
Testing Real-Time Systems Using UPPAAL

Anders Hessel1, Kim G. Larsen2, Marius Mikucionis2, Brian Nielsen2,
Paul Pettersson1, and Arne Skou2

1 Department of Information Technology, Uppsala University, P.O. Box 337,
SE-751 05 Uppsala, Sweden
{hessel,paupet}@it.uu.se

2 Department of Computer Science, Aalborg University, Fredrik Bajersvej 7E,
DK-9220 Aalborg, Denmark

{kgl,marius,bnielsen,ask}@cs.aau.dk

Abstract. This chapter presents principles and techniques for model-
based black-box conformance testing of real-time systems using the
Uppaal model-checking tool-suite. The basis for testing is given as a
network of concurrent timed automata specified by the test engineer.
Relativized input/output conformance serves as the notion of implemen-
tation correctness, essentially timed trace inclusion taking environment
assumptions into account. Test cases can be generated offline and later
executed, or they can be generated and executed online. For both ap-
proaches this chapter discusses how to specify test objectives, derive test
sequences, apply these to the system under test, and assign a verdict.

1 Introduction

Many computer-based systems monitor and control a physical environment thro-
ugh sensors and actuators. The physical laws governing the environment induce a
set of real-time constraints which the system must obey in order to achieve satis-
factory or safe operation.Thus the computer system must not only produce correct
result or reaction, but must do so at the correct time; neither too early nor too late.
Fora real-timesystem the timely reaction is justas importantas thekindof reaction.

Testing real-time systems is even more challenging than testing untimed re-
active systems, because the tester must now consider when to stimulate system,
when to expect responses, and how to assign verdicts to the observed timed
event sequence. Further, the test cases must be executed in real-time, i.e., the
test execution system itself becomes a real-time system.

In this chapter we introduce a formal approach to model-based black-box
conformance testing of real-time systems. We aim both at introducing timed
testing to readers that are new in the area by giving many examples, and to
more experienced readers by being formally precise and by touching on more
advanced topics.

1.1 Approach and Chapter Outline

Real-time influences all aspects of test generation: The specification language
must allow for the specification of real-time constraints. The conformance

R.M. Hierons et al. (Eds.): Formal Methods and Testing, LNCS 4949, pp. 77–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 A. Hessel et al.

(implementation) relation must define what real-time behavior should be consid-
ered correct. It should be possible to specify what parts of the specified behavior
should be tested. This can be done through test purposes, coverage criteria,
or random exploration. Finally, the test generation algorithm must analyze the
real-time specification, select and instantiate test cases, and output these in a
timed test notation language. This computation must be done efficiently in order
to handle large and complex specifications.

The timed automata formalism has become a popular and widespread for-
malism for specifying real-time systems. We adopt the particular Uppaal style
of timed automata. Uppaal style timed automata have proven very expressive
and convenient, but can still be analyzed efficiently. Section 2 introduces timed
automata, their formal semantics in terms of timed labeled transition systems,
and how to use timed automata to model and specify the behavior of real-time
systems.

In the timed testing research community there is still no consensus on the
exact conformance relation to use to evaluate the correctness of an implementa-
tion compared to its specification. Timed trace inclusion captures many of our
intuitive expectations as well as having desired formal properties and is con-
sistent with the widely accepted untimed input/output conformance-relation of
Tretmans. We propose relativized timed input/output conformance relation be-
tween model and implementation under test (IUT) which coincides with timed
trace inclusion taking assumptions about the environment behavior explicitly
into account. In addition to allowing explicit and independent modelling of the
environment, it also has some nice theoretical properties that allow testing effort
to be reused when the environment or system requirements change. Relativized
real-time input-output conformance is presented in Section 3.

Common approaches to test selection include test purposes or coverage crite-
ria. When a model-checker is to be used to generate test sequences, the model
is typically explicitly annotated with auxillary variables or automata that allow
the test purpose or coverage criterion to be formulated as a reachability prop-
erty that can be issued to the model-checker. In this chapter we present a more
elegant approach where test purposes and coverage criteria can be formulated
as observer automata that can be automatically superimposed on the model.
This avoids explicit changes to the model, and allows the user to specify his
own coverage criteria with relative ease. Observers and test generation using
model-checking are presented in Section 4.

Given the model and observer automata, the problem becomes how to im-
plement a test generator that efficiently can generate the required test suite. In
Section 4.4 we propose an efficient algorithm that extends the basic reachabil-
ity algorithm in Uppaal with a compact bit-vector encoding of the specified
coverage criteria.

The chapter illustrates two different approaches to timed testing which can be
viewed as two extremes in a spectrum of possible approaches, offline and online
testing, as depicted in Figure 1. In between these extremes are approaches that
precompute a strategy or reduced specification (with particular test purpose in

Testing Real-Time Systems Using UPPAAL 79

Test Generation Test Execution

M IUT

Verdict

o

i

(a) Offline

Test Generation &Execution

M IUT

Verdict

i

o

(b) Online

Fig. 1. Online vs. Offline Test Generation

mind) later to be executed online. Offline and online testing are compared below
and discussed in detail in Sections 4 and 5.

1.2 Offline Test Generation

In offline test generation the test suite is pre-computed completely from the
specification before it is executed on the implementation under test. Offline test
generation inherits a general advantage of automated model-based testing such
that when the requirements or model change, test cases can be automatically
re-generated to reflect the change, rather than manually updating every test case
and test script.

The advantages of offline test generation are that test cases are easier, cheaper,
and faster to execute because all time constraints in the specification have been
resolved at test generation time, and in addition, that the test suite can be gen-
erated with some a-priori guarantees, e.g., that the specification is structurally
covered, or that a given set of test-objectives are met as fast or with as few
resources as possible.

There are two main disadvantages of offline test generation. One is that the
specification must be analyzed in its entirety, which often results in a state-
explosion which limits the size of the specification that can be handled. Another
problem is non-deterministic implementations and specifications. In this case,
the output (and output timing) cannot be predicted, and the test case must be
adaptive. Typically, the test case takes the form of a test-tree that branches for
all possible outcomes. This may lead to very large test cases. In particular for
real-time systems the test case may need to branch for all time instances where
an output could arrive.

Offline test generators therefore often limit the expressiveness and amount
of non-determinism of the specification language. This has been a particular
problem for offline test generation from timed automata specifications, because
the technique of determinizing the specification cannot be directly applied.

Given a restricted class of deterministic and output urgent timed auto-
mata we show in Section 4 how it is possible to use the unmodified Uppaal

80 A. Hessel et al.

model-checker to synthesize test cases that are guaranteed to take the least pos-
sible time to execute. We also define a language for defining test purposes and
coverage criteria, and present an efficient test generation algorithm.

1.3 Online Testing

Another testing approach is online (on-the-fly) testing that combines test gener-
ation and execution. Here the test generator interactively interprets the model,
and stimulates and observes the IUT. Only a single test input is generated from
the model at a time which is then immediately executed on the IUT. Then the
produced output (if any) by the IUT as well as its time of occurrence are checked
against the specification, a new input is produced and so forth until it is decided
to end the test, or an error is detected. Typically, the inputs and delays are
chosen randomly. An observed test run is a trace consisting of an alternating
sequence of (input or output) actions and time delays.

There are several advantages of online testing. Testing may potentially con-
tinue for a long time (hours or even days), and therefore long, intricate test
cases that stress the IUT may be executed. The state-space-explosion problem
experienced by many offline test generation tools is reduced because only a lim-
ited part of the state-space needs to be stored at any point in time. Further,
online test generators often allow more expressive specification languages, espe-
cially wrt. allowed non-determinism in real-time models: Since they are generated
event-by-event they are automatically adaptive to the non-determinism of the
specification and implementation. Online testing has proven an effective error
detection technique [59, 62, 6].

A disadvantage is that the specification must be analyzed online and in real-
time which require very efficient test generation algorithms to keep up with
the implementation and specified real-time requirements. Also the test runs are
typically long, and consequently the cause of a test failure may be difficult to
diagnose. Although some guidance is possible, test generation is typically ran-
domized which means that satisfaction of coverage criteria cannot be a priory
guaranteed, but must instead be evaluated post mortem.

In Section 5 we present a sound and complete algorithm for online testing of
real-time systems from timed automata specifications allowing full
non-determinism. We describe an extension of Uppaal, named TRON, that
implements this algorithm, and give an application example. We furthermore
show how testing can be viewed as the two sub-problems of environment em-
ulation and system monitoring, and we show how TRON can be configured to
perform both combined or independently.

2 Specification of Real-Time Systems

This section formally presents our semantic framework, and introduces timed
input/output transition systems (TIOTS), timed automata (TA), and our rela-
tivized timed input/output conformance relation.

Testing Real-Time Systems Using UPPAAL 81

2.1 Environment and System Modelling

An embedded system interacts closely with its environment which typically con-
sists of the controlled physical equipment (the plant) accessible via sensors and
actuators, other computer based systems or digital devices accessible via com-
munication networks using dedicated protocols, and human users. A major de-
velopment task is to ensure that an embedded system works correctly in its real
operating environment. Due to lack of resources it is not feasible to validate the
system for all possible (imaginary) environments. Also it is not necessary if the
environments are known to a large extent. However, the requirements and the
assumptions of the environment should be clear and explicit.

We denote the system being developed IUT, and its real operating environment
RealENV. These communicate by exchanging input and output signals (seen from
the perspective of IUT). Using a model-based development approach, the envi-
ronment assumptions and system requirements are captured through abstract
behavioral models denoted E and S respectively, communicating on abstract sig-
nals i ∈ Ain and o ∈ Aout corresponding (via a suitable abstraction) to the real
input and output , see Figure 2.

output

o

IUT

i

RealENV

E S

input

Fig. 2. Abstraction of a system

Modelling the environment explicitly and separately and taking this into ac-
count during test generation has several advantages: 1) the test generation tool
can synthesize only relevant and realistic scenarios for the given type of environ-
ment, which in turn reduces the number of required tests and improves the quality
of the test suite; 2) the engineer can guide the test generator to specific situations
of interest; 3) a separate environment model avoids explicit changes to the system
model if testing must be done under different assumptions or use patterns.

2.2 Timed I/O Transition Systems

To define our testing framework formally we need to introduce a semantic foun-
dation for real-time systems. We use it to model systems and to define the formal
semantics of timed automata. A timed input/output transition system (TIOTS)

82 A. Hessel et al.

is a labelled transition system where actions have been classified as inputs or out-
puts, and where dedicated delay labels model the progress of time. In our case
we use the set of positive real-numbers to model time. Below we also extend
commonly used notation for labeled transition systems to TIOTS.

Formal Definition of TIOTS. We assume a given set of actions A partitioned
into two disjoint sets of output actions Aout and input actions Ain . In addition
we assume that there is a distinguished unobservable action τ �∈ A. We denote
by Aτ the set A ∪ {τ}.

A timed I/O transition system (TIOTS) S is a tuple (S, so, Ain , Aout , −→),
where

– S is a set of states, s0 ∈ S,
– and −→ ⊆ S × (Aτ ∪ R≥0) × S is a transition relation satisfying the usual

constraints of time determinism (if s
d−→ s′ and s

d−→ s′′ then s′ = s′′), time
additivity (if s

d1−→ s′ and s′ d2−→ s′′ then s
d1+d2−−−−→ s′′), and zero-delay (for all

states s
0−→ s). d, d1, d2 ∈ R≥0, and R≥0 denotes non-negative real numbers.

Notation for TIOTS. Let a, a1...n ∈ A, α ∈ Aτ ∪R≥0, and d, d1...n ∈ R≥0. We
write s

α−→ iff s
α−→ s′ for some s′. We use ⇒ to denote the τ -abstracted transition

relation such that s
a⇒ s′ iff s

τ−→
∗ a−→ τ−→

∗
s′, and s

d⇒ s′ iff s
τ−→

∗ d1−→ τ−→
∗ d2−→ τ−→

∗

· · · τ−→
∗ dn−→ τ−→

∗
s′ where d = d1 + d2 + · · ·dn. We extend ⇒ to sequences in the

usual manner.
S is strongly input enabled iff s

i−→ for all states s and for all input actions i.
It is weakly input enabled iff s

i⇒ for all states s and for all input actions i. We
assume that input actions (seen from the system point of view) are controlled
by the environment and outputs are controlled by the system. An input enabled
system cannot refuse input actions. However it may decide to ignore the input
by executing a transition that results in the same state.

S is non-blocking iff for any state s and any t ∈ R≥0 there is a timed output
trace σ = d1o1 . . . ondn+1, oi ∈ Aout , such that s

σ⇒ and
∑

i di ≥ t. Thus S will
not block time in any input enabled environment. This property ensures that a
system will not force or rush its environment to deliver an input, and vice versa,
the environment will never force outputs from the system. Time is common for
both the system and its environment, and neither controls it.

To model potential implementations it is useful to define the properties of
isolated outputs and determinism. S is deterministic if for all delays or actions
α ∈ Aτ ∪ R≥0, and all states s, whenever s

α−→ s′ and s
α−→ s′′ then s′ = s′′. That

is, the successor state of an action is always uniquely known.
We say that S has isolated outputs if whenever s

o−→ for some output action

o, then s � τ−→ and s � d−→ for all d > 0 and whenever s
o′
−→ then o′ = o. A system

with isolated outputs will only offer one output at a time, and will never retract
an offered output by performing internal actions or delays.

Finally, a TIOTS exhibits output urgency iff whenever an output (or τ) is
enabled, it will occur immediately, i.e., whenever s

α−→, α ∈ Aout ∪ {τ} then

Testing Real-Time Systems Using UPPAAL 83

s � d−→, d ∈ R≥0. An output urgent system will deliver the output immediately
when ready.

An observable timed trace σ ∈ (A∪R≥0)∗ is of the form σ = d1a1d2 . . . akdk+1.
We define the observable timed traces TTr(s) of a state s as:

TTr(s) = {σ ∈ (A ∪ R≥0)∗ | s σ⇒} (1)
For a state s (and subset S′ ⊆ S) and a timed trace σ, s After σ is the set of

states that can be reached after σ:
s After σ = { s′ | s

σ⇒ s′ }, S′ After σ =
⋃

s∈S′

s After σ (2)

The set Out
(
s
)

of observable outputs or delays from states s ∈ S′ ⊆ S is defined
as: Out

(
s
)

= { a ∈ Aout ∪ R≥0 | s
a⇒ }, Out

(
S′) =

⋃

s∈S′

Out
(
s
)

(3)

TIOTS Composition. Let S = (S, s0, Ain , Aout , −→) and E = (E, eo, Aout , Ain ,
−→) be TIOTSs. Here E is the set of environment states and the set of input
(output) actions of E is identical to the output (input) actions of S. The parallel
composition of S and E forms a closed system S ‖ E whose observable behavior
is defined by the TIOTS (S × E, (s0, e0), Ain , Aout , −→) where −→ is defined as

s
a−→ s′ e

a−→ e′

(s, e) a−→ (s′, e′)

s
τ−→ s′

(s, e) τ−→ (s′, e)

e
τ−→ e′

(s, e) τ−→ (s, e′)

s
d−→ s′ e

d−→ e′

(s, e) d−→ (s′, e′)
(4)

2.3 Timed Automata

Timed automata [2] is an expressive and popular formalism for modelling real-
time systems. Essentially a timed automaton is an extended finite state machine
equipped with a set of real-valued clock-variables that track the progress of time
and that can guard when transitions are allowed.

Formal Definition of Timed Automata. Let X be a set of R≥0-valued vari-
ables called clocks. Let G(X) denote the set of guards on clocks being conjunc-
tions of constraints of the form x �� c, and let U(X) denote the set of updates
of clocks corresponding to sequences of statements of the form x := c, where
x ∈ X , c ∈ N, and �� ∈ {≤, <, =, >, ≥}. A timed automaton over (A, X) is a
tuple (L, �0, I, E), where

– L is a set of locations, �0 ∈ L is an initial location,
– I : L → G(X) assigns invariants to locations, and
– E is a set of edges such that E ⊆ L × G(X) × Aτ × U(X) × L.

We write �
g,α,u−−−−→ �′ iff (�, g, α, u, �′) ∈ E.

The semantics of a TA is defined in terms of a TIOTS over states of the form
s = (�, v̄), where � is a location and v̄ ∈ R

X
≥0 is a clock valuation satisfying the

invariant of �. Intuitively, a timed automaton can either progress by executing
an edge or by remaining in a location and letting time pass:

∀d′ ≤ d. I�(d′)

(�, v̄) d−→ (�, v̄ + d)

�
g,α,u−−−−→ �′ ∧ g(v̄) ∧ I�′(v̄′), v̄′ = u(v̄)

(�, v̄) α−→ (�′, v̄′)
(5)

84 A. Hessel et al.

In delaying transitions, (�, v̄) d−→ (�, v̄ + d), the values of all clocks of the
automaton are incremented by the amount of the delay d, denoted v̄ + d. The
automaton may delay in a location � as long as the invariant I� for that location
remains true. Discrete transitions (�, v̄) α−→ (�′, v̄′) correspond to execution of
edges (�, g, α, u, �′) for which the guard g is satisfied by v̄, and for which the
invariant of the target location I�′ is satisfied by the updated clock valuation
v̄′. The target state’s clock valuation v̄′ is obtained by applying clock updates u
on v̄.

Uppaal Timed Automata. Throughout this chapter we use Uppaal syntax
to illustrate TA, and the figures are direct exports from Uppaal. Uppaal al-
lows construction of large models by composing timed automata in parallel and
lets these communicate using shared discrete and clock variables and synchro-
nize (rendezvous-style) on complementary input and output actions, as well as
broadcast actions.

Initial locations are marked using a double circle. Edges are by convention
labeled by the triple: guard, action, and assignment in that order. The internal
τ -action is indicated by an absent action-label. Committed locations are indi-
cated by a location with an encircled “C”. A committed location must be left
immediately by the next transition taken in the system. An urgent location (en-
circled “U”) must be left without letting time pass, but allows interleaving by
other automata. Finally, bold-faced clock conditions placed under locations are
location invariants. In addition to clocks, Uppaal also allows integer variables
to be used in guards and assignments.

The latest version further supports a safe subset of C-code in assignments and
guards, and C-data-structures.

Example 1. Fig. 3 shows a TA modelling the behavior of a simple light-controller.
The user interacts with the controller by touching a touch sensitive pad. The light
has three intensity levels: OFF, DIMMED, and BRIGHT. Depending on the timing

off!

touch?

bright!

off!

dim!

touch?

touch?

touch?

touch?

touch?
bright!

dim!
dim2

bright2

off1

bright1

x<Tsw

DIMOFF

dim1

BRIGHT

off2

x=0

x<Tidle

x=0

x>=Tidle

x<Tsw

x=0

x=0

x=0

x=0

x>=Tsw

x>=Tsw

Fig. 3. Light Controller

Testing Real-Time Systems Using UPPAAL 85

between successive touches (recorded by the clock x), the controller toggles the
light levels. For example, in dimmed state, if a second touch is made quickly
(before the switching time Tsw = 4 time units) after the touch that caused the
controller to enter dimmed state (from either off or bright state), the controller
increases the level to bright. Conversely, if the second touch happens after the
switching time, the controller switches the light off. If the light controller has
been in off state for a long time (longer than or equal to Tidle = 20), it should
reactivate upon a touch by going directly to bright level.

The simple light controller can perform the execution sequence (OFF, x =
0) 5−→ (OFF, x = 5) touch?−−−−→ (dim1, x = 0) dim!−−−→ (DIM, x = 0) 3.14−−→ (DIM, x =

3.14) touch?−−−−→ (bright2, x = 0)
bright!−−−−→ (BRIGHT, x = 0) resulting in the observ-

able trace σ = 5 · touch? · dim! · 3.14 · touch! · bright !. Note that {(OFF, x =
0)} After σ = {(BRIGHT, x = 0)}, Out

(
{(OFF, x = 0)} After σ

)
= R≥0, but

Out
(
(bright2, x = 0)

)
= {bright !} ∪ {0}.

dim?

off?

bright?

z=0

z>=Treact

touch!

touch!

z=0 off?

touch!touch!

bright?

dim?

z>=Tpause and t==2z>=Treact and t<2

touch!

t=1,
z=0

z=0,
t=t+1

z=0,
t=t+1

(a) (b)

Fig. 4. Two possible environment models for the simple light switch

Figure 4 shows two possible environment models for the simple light controller.
Figure 4(a) models a user capable of performing any sequence of touch actions.
When the constant Treact is set to zero he is arbitrarily fast. A more realistic user
is only capable of producing touches with a limited rate; this can be modeled
setting Treact to a non-zero value. Figure 4(b) models a different user able to
make two quick successive touches (counted by integer variable t), but which
then is required to pause for some time (to avoid cramp), e.g., Tpause = 5.

The TA shown in Figure 3 and Figure 4 respectively can be composed in
parallel on actions Ain = {touch} and Aout = {off, dim, bright} forming a closed
network (to avoid cluttering the figures we may sometimes omit making them
explicitly input enabled; for the unspecified inputs there is a non-drawn self
looping edge that merely consumes the input without changing the location).

Example 2. Figure 5(a) shows a timed automaton specification Cr for a controller
whose goal is to control and keep the room temperature in Med range by turning
On and Off the room cooling device. The controller is required: 1) to turn On
the cooling device within an allowed reaction time r when the room temperature
reaches High range, and 2) to turn it Off within r when the temperature drops to
Low range. Observe how location invariants are used to force the automaton to

86 A. Hessel et al.

Med?High?

Off!

High?

Med?

Low?

Low?

On!

Low?
Med?

Low?

Med?

High?

x<=r x<=r

x=0

x=0

off

on

updn

Med?

High?

x=0

Med?

x=0x=0

x=0

x=0x=0

(a) Cr: simple cooling controller with reaction time r.

Off?

On?

(b) EL.

Med!

High!

On?

Low!

Off?

(c) EM .

High!

Med!

Off?

Med!

Low!

Off?

On?

On?Off? L

y>=d

y>=d

M

H On?

y=0

y=0

y>=d

y=0

y>=d

y=0

(d) Ed
1 .

Med!

High!

Off?

On?

On?

Med!

Low!
y=0

Off?

On?

Off?OffHigh

OffMed

y<=s

y<=s

OnHigh

OffLow

OnMed

OnLow

y=0

y>=d

y>=d y>=d

y=0

y=0

y<=s
y>=d

y<=s

(e) Ed,step
2 .

Fig. 5. Timed automata of simple controller and various environments

leave the dn and up locations before the reaction time has elapsed, in consequence
producing the output at some time before the required reaction time. When the
room temperature is medium the cooling is allowed to be either on or off.

This specification is non-deterministic in two ways. First, there are several
next states to a Med temperature, e.g.,

{(off, x = 0)} After 5 · Med? = {(off, x = 5), (up, x = 0)}. (6)

Second, the controller switches state within the reaction time r, but it is
unknown when. Thus from e.g., state (up, x = 0) the controller may execute any
of the observable traces, d · On!, 0 ≤ d ≤ r. Note that

Out
(
(up, x = 0)

)
= {On!} ∪ {d | 0 ≤ d ≤ r}. (7)

The intention of this specification (given our conformance relation) is to allow
implementation freedom to the manufacturer wrt. exact functionality, speed,
timing tolerances, etc..

The Uppaal Tool. In the Uppaal tool it is possible to edit, simulate and
check properties of Uppaal timed automata in a graphical environment. The

Testing Real-Time Systems Using UPPAAL 87

property specification language supports safety, liveness, deadlock, and response
properties.

In this chapter we use the Uppaal tool for offline test generation by expressing
the test case generation problem as a safety property that can be solved by
reachability analysis. Safety properties are used to expresses requirements of the
form “the model can never reach an undesired state”. The dual properties like
“the system can reach a desired state”, are usually referred to as reachability
properties.

When checking a safety property, the Uppaal tool performs symbolic reach-
ability analysis of the network of timed automata to search for reachable states
where the property is satisfied (or not satisfied). If a state that satisfies the prop-
erty is found, Uppaal generate a diagnostic traces witnessing a submitted safety
property. Currently Uppaal supports three options for diagnostic trace genera-
tion: some trace leading to the goal state, the shortest trace with the minimum
number of transitions, and fastest trace with the shortest accumulated time delay.
The underlying algorithm used for finding time-optimal traces is a variation of
the A∗-algorithm [5,39]. Hence, to improve performance it is possible to supply a
heuristic function estimating the remaining cost from any state to the goal state.

To perform reachability analysis of (densely) timed automata Uppaal uses
a (finite) symbolic representation of the state space and symbolic computation
steps.

A symbolic state is of the form (�, D), where � is a control location of a timed
automaton and D is a convex subset of R

|X|
≥0 , i.e. it represents the (potentially

infinite) set of concrete states {(�′, v̄) | �′ = �∧ v̄ ∈ D}. The initial symbolic state
is (�0, D0), where D0 = { v̄ | (�0, v̄0)

d−→ (�0, v̄) } and v̄0 is the clock valuation
assigning all clocks to zero.

A symbolic computation step (�, D) α−→ (�′, D′) consists of performing an action
followed by some delay, and can be performed iff (�, v̄) α−→ (�′, v̄′), and
D′ =

{
v̄′′ | (�, v̄) α−→ (�′, v̄′) ∧ (�′, v̄′) d−→ (�′, v̄′′) ∧ v̄ ∈ D

}
.

It is possible to represent a convex subset D as a so-called difference bounded
matrix [21] that can be efficiently manipulated by constraint-solving techniques
[53], implemented as model-checking tools such as Uppaal and Kronos [20].

3 Relativized Timed Conformance

In this section we define our notion of conformance between TIOTSs. Our notion
derives from the input/output conformance relation (ioco) of Tretmans and de
Vries [58, 63] by taking time and environment constraints into account. Under
assumptions of weak input enabledness our relativized timed conformance rela-
tion (denoted rtiocoe) coincides with relativized timed trace inclusion. Like ioco,
this relation ensures that the implementation has only the behavior allowed by
the specification. In particular, 1) it is not allowed to produce an output at a
time when one is not allowed by the specification, 2) it is not allowed to omit
producing an output when one is required by the specification.

88 A. Hessel et al.

The ioco relation operates with the concept of quiescence allowing (eternal)
absence of outputs to be observed by means of a finite time out, and be equalized
with a special observable action, resulting in a more discriminating relation. It
is debatable whether the same abstraction is reasonable in real-time systems.
Briones et al. have proposed relations that allows this [12], see also the discussion
in Section 6.1. Our relation takes the view that only finite progress of time can be
observed in a real-time system. Thus, rtiocoe offers the notion of time-bounded
(finite) quiescence, that—in contrast to ioco’s conceptual eternal quiescence—
can be observed in a real-time system.

Formal Definition of rtiocoe. Let S = (S, s0, Ain , Aout , −→) be an weak-input
enabled and non-blocking TIOTS. An environment for S is itself a weak-input
enabled and non-blocking TIOTS E = (E, eo, Aout , Ain , −→) with reversed inputs
and outputs.

Given an environment e ∈ E the e-relativized timed input/output confor-
mance relation rtiocoe between system states s, t ∈ S is defined as:

s rtiocoe t iff ∀σ ∈ TTr(e). Out
(
(s, e) After σ

)
⊆ Out

(
(t, e) After σ

)

Whenever s rtiocoe t we will say that s is a correct implementation (or re-
finement) of the specification t under the environmental constraints expressed
by e. Under the assumption of weak input-enabledness of both S and E we may
characterize relativized conformance in terms of trace-inclusion as follows:

Lemma 1. Let S and E be input-enabled with states s, t ∈ S and e ∈ E resp.,
then

s rtiocoe t iff TTr(s) ∩ TTr(e) ⊆ TTr(t) ∩ TTr(e)

Thus if s rtiocoe t does not hold then there exists a trace σ of e such that s
σ⇒

but t � σ⇒. Given the notion of relativized conformance it is natural to consider
the preorder on environments based on their discriminating power, i.e. for envi-
ronments e and f :

e � f iff rtiocof ⊆ rtiocoe (8)

(to be read f is more discriminating than e). It follows from the definition of
rtioco that e � f iff TTr(e) ⊆ TTr(f). In particular there is a most (least) dis-
criminating (weakly) input enabled and non-blocking environment U (O) given
by TTr(U) = (A ∪ R≥0)∗

(
TTr(O) = (Aout ∪ R≥0)∗

)
. The corresponding con-

formance relation rtiocoU (rtiocoO) specializes to simple timed trace inclusion
(timed output trace inclusion) between system states.

Moreover, because we treat environment constraints explicitly and separately,
rtiocoe has some nice theoretical and practical attractive properties that allows
the tester to re-use testing effort if either the environment assumption is strength-
ened, or if the system specification is weakened. Assume that i rtiocoe s, then
without re-testing

if s � s′ then i rtiocoe s′ (9)

if e′ � e then i rtiocoe′ s (10)

Testing Real-Time Systems Using UPPAAL 89

In the following we exemplify how our conformance relation discriminates sys-
tems, and illustrate the potential power of environment assumptions and how this
can help to increase the relevance of the generated tests for a given environment.

Example 3. Consider the simple cooling controller Cr of Figure 5(a), where r is
a parameter r with its reaction time, and the environment in Figure 5(c).

Take C10 to be the specification and assume that the implementation behaves
like C12. Clearly, C8 rtiocoEM C6 because σ = 0 · Med ! · 7 · On! ∈ TTr(C8), but
σ �∈ TTr(C6), or alternatively, Out

(
C8 After 0 · Med ! · 7

)
= {On!} ∪ R≥0 �⊆

Out
(
C6 After 0 · Med ! · 7

)
= R≥0 (recall that Cr may remain in location off on

input Med and not produce any output). The implementation can thus perform
an output at a time not allowed by the specification.

Next, suppose Cr is implemented by a timed automaton C′r equal to Cr, except
the transition up Low−−−→ dn is missing, and replaced by a self loop up Low−−−→ up.

They are distinguishable by the timed trace 0·Med?·0·High?·0· Low?·0· On!
in the implementation that is not in the specification (switches the compressor
Off instead).

Example 4. Figure 5(c) shows the universal (most general) and completely un-
constrained environment EM where room temperature may change unconstrained
and may change (discretely) with any rate. This may not be realistic in the given
physical environment, and there may be less need to test the controller in such
an environment, as temperature normally evolves slowly and continuously, e.g., it
cannot change drastically from Low to High and back unless through Med. Sim-
ilarly, most embedded and real-time systems also interact with physical environ-
ments and other digital systems that— depending on circumstances—can be as-
sumed to be correct and correctly communicate using well defined interfaces and
protocols.

Figures 5(b) to 5(e) show four possible environment assumptions for Cr.
Figure 5(c) and Figure 5(b) shows respectively the most discriminating and
least discriminating environments. Figure 5(d) shows the environment model Ed

1
where the temperature changes through Med range and with a speed bounded
by d. Figure 5(e) shows an even more constrained environment Ed,s

2 that assumes
that the cooling device works, e.g., temperature changes with an upper and lower
speed bounded by d and s.

Notice that E2 and E1 have less discriminating power and thus may not reveal
faults found under more discriminating environments. However, if the erroneous
behavior is impossible in the actual operating environment the error may be
irrelevant. Consider again the implementation C′r from above. This error can be
detected under E0 and Ek

1 if k = 3d and r > k, via the timed trace that respects
d·Med?·d·High?·d·Med?·d·Low?·ε· On!, ε ≤ r. The specification would produce
Off. The error cannot be detected under E1 if it is too slow 3d > r, and never
under E2 for no value of d.

In the extreme the environment behavior can be so restricted that it only
reflects a single test scenario that should be tested. In our view, the environment
assumptions should be specified explicitly and separately.

90 A. Hessel et al.

4 Offline Test Generation

In this section, we describe an offline test generation approach for real-time
systems specified as timed automata. In order to specify that a certain level of
thoroughness is achieved in the testing we shall require that a generated test
suite satisfies a given coverage criterion. For untimed systems coverage criteria
have been studied by researchers for many years, and a number specific coverage
criteria have been proposed in the literature, including [45,52,14,15,17,26,41,51,
49, 23, 54]. In comparison, research in real-time coverage criteria is still a more
immature area where not many general results are available. Therefore, most
of the coverage criteria and test generation techniques described in this section
were originally proposed for testing of untimed systems. However, they can often
be adopted for the domain of real-time system. For example, the well-known all-
definitions use-pair coverage criterion [26,41] (described in Sections 4.2 and 4.3),
can be applied to definitions and uses of timers, as well as data variables.

We will see in Section 4.2 how test case generation can be performed by
reformulating the problem as a model-checking problem that can be solved by
a model-checking tool like Uppaal. This will require that the original system is
annotated with variables that are needed to formulate the test case generation
problem as a model-checking problem. For intricate coverage criteria, it can be
cumbersome to find and manually do the right model annotations. The auxiliary
variables also add extra complexity to the timed automata model. In Section 4.3
we present a formal language to specify coverage criteria and we review an
algorithm which handles the extra information directly in the algorithm. In this
way the process becomes more user friendly, and the coverage information can
be dealt with more efficiently using a bit-vector representation.

In order to make offline test case generation applicable to timed automata
specifications, we shall assume that the underlying TIOTS is deterministic,
weakly input enabled, output urgent, with isolated outputs as defined in Section
2.2. This means that the S is assumed to react deterministically to any input
provided, and will always be able to accept input from the test case. At any
state, the S is also assumed to always have at most one output action that will
occur immediately.

Further, as discussed in Section 2, we shall assume that the test specification
is given as a closed network of TA that can be partitioned into one subnetwork
S specifying the required behavior of the IUT, and one subnetwork E modelling
the behavior of its intended environment RealENV, as depicted in Fig. 2.

4.1 Test-Case Generation by Model-Checking

When generating test cases by model-checking, the idea is to formulate the prob-
lem as a reachability problem that can be solved with an existing model-checking
tool. As mentioned, we will use the Uppaal tool introduced in Section 2.3 to
perform reachability analysis of timed automata. More precisely, we shall use a
boolean combination of comparisons between integer constants and variables in
the model to characterise a desired state to be reached.

Testing Real-Time Systems Using UPPAAL 91

In Section 4.2, we will describe in more details how Uppaal’s ability to pro-
duce traces witnessing a posed reachability property can be used to produce
test cases for a given test purpose or coverage criteria. First, we describe how
diagnostic traces can be interpreted as test cases.

From Diagnostic Traces to Test Cases. Let A be a TA composition of an
IUT model S and a model E of its intended environment RealENV. A diagnostic
trace produced by Uppaal for a given reachability question on A demonstrates
the sequence of moves to be made by each of the system components and the
required clock constraints needed to reach the target location. A (concrete) di-
agnostic trace will have the form:

(s0, e0)
γ0−→ (s1, e1)

γ1−→ (s2, e2)
γ2−→ · · · (sn, en)

where si, ei are states of the S and E , respectively, and γi are either time-delays
or synchronization (or internal) actions. The latter may be further partitioned
into purely S or E transitions (hence invisible for the other part) or synchronizing
transitions between the IUT and the RealENV (hence observable for both parties).

A test sequence is an alternating sequence of concrete delay actions and ob-
servable actions. From the diagnostic trace above a test sequence, λ ∈ Ain∪Aout∪
R≥0, may be obtained simply by projecting the trace to the E-component, while
removing invisible transitions, and summing adjacent delay actions. Finally, a
test case to be executed on the real IUT implementation may be obtained from
λ by the addition of verdicts.

First note that with the assumptions made on the underlying TIOTS made
above, the conformance relation specializes to timed trace inclusion, as discussed
in Section 3. Thus, after any input sequence, the implementation is allowed to
produce an output only if the specification is also able to produce that output.
Similarly, the implementation may delay (thereby staying silent) only if the
specification also may delay. The test sequences produced by our techniques are
derived from diagnostic traces, and are thus guaranteed to be included in the
specification.

To clarify the construction we may model the test case itself as a TA Aλ for
the test sequence λ. Locations in Aλ are labelled using two distinguished labels,
PASS and FAIL. The execution of a test case is now formalized as the composition
of the test case automaton Aλ and IUT AI .

IUT passes λ iff Aλ ‖ AI �−→∗ FAIL

Aλ is constructed such that a complete execution terminates in a FAIL state
if the IUT cannot perform λ and such that it terminates in a PASS state if the
IUT can execute all actions of λ. The construction is illustrated in Figure 6.

4.2 Coverage-Based Test Case Generation

We shall see how test cases satisfying a given coverage criterion can be generated
by model-checking. A common approach to the generation of test cases is to first

92 A. Hessel et al.

o_1?

o_n?

o_0?

i_0!

z=0

o_0?

PASS
FAIL

FAIL

FAIL

z=0

z==delay

z<=delayz<delay

z<=0

Fig. 6. Test case automaton for the sequence i0! · delay · o0?

manually formulate a set of informal test purposes and then to formalize these
such that the model can be used to generate one or more test cases for each test
purpose.

Test Purposes. A test purpose is a specific test objective (or property) that
the tester would like to observe on the IUT. We will formulate the test purpose
as a property that can be checked by reachability analysis of the combined E
and S model. Different techniques can be used for this purpose. Sometimes the
test purpose can be directly transformed into a simple model-checking property
expressed as a boolean combination of automata locations. In other cases it may
require decoration of the model with auxiliary flag variables. Another technique
is to replace the environment model with a more restricted one that matches the
behavior of the test purpose only.

Example 5. We exemplify these two approaches using the following two test
purposes expressing test objectives of the simple light controller in Example 1.

TP1: Check that the light can become bright.
TP2: Check that the light switches off after three successive touches.

The test purpose TP1 can be formulated as a simple reachability property
requiring that eventually the lightContoller can enter location BRIGHT. Gen-
erating the shortest diagnostic trace results in the test sequence:

off? dim? bright?bright?off? dim? dim?

z>=Treