding POSIX function implementations and more. Almost all
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1 int pthread create(pthread t∗, pthread attr t∗, void∗ (∗start)(void∗), void∗);
2 int pthread join(pthread t, void∗∗);
3 int pthread mutex init(pthread mutex t∗, const pthread mutexattr t∗);
4 int pthread mutex destroy(pthread mutex t∗);
5 int pthread mutex lock(pthread mutex t∗);
6 int pthread mutex unlock(pthread mutex t∗);
7 int pthread cond init(pthread cond t∗, const pthread condattr t∗);
8 int pthread cond destroy(pthread cond t∗);
9 int pthread cond wait(pthread cond t∗, pthread mutex t∗);

10 int pthread cond timedwait(pthread cond t∗, pthread mutex t∗, const struct timespec∗);
11 int pthread cond signal(pthread cond t∗);
12 int pthread cond broadcast(pthread cond t∗);
13 int gettimeofday(struct timeval ∗tv, struct timezone ∗tz);

Figure 19: POSIX thread functions.

1 int (∗tron thread create) (pthread t∗, const pthread attr t∗, void∗ (∗start)(void∗), void∗);
2 int (∗tron thread join) (pthread t, void∗∗);
3 int (∗tron mutex init) (pthread mutex t∗, const pthread mutexattr t∗);
4 int (∗tron mutex destroy) (pthread mutex t∗);
5 int (∗tron mutex lock) (pthread mutex t∗);
6 int (∗tron mutex unlock) (pthread mutex t∗);
7 int (∗tron cond init )(pthread cond t∗, const pthread condattr t∗);
8 int (∗tron cond destroy)(pthread cond t∗);
9 int (∗tron cond wait) (pthread cond t∗, pthread mutex t∗);

10 int (∗tron cond timedwait) (pthread cond t∗, pthread mutex t∗, const struct timespec∗);
11 void (∗tron cond signal) (pthread cond t∗);
12 void (∗tron cond broadcast) (pthread cond t∗);
13 void (∗tron gettime) (struct timespec∗);
14

15 typedef enum TKMode t { TKHostClock, TKLogClock, TKExtClock };
16 TKMode t TKMode; // read−only variable for time keeping mode
17 int setHostClock();
18 int setLogicalClock(bool reg=true);
19 int setLogicalClockService(bool reg=true, int port=0x1979);
20 int setSocketClock(const char∗ host, int port=0x1979, bool reg=true);

Figure 20: Tron functions to replace a subset of POSIX.

function signatures are the same as their POSIX analogs, the only exceptions
are condition signalling (functions always succeed) and getting value of clock
(gettimeofday operates on timeval structure rather than timespec which is
more convenient when working with timedwait). The symbols are of function-
pointer type in order to be able to turn on or off the virtual time framework
without recompiling. The value of variable TKMode can be used to determined
what time-keeping mode is used (usually it is not necessary): TKHostClock

means the host clock, i.e. the underlying OS POSIX layer is called directly,
TKLogClock means the local logical (virtual) clock, TKExtClock means the re-
mote logical clock. The functions at lines 16-18 can be used to set a particular
time framework (also not necessary as it is done by -Q command line option).
The local logical clock also creates a local TCP/IP server socket and listens
for remote connections (see Section 3.6.2), so only one instance of local logical
clock should be used, the other processes should use the remote clock accessed
via TCP/IP sockets (e.g. Section 3.6.3). The parameter reg controls whether
the calling thread should also be added to the pool of virtual threads, this is
usually needed only for the main process thread as all other threads (created
via tron thread create) are automatically added once the main thread sets-up
the required framework.
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The implementation of tron functions are linked inside Tron binary file.
The trick is that dynamic loader looks-up and resolve the tron symbols auto-
matically also for any dynamic library loaded as adapter. Currently this works
very well on Linux (see the button example) but not on Windows (suggestions
for possible solutions are welcome).

Exercise. Convert the code in Figure 18a to use virtual time framework.

3.6.2 Remote Virtual Clock Service

POSIX threads are good for synchronizing threads within the same process
address space, however it does not help to communicate with remote IUTs. An
alternative could be to use Remote Procedure Calls (RPCs) or some Common
Object Request Broker Architecture (CORBA) library, however such solutions
require special permissions or tend to be big libraries while virtual clock is
simple and does not need complicated data passing. In this section we describe
how to access the virtual clock in Tron process via TCP/IP sockets which is
lightweight, mature and pervasive throughout operating systems today.

Virtual clock framework is turned on by -Q option (Section 4.1): Tron can
either create its own clock server when -Q has a port number as argument or
“log” (implies default port number 6521) or use external virtual clock with a
machine address and a port number (e.g. connect to another instance of Tron).

Virtual clock is always associated with socket server and threads are as-
sociated with client sockets. The protocol is designed so that each thread is
identified by a separate socket connection: one duplex connection per thread.
All thread operations are carried out in the context of that connection. More-
over, all socket communications are synchronous for client thread, meaning that
it is trivial to use and there is no need for complicated locking mechanisms to
protect socket connection from multi-threading nor creating special data struc-
tures. It is important that client threads do not share their connections with
other threads as such sharing is meaningless and asks for trouble.

Virtual clock protocol consists of a set of commands corresponding to POSIX
layer. The commands are carried out synchronously: client sends a virtual clock
command with its arguments and waits for a response containing the result of
operations. Server may respond with a delay if the command was timed-wait
related, thus effectively putting the client thread into blocked state until the
required (virtual) time delay elapses.

The protocol starts with client thread establishing connection to a clock
server and sending its name (a human friendly identifier, useful for debugging)
in ASCII N-string format (first byte denotes the length of a string, then up to
255 bytes of the string itself). The new connections automatically register a new
thread in virtual time framework. After the name is sent (thread registered),
the client thread may start using virtual clock by sending commands.

The following is a list of commands used in virtual time protocol:

Mutex initialize. Initializes new mutex variable.
Bytes: 0 1 2 3 4

Request: 3
Response: mutex ID

Mutex destroy. Deletes mutex with specified ID. Response is empty, i.e. there
is no result to wait for.
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Bytes: 0 1 2 3 4
Request: 4 mutex ID

Response:

Mutex lock. Locks a mutex with the specified ID. Response contains Tron

code from Table 2.
Bytes: 0 1 2 3 4

Request: 5 mutex ID
Response: code

Mutex unlock. Unlocks a mutex with the specified ID. Response contains
Tron code from Table 2.

Bytes: 0 1 2 3 4
Request: 6 mutex ID

Response: code

Condition initialize. Initializes new condition variable.
Bytes: 0 1 2 3 4

Request: 7
Response: condition ID

Condition destroy. Deletes a condition with the specified ID. Response is
empty, i.e. there is no result to wait for.

Bytes: 0 1 2 3 4
Request: 8 condition ID

Response:

Conditional wait. Release the specified mutex, wait until the specified con-
dition is triggered, re-acquire the mutex and return an operation code.
Response contains Tron code from Table 2.

Bytes: 0 1 2 3 4 5 6 7 8
Request: 9 condition ID mutex ID

Response: code

Conditional timed wait. Release the specified mutex, wait until the specified
condition is triggered or time has elapsed, re-acquire the mutex and re-
turn an operation code. Time is specified as absolute signed 32-bit integer
values from beginning of era (see Get time command below). Response
contains Tron code from Table 2.

Bytes: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Request: 11 condition ID mutex ID seconds microseconds

Response: code

Conditional delay. Release the specified mutex, wait until the specified con-
dition is triggered or time has elapsed, re-acquire the mutex and return an
operation code. Time is specified as relative signed 32-bit integer values
from current time (see Get time command below). Response contains
Tron code from Table 2. The command is provided as a shorthand for a
common combination of Get time and Conditional timed wait.

Bytes: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Request: 11 condition ID mutex ID seconds microseconds

Response: code

Condition signal. Notifies one of the threads waiting on the specified condi-
tion. There is no response to wait for.
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Bytes: 0 1 2 3 4
Request: 12 condition ID

Response:

Condition broadcast. Notifies all of the threads waiting on the specified con-
dition. There is no response to wait for.

Bytes: 0 1 2 3 4
Request: 13 condition ID

Response:

Get time. Returns the absolute time-stamp of current time since era in two
32-bit integer numbers. Era, or the value of 0 in virtual time denotes the
moment the virtual clock was created.

Bytes: 0 1 2 3 4 5 6 7 8
Request: 14

Response: seconds microseconds

Thread quit. Removes the registration of the thread and releases the associ-
ated resources so that other threads may continue using the virtual clock
without this one. The deactivated threads should activate before termi-
nation (see Activate thread). There is no response to wait for.

Bytes: 0 1 2 3 4
Request: 127

Response:

Thread deactivate. Temporarily (until activation) removes the current thread
from virtual time accounting. This is normally used only by special
adapter threads (e.g. SocketAdapter) which wait for incoming actions
from elsewhere (e.g. socket connection) rather than for regular condition
variable notifications. The deactivated threads do not participate in time
accounting but they are still important in notifying other threads about
incoming actions. All other threads should not use deactivation mecha-
nism at all.

Bytes: 0 1 2 3 4
Request: 1

Response: code

Thread activate. Activates the deactivated thread (see Thread deactivate).
Should be used only by special adapter threads (like one in SocketAdapter)
just before termination.

Bytes: 0 1 2 3 4
Request: 2

Response: code

Table 2 describes possible 32-bit number codes returned by Tron specific
to virtual time framework via TCP/IP. The names are taken from POSIX C
identifiers whose actual values may be different on various operating systems,
thus the native error codes are translated to unique values in this table.

All the integers are converted to network byte order (see htonl(3) C function
manual).

Some languages (like C and Java) provide a lot of options for configuring
socket connections, hence consider disabling Nagle algorithm to send data as
soon as possible and always do an explicit flush operation to make sure that the
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Table 2: Tron error codes for virtual time via TCP/IP sockets.

Name Code Description

OK 0 No error, operation succeeded or condition has been triggered.
ERROR 64 Unexpected error: uncommon failure that is not handled by this

error code translation.
ETIMEDOUT 65 Specified time has elapsed.
EINTR 66 Interrupted system call.
EBUSY 67 Device or resource is busy.
EINVAL 68 Invalid argument: invalid values or different mutexes supplied

for concurrent operations on the same condition variable.

command and its arguments are dispatched. Other languages (like Python) rely
on constructing TCP packets explicitly. Tron implements data buffering and
treats the incoming flow of commands as a stream rather than packets, thus it
is able to deal with both types of network APIs.

3.6.3 Virtual Clock for Java

Tron distribution contains sample Java implementation of virtual clock proto-
col via TCP/IP sockets that can be enabled in combination with SocketAdapter

implementation in Java.
Virtual time framework in Java uses VirtualThread which extends Thread

class and takes care of establishing connection to virtual clock. Thread synchro-
nization is implemented through VirtualLock and VirtualCondition classes
which implement interfaces from java.util.concurrent .locks package (avail-
able in Sun JDK since Java 5). The synchronization methods identify the call-
ing VirtualThread objects and use their methods to carry out virtual time
commands, thus in effect these methods use the context (socket connection) of
particular thread to carry out operations on virtual clock without sharing or
mixing with other threads. Eventually all synchronizations are resolved inside
virtual clock server process.

Unfortunately the synchronized keyword is not supported directly and has
to be changed to equivalent code using interfaces in java.util.concurrent

.locks package.
The following is a list of actions needed to adopt virtual time framework for

any Java application:

• All Java threads should extend VirtualThread class instead of java.lang
.Thread. Note that this isolates the application from events in (graphical)
user interface.

• Monitor methods should be modified as follows:

– Synchronized methods and sections should be replaced by blocks sur-
rounded by VirtualLock.lock and VirtualLock.unlock().

– java.lang.Object.wait() should be replaced with VirtualCondition

.await() surrounded with appropriate VirtualLock object lock()
and unlock() methods.
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– java.lang.Object.notify() and java.lang.Object.notifyAll()

replace with VirtualCondition.signal and VirtualCondition .signalAll()

respectively.

• Before any thread creation, set the remote virtual clock via VirtualThread
.setRemoteClock(String, int) method call (once is enough).

Exercise. Convert the code in Figure 18b to use virtual time framework.

4 Testing

This section describes the features of test execution process of Tron. We start
by describing the command line options, proceed with how to read and interpret
test logs and explain the test verdict and diagnostics information.

4.1 Command Line Options

The following is a list command line options that developer can use to control
the behavior of Tron. Each item starts with the key controlling the feature,
followed by the description of feature. Some options affect the Uppaal engine
directly (marked with a star ∗) while others are completely Tron specific.

-A∗ Use convex-hull approximation.

-B path provide a file path to store benchmark log (default /dev/null), see
Section 4.2.

-D path specify a file path to store driver log (default /dev/null), see Sec-
tion 4.2.

-F future specifies how far into the future (in model time units) Tron should
pre-compute the internal transition closure of a state-set estimate in order
to make reasonable test choices. The setting limits the delay in symbolic-
future operations in order to prevent Tron from exploring too far of
internal and non-interactive (without observable input/output events) be-
havior. Default is 0, which means that Tron will take immediately en-
abled transitions and will not take any internal time-guarded transitions
(without choosing to delay and satisfy their guards first). Larger values
are recommended to reach more choices, and smaller values are preferred
to reduce the performance penalty required for future pre-computations.
For periodic systems good heuristic candidates are: the duration of the
longest period or least common multiple of all periods. The feature can be
disabled by setting -1: then internal transition closure computation will
be turned off and not a single internal transitions will be considered when
computing available input choices; this might be reasonable only if there
are very few internal transition edges or the input/output events are very
far apart in time (e.g. further than -P setting) and hence disabling is not
recommended in general.

-H n∗ sets the hash table size for bit state hashing to 2n (default 27). The
setting influences the three passed-waiting lists (state-sets) in Tron. The
default value come from reachability algorithm where the hash-table has
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to store entire system state space. During testing however, the state-sets
are typically much smaller and n can be safely around 10 (1024 entries)
to save some memory.

-I name specifies the implementation, or rather the location of the adapter
to implementation where name is a file path to a dynamically linked li-
brary with adapter to an implementation, or one of the following built-in
adapters:

TraceAdapter standard input/output stream adapter, see Section 3.5;

SocketAdapter remote TCP/IP socket adapter, see Section 3.3.

-P delay specifies the delay choice strategy (see also Section 4.4). The delay

can be one of the following:

eager : delay as little as possible before firing a chosen action-transition.
The choice is typically bound by the guards on edges (and invariants
on the target location vector), Tron will choose the minimum or 0
if no guard is on the chosen edge.

lazy : delay as much as possible before firing a chosen action-transition.
The choice is typically bound by invariants on current (and target)
location vector, Tron will choose the maximum allowed or infinity
(actually until the testing timeout) if no invariant is specified.

random : delay randomly within the bounds specified by the environment
model (default). The choice is typically bound by the guards on
a chosen edge and invariants on current (and target) environment
location vector, hence the choice is randomly resolved to fit into this
interval.

short,long : try random delay bounded by one of positive integer num-
bers: (short and long). The numbers specify the longest delay
choice allowed in model time units, the interpretation “short” and
“long” is arbitrary and not enforced, but rather a hint that periodic
systems often have two or more periods of very different granularity.
The concrete delay choice is still random and based on the specifica-
tion (bounds will be ignored if specification require longer delays) but
choices are guaranteed to be shorter or equal to max(short, long).
This is useful to limit delays if there are states without invariants
and developer wants more interactive (with more observable actions)
test runs.

Notice that the delay strategy is orthogonal to -P option: -F controls how
many action transitions are available (reachable) to choose from, while -P

chooses the delay based on the information on chosen action transition.

-Q log sets logical (simulated or virtual) time clock instead of the default real
host’s clock (and does not start clock service).

-Q port -Q host:port Parameter port specifies that virtual clock service should
be started on port number port or all clock requests forwarded to remote
virtual clock service on machine called host and port number port. See
Section 3.6 for details about Tron’s virtual clock services.
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-S filename Append the verdict, I/O and duration to file (default /dev/null),
see Section 4.2.

-U∗ Unpack reduced constraint systems before relation test.

-V prints version information and exits.

-X integer initializes random number generator by a given integer value (de-
fault value is read from the host’s system clock).

-h prints a short version of this option list description and exits.

-i <dot|gui> prints a signal flow diagram of the system and exits. There are
two output formats available:

dot : dot [3] graph, expects formated standard input (see Section 2.2):
"input" (channel)∗ "output"(channel)∗

gui : non-partitioned flow information for Tron GUI;

-o filename Redirect output to file instead of stdout, see also -v and Sec-
tion 4.2.

-s <0|1|2>∗ selects the exploration order of reachability algorithm. This should
not have a significant impact on Tron performance, unless -F value is
large and there are many internal transitions in the model. There are the
following options:

0 : Breadth first (default)

1 : Depth first

2 : Random depth first

-u inpDelay,inpRes,outDelay,outRes

-u inpRes,outRes Observation uncertainty intervals in microseconds:

inpDelay : the least delay that takes to deliver input,

inpRes : possible additional delay for delivering input,

outDelay : the least delay that takes to observe output,

outRes : possible additional delay for observing output.

-l latency Specifies the maximum input scheduling latency in microseconds
when offering the input. The value will be subtracted from the upper
bound of the input timing which should prevent missing the input dead-
lines (verdicts like “input executed too late” and driver warnings like
“DRIVER: 1193663117.714029s has passed, now it’s 1193663117.714033s”).
This option is similar to input observation uncertainty except that it does
not affect the time-stamping after the input has been executed.

-v <0+1+2+4+8+16> sets verbosity of a test log printed to standard output
stream (or file specified by -o option). The verbosity specifies what infor-
mation should be included in the test log, see Section 4.2 for log descrip-
tion. The values of interest should be added to produce final verbosity
number:
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= 0 : only verdict, disable engine event output (default),

& 1 : progress indicator for interactive experiments,

& 2 : test events applied in the Uppaal engine,

& 4 : available input and delay choices for emulation,

& 8 : backup state set and prepare for final diagnostics,

&16 : dumps current state set on each state set update.

If partitioning option -i is used instead of test run then partitioning mes-
sages can be controlled by the following verbosity values:

0 : none,

1 : errors,

2 : errors and warnings (default),

3 : errors, warnings and diagnostics.

-w integer specify additional number of model time units in attempt to test
(violate) invariants. Useful under assumption that invariants are not used
in the model of environment. This option is obsolete starting from ver-
sion 1.4b1, where IUT invariants are removed from environment emulation
(hence invariants tested under given environment) if system model parti-
tioning is properly done (no partitioning errors are detected).

-q be quiet and do not display the copyright message.

Uppaal engine also reacts to the following OS environment variables:

UPPAAL DISABLE SWEEPLINE : disable sweepline method,

UPPAAL DISABLE OPTIMISER : disable peephole optimiser,

UPPAAL OLD SYNTAX : use version 3.4 syntax for parsing old system models.

The value of these environment variables do not matter, defining them is enough
to activate the features in question.

4.2 Logging

There are four ways to log test runs:

Engine log contains information about operations performed in Uppaal en-
gine. Messages follow the Tron online test algorithm. The engine events
are sent to standard output by default, and can be redirected to a file via
-o option. The verbosity of messages can be adjusted by -v option. The
purpose is to display the current status of an online test run.

Driver log contains test interface description and time-stamped information
about input and output events. The log file is specified by -D option and
follows the TraceAdapter format (see Figures 16 and 17a). The purpose is
to log input and output events precisely and to enable the trace replay with
TraceAdapter in monitoring mode, potentially with different options.
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Statistics log contains one line summary per one test run. Log file is speci-
fied by -S option. The purpose is to record many test runs in one file to
provide statistical measures on how many inputs and outputs have been
performed, how many test runs passed and failed. The statistics log con-
tain the following columns:

1. The initial random seed of a test run. By default it is UNIX times-
tamp in seconds since the Epoch, see -X option in Section 4.1.

2. The test verdict of a test run in one word.

3. The number of inputs sent to an IUT.

4. The number of outputs received from an IUT.

5. The duration of a test run in model time units.

Here is an example of a statistics log:

1160727325 PASSED 13195 23753 100000

1163934755 FAILED 2 13 38

1163934756 INCONC 2 13 18

Benchmark log contains a one line timing measurement per one Uppaal en-
gine operation (after delay or after action updates) for benchmark
purposes. The log file is specified by -B option. The purpose is to help
tuning the Uppaal engine for testing purposes. The file consists of four
columns:

1. Zero or one: “0” stands for after delay and “1” stands for after

action operations.

2. The state set size before the operation.

3. The state set size after the operation.

4. The high resolution (OS specific) time estimate of operation duration
in nano-seconds.

4.3 Time Stamping

One of the key activities in test run evaluation is time-stamping the real I/O
events and mapping those real time stamps into model time and back. Online
testing has an additional challenge for testing tool: how to incorporate time
delays spent by the testing tool itself and provide objective verdict if test fails
(e.g. the testing tool may delay too long due to expensive computations and
thus fail to fulfill the assumptions of environment model). Tron offers over-
approximating method to match real time values into model time. In order
to explain the idea behind this method we go through input offering scenarios
incrementally: in virtual time framework, in naive real time and real time with
observation uncertainties. At the end of this section we explain the details of
mapping real time instances into model time instances and back together with
observation uncertainties.
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4.3.1 Virtual Time

Consider the following input offering scenario shown in message sequence chart
(MSC) in Figure 21:

1. Tron asks what time is now and saves the value into variable t.

2. Tron converts the real time interval [t, t+F ] to model time interval [L,U ],
where F is the future horizon constant from -F option.

3. Tron asks Uppaal to update state set with delay and τ -transitions for
all delays between L and U model time stamps. The result is saved into
variable S.

4. Tron asks Uppaal about what input and output events are available
from a given state set S. The set of inputs is saved into variable inps.

5. Tron chooses some input action i randomly from the set of input actions.
The input action is enabled at model time interval [Li, Ui].

6. Tron computes the real time interval [li, ui] corresponding to the model
time interval [Li, Ui].

7. Tron chooses a specific target time instance ttgt from real time interval
[li, ui]. By default, Tron chooses a random instance, or applies the delay
choice strategy specified by -P option otherwise.

8. Tron asks driver to delay until the ttgt time instance. Notice that so far
there were no delay requests since the first getTimeNow call, hence there
was virtually no delay (zero virtual time) until this step and the only delay
in this scenario happens in this step.

9. After delay, Tron observes that there were no outputs and immediately
asks driver to offer an input i.

10. Driver does not make any delays and passes the input i to adapter and
stamps this input as executed at te real time instance. Note that te is
equal to ttgt as there was no virtual time delay since ttgt instance was
reached.

11. Tron maps the real time stamp te of the input action into model interval
[Le, Ue] (this is potentially much narrower interval than [Li, Ui]).

12. Tron asks Uppaal to update (affectively filter and constrain) the state
set to describe system states within model time interval [L,U ].

13. Tron asks Uppaal to compute a new state set after action i.

Output time-stamping is much simpler: driver can be interrupted at any
time by incoming output and thus time-stamp immediately. The output event
with its time-stamp is discovered by Tron during the “wait” requests, the real
time-stamp is converted to model time-stamp and applied to state set in the
same way as input events.
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msc Input time-stamping in controlled (virtual) time case.

Figure 21: Scenario for offering an input to IUT and relevant timestamps in
virtual time case.

4.3.2 Naive Real Time

From Figure 21 it is evident that in virtual time framework the time spent
for computing, choosing and delivering the input is being ignored, and only
explicit delays are counted. This assumption does not hold in real time and
thus algorithm has to be adjusted to accommodate such delays. Figure 22
shows input offering scenario adjusted for real time, which differs from virtual
time in the following ways:

1. The performance of input action calculation is unpredictable as it depends
on the complexity of a system model and on particular state set, hence
this delay is reflected in choosing the timing for the input: the interval
is constrained from below by an extra time-stamp tc. This reduces the
driver warnings that the ttgt instance of time is already in the past at the
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time of “wait until” request. We still rely that the window for input is
big enough to incorporate the chosen input: tc < ui, and hence any driver
warning about ttgt being in the past is a sign that Tron does not keep
up with the requirements (boundary Ui) from the environment model.
If tc happen to be after ui already before offering this input, then the
input is discarded and another input is chosen instead (the whole input
computation is restarted).

2. The time-stamping of the input execution is performed by two time stamps:
between ttry and tdone, i.e. just before sending input and just after the

send. The acquired model time interval [Le, Ue] denotes that the input
happened somewhere in between, hence all possibilities has to be incorpo-
rated into the state set.

4.3.3 Internal Latency

So far, we still rely on the fact that Tron is woken up at precisely ttgt moment
and further input deliver happen instantaneously. This is not always true and
cannot be predicted in all operating systems due to latency (jitter) in process
scheduling and communication, however it is still important to be able to offer
the input without violating ui boundary. In this section we show how Tron

adjusts input offering with a latency parameter -l L that specifies the worst
latency duration. The latency is incorporated into M2R function mapping
which subtracts this amount of real-time from original ui value, thus discarding
the inputs which are too late with respect to upper boundary and local latency
taken into account.

4.3.4 External Latency

Often test adapter introduces significant delays (communication latency) and
I/O buffering. The only fair way to test such systems is to model test adapter as
part of IUT. One way of adapter modeling is to provide explicit model in system
specification (e.g. add timed automata processes for adapter). Typical adapter
receives a signal, puts it into buffer, delays the signal (“signal is traveling”) and
retransmits the signal for destination process. In this section we show how to
acquire I/O timing characteristics of such adapter.

Figure 23 shows how IUT and tester use digital clocks to timestamp I/O
events. For simplicity we assume perfect digital clock, which updates the time
value with a period of it’s resolution, and time (value) is synchronized globally.
We assume that adapter causes a delay D1 for output and D2 for input. We
also assume that timestamping code runs instantly without delay, otherwise this
deterministic delay can be added to adapter delay. At IUT side I/O happens
at t1 and t10 instances, however due to its digital clock time sampling IUT may
think it happens at t2 and t11. Similarly at tester side I/O happens at t3 and
t7, while tester timestamps these events at t4 and [t6, t9]. Then observe the
following inequalities:






t3 − D1 = t1 = t3 − D1

t2 − siut ≤ t1 < t2 + R1

t4 ≤ t3 < t4 + R2

⇒

{

t4 − D1 ≤ t1 < t4 − (D1 − R2)
t4 − (D1 + R1) < t2 < t4 − (D1 − R2)

(2)
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Figure 22: Scenario for offering an input to IUT and relevant timestamps in
real time case without observation uncertainties.







t7 + D2 =t10= t7 + D2

t10 − R1 <t11≤ t10
t6 ≤ t5 ≤ t7 ≤ t8 < t9 + R2

⇒

{

t6 + D2 ≤t10< t9 + D2 + R2

t6 + D2 − R1 <t11< t9 + D2 + R2

(3)
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Figure 23: I/O delays in the adapter: IUT sends output at t1 while its clock
with resolution R1 is showing t2, the output is delayed by adapter by duration
D1 and sensed by tester at t3 while testers clock with resolution R2 is showing
t4; before sending input tester looks up its clock at t5, observes value t6, sends
input at t7, looks up the clock again at t8 and observes value t9, then input
arrives at IUT at t10 while IUT’s clock is showing t11; the real time values are
then mapped onto model time scale with resolution of T (real time value of one
model time unit).

Therefore tester may conclude that at IUT side output happens at
(

t4 − (D1 +

R1), t4−(D1−R2)
)

and input happens at
(

t6+D2−R1, t9+D2+R2

)

. Therefore

adapter has a minimum δ
inp
min = D2−R1 and a maximum δinp

max = D2+R2 delays
for input, and a minimum delay δout

min = D1−R2 and a maximum δout
max = D1+R1

for delays output. These delays are marked in Figure 23.
In the following we show how to incorporate real world imperfections:

• If clocks are not perfect and have some kind of jitter (latency distribution),
then the clock resolution values R1 and R2 can be described by the largest
possible time steps.

• If adapter has a non deterministic delay then the values of D1 and D2 can
be described by shortest and longest adapter delays.

Therefore, if R1, R2,D1,D2 are distributions rather than constant values, then:

δ
inp
min = min(D2) − max(R1) (4)

δinp
max = max(D2) + max(R2) (5)

δout
min = min(D1) − max(R2) (6)

δout
max = max(D1) + max(R1) (7)

These external latency boundaries can be built into the IUT requirements
model or provided to Tron by -o δ

inp
min, δinp

max − δ
inp
min, δout

min, δout
max − δout

min option.
Further details and assumptions for the latter option are in the following sec-
tions.
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4.3.5 Observation Uncertainties

A straightforward adapter modelling way is to provide one process per one signal
and have as many processes as there can be signals at one time, then reuse
these processes to handle infinitely many signals. Such model is quite generic
(fits many systems) but contains high degree of non-determinism (varying signal
speed) and parallelism (even if signal ordering is deterministic) which lead to
large state sets just to be able to handle many simultaneous I/O events. Many
events at the same time is more of an exception than a rule and thus such blind
modeling is may have poor average performance and greatly obfuscates test
diagnostics.

Tron provides an alternative way of modeling adapter latencies via obser-
vation uncertainties: Tron does not know when the input signal reaches IUT,
only the moment of input dispatch is timestamped locally; the same applies to
outputs, Tron does not know when IUT has sent an output signal, only the
arrival of output signal is timestamped. Knowing basic communication jitter
characteristics allows Tron to compute a precise estimate of when I/O actually
happened. We assume that communication of input signal takes at least δ

inp
min

and at most δinp
max of real time and output signal takes at least δout

min and at
most δout

out of real time. Then the local I/O timestamps can be adjusted by these
parameters to calculate the remote timestamps and get the estimate when I/O
has been sent/received from IUT perspective, thus affectively abstracting away
the whole adapter layer and its complexity. Figure 24 shows how I/O timing
uncertainties are incorporated into input offering scenario. This still has an
important assumption and price to pay:

• The adapter communication delay has to fit onto environment and IUT
model synchronization time:

– IUT model is assumed to be input enabled, thus there are no addi-
tional assumptions for IUT requirements model.

– Environment may have constraints for inputs: lower bound li is not
directly affected as input estimate can only be delayed, but upper
bound ui can be violated, thus we assume that this boundary is able
to consume adapter latency: tdone + δinp

max < ui – this can be checked
during test run and environment model adjusted. Then, the latest
moment for input scheduling is ui−δinp

max−L and obviously it cannot
be earlier than li, hence we assume that environment model satisfies
ui − δinp

max −L < li for all inputs – this too can be checked during test
run and the environment model adjusted to fit this assumption.

– IUT model may have constraints over outputs and thus not entire
interval of output timestamps may be applicable and thus some parts
of interval may be discarded. Note that we compute an interval of
all possible output timestamps, including the actual output timing,
thus at least one point in that interval is required for IUT to pass this
test step and it is safe to assume that others did not actually happen.
If output did happen at the time the IUT constraints did not allow
but it was included in the interval timestamp, then IUT actually
failed this test step, but Tron have no possibility of detecting such
possibility, thus further testing is based on some false assumptions
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Figure 24: Scenario for offering an input to IUT and relevant timestamps in
real time case with observation uncertainties, assuming F ≥ δinp

max.

which hopefully will come out as failure at some later step, and if it
does not, then it is safe to conclude that such failure is not observably
detectable (under our testing assumptions) and thus we should not
care.
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– Environment model is assumed to be enabled for all possible outputs
at any time, thus there are no additional assumptions for outputs in
environment model. If the environment model is not enabled then
there will be false assumptions about output timestamp and therefore
we cannot allow it.

For example, the offered input should be possible at all instances between
ttry + δ

inp
min and tdone + δinp

max.

• If several I/O events are timestamped by overlapping intervals then all
possible event orderings have to be considered as it is not possible to
determine which event happened first. This may have some performance
penalties but only when multiple events clash within an adapter (not com-
mon) thus preserving good average performance.

4.3.6 Model Time and Real Time

T is a real time value (in microseconds) of one model time unit; L is input
scheduling latency; δ

inp
min, δinp

max, δout
min and δout

max are observation uncertainty pa-
rameters describing adapter I/O latency distribution (jitter). Bound strictness
notation:

x satisfies strict lower bound L ⇔ L < x

x satisfies non-strict lower bound L ⇔ L ≤ x

x satisfies strict upper bound U ⇔ x < U

x satisfies non-strict upper bound U ⇔ x ≤ U

From Figure 23 we can derive the following formulas to convert model time
units to real time and back:

R2M real time to model time for estimating input delivery:

Linp =

{

strict
⌊ linp+δ

inp

min

T

⌋

if
{ linp+δ

inp

min

T

}

> 0

non-strict
⌊ linp+δ

inp

min

T

⌋

otherwise
(8)

Uinp =

{

strict
⌊uinp+δinp

max

T
+ 1

⌋

if
{uinp+δinp

max

T

}

> 0

non-strict
⌊uinp+δinp

max

T

⌋

otherwise
(9)

R2M real time to model time for estimating output origin:

Lout =

{

strict
⌊ lout−δout

max

T

⌋

if
{ lout−δout

max

T

}

> 0

non-strict
⌊ lout−δout

max

T

⌋

otherwise
(10)

Uout =

{

strict
⌊uout−δout

min

T
+ 1

⌋

if
{uout−δout

min

T

}

> 0

non-strict
⌊uout−δout

min

T

⌋

otherwise
(11)

M2R model time to real time for input scheduling:

linp =

{

Linp · T − δ
inp
min + ε if Linp is strict

Linp · T − δ
inp
min otherwise

(12)

uinp =

{

(Uinp − 1) · T − δinp
max − L if Uinp is strict

Uinp · T − δinp
max − L otherwise

(13)
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ε is the smallest countable value of real time unit (1µs), it is independent
from any clock resolution. Its purpose is to avoid scheduling input at the
exact lower bound.
Then [linp, uinp] is a real time interval for which input can be delivered
safely without violating constraints. If linp > uinp then environment re-
quirements are too strict for such test adapter, and it is not possible to
schedule such input reliably.
Note that Tron subtracts almost whole last time unit from upper bound
as Tron does not know the exact timing offset within one time unit, e.g.
consider situation where environment requires immediate input after some
output is observed, then safe upper bound uinp should be less or equal to
lower bound linp (i.e. now, at the time of output) and not within one time
unit as symbolic zones might suggest in the middle of time unit.

Notice that latency and observation uncertainty features can be turned off
by just using value 0 (default).

4.4 Input Choices

If environment model permits several different input actions, then Tron chooses
a random one and the exact delay to be performed before offering the chosen
input is decided by one of the following strategies specified in -P option:

Random delay is chosen by a random function from an interval of possible
delays computed by Uppaal engine. This is a default setting.

Eager delay is the shortest delay from an interval of possible delays computed
by Uppaal engine.

Lazy delay is the longest delay from an interval of possible delays computed
by Uppaal engine.

Bounded by s or l delay is chosen by a random function from an interval of
possible delays constrained by either upper bound s or l. If both s and
l are shorter than the shortest allowed delay, then the shortest allowed
delay is chosen. s stands for a “short delay” and l is “long delay”, and the
choice between them is resolved by a random function. The “short” and
“long” semantics is not enforced but provided as a hint to developer that
they can be used to constrain choices for “fast” (low time granularity) and
“slow” (high time granularity) inputs.

5 Diagnostics

Currently TRON provides a verdict and simple conclusion based on last good
state set. Algorithm 1 shows the pseudo-code for drawing the conclusion. Ac-
tion is class containing data about actual input/output observed: channel, val-
ues for associated data, the interval of estimated execution time (lowerBound
and upperBound). Choice is class containing data about possible choice for
input stimuli: channel, values for associated data, the interval of enabled time
(minBound and maxBound). Choice objects are generated in Uppaal engine,
while Action objects are created, decoded and time-stamped by driver.
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Function Conclusion(StateSet backup, Action a, Choice c): verdict –
based on last good state set.

Ain =EnvOuput(backup); Aout =ImpOuput(backup);1

if a then // did state set become empty upon observable I/O?2

if a.isInput then // there was choice c for this input3

print “Decided to input c but executed as a”;4

print “The target state was:” c.targetState;5

if c.maxBound < a.lowerBound then6

return Inconc(“Input executed too late. . . ”);7

else if a.upperBound < c.minBound then8

return Inconc(“Input executed too early. . . ”);9

else // a is an output10

print “Got unacceptable output a”;11

print “Expected outputs:” Aout;12

boolean tooLate=false, tooEarly=false;13

forall co ∈ Aout do // Let’s look at all possible outputs14

if a.chan==co.chan then // bug: data part is ignored15

if a.upperBound < co.minBound then16

tooEarly=true; // disjunct intervals?17

if a.lowerBound > co.maxBound then18

tooLate=true; // disjunct intervals?19

if tooLate ∧¬ tooEarly then20

return Failed(“Output produced too late”);21

else if ¬tooLate ∧ tooEarly then22

return Failed(“Output produced too early”);23

else return Failed(“Observed unacceptable output”);24

else // there was no observable I/O, except time delay25

print “Could not delay any more (to the last time-window)”;26

if Aout 6= ∅ then27

print “Output expected:” Aout;28

if Ain 6= ∅ then29

print “IUT expected input” Aout;30

return Inconc(“Tester could have offered input, but did not31

observe either. . . ”);
else return “Failed(IUT failed to produce output in time”);32

else if Ain 6= ∅ then33

print “Input expected:” Ain;34

return Inconc(“Tester failed to offer an input in time”);35

else return Inconc(“Model contains deadlock(s)”);36

return Inconc(Empty stateset. Please report it.);37
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6 Limitations and Workarounds

6.1 Modeling

Not all Uppaal models are suitable for testing using Tron, e.g. most commonly
used partial order reduction techniques (including symmetry reduction) should
be abandoned here, since it restricts only some (specific) order of events which
is not always the case in the real world. We recommend to follow the system
model partitioning as close as possible (discussed in Section 2.2).

6.2 Platforms

Common versions of Linux and Windows implement soft-real-time schedulers
which means that a processor assignment to a process may be postponed,
threads may not run immediately after they acquire necessary resources and get
unblocked and hence program execution may be delayed. The delay is called
scheduling latency and soft-real-time schedulers give only probabilistic guaran-
tees that a process will eventually get the processor. Linux strives to guarantee
1ms scheduling latency under low load (few processes demanding a processor)
and 10ms latency under high load (many processes demanding processor at the
same time). Fast and fair schedulers for desktop computers are still being ac-
tively developed (see e.g. Ingo Molnar’s work on O(1) and CFS schedulers,
available in Linux by default since v.2.6.25). Hard real-time schedulers provide
firm guarantees but require different approach and needs more investigation,
perhaps test generation algorithm redesign (e.g. look-ahead for more events) to
gain more predictable performance in cases where short response time is needed.

To make matters even worse, the communication between Tron and IUT
does not happen instantaneously (as common in models), hence communication
latency also plays role in real-time testing. Normally the operating system
sockets implement algorithms to optimize the network usage which result in
accumulating (buffering) and delaying short messages.

As a result, one may experience some strange behavior, such as Tron re-
porting a test failure on a supposedly correct implementation (IUT did not get
the processor to produce the required output in time), Tron reporting test in-
conclusive as Tron failed to offer input in time (Tron did not get the processor
in time).

The virtual time framework is proposed as an abstraction from scheduling
and communication latencies, see Section 3.6 for details. The following is a list
of tips-and-tricks to address the issues above if the final implementation needs
to be tested and the virtual time framework is not an option:

1. Make sure that computer is not heavily loaded:

Linux: enter uptime at command prompt and see what is the load aver-
age. Load is an estimate how many processes ask for the processor
at the same time. Loads above 1 are considered to be high. Use top

to inspect which processes use processor the most.

Windows: Use Task Manager to inspect running processes: click Start→Run,
type taskmgr and hit enter.
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Notice that “nice” programs (low priority computing in the background,
such as SETI@Home) pollute the processor cache and result in larger
scheduling latencies for interactive tasks. Cache pollution is even more
noticeable on processors with reduced cache (e.g. Intel Celeron line).

2. Multi-core or multi-processor computer is preferred.

3. Use latest stable Linux kernel if possible (see uname -a), as the scheduler
is constantly being improved and tuned for interactive tasks. Windows
scheduler seems completely unpredictable.

4. Tron automatically attempts to create a real-time priority thread with
round-robin scheduling. Usually such requests are denied with ordinary
user privileges, but granted if run with super-user (su). Such priority will
preempt almost any process on the system including terminal and entire
windowing system, so consider this option only if confident that test does
not need manual interruption.

5. Avoid using graphical user interface (GUI), as GUI programs are iden-
tified as interactive and are given a priority boost, hence may interfere.
Smartlamp example has -N command line option to disable the GUI and
use only the necessary threads.

6. Disable Nagle’s algorithm in TCP/IP sockets to reduce the communication
latency:

Java: Socket.setTcpNoDelay(true).

C: setsockopt(socket, IPPROTO TCP, TCP NODELAY, &1, sizeof(int)).

7. Add “adapter” models reflecting the input and output signal delays be-
tween Tron and IUT. Try to keep adapter models simple: avoid output
buffering if possible, expect as few simultaneous outputs as possible. Long
output buffering chains in the model with non-deterministic IUT model
may dramatically degrade Tron performance (as Tron will have to be
prepare long in advance for possible output even if no output have hap-
pened). Notice that this is not a problem for input “adapter” models (as
Tron decides on input events). Possible output event analysis perfor-
mance can be the main bottleneck for how fast Tron can issue inputs.

8. Experiment with -u option which specifies that input and output events
may get delayed (in the adapter) for some amount of time. The two-
parameter variation is safe to use, but the four-parameter variation is not
completely implemented and may have correctness issues.
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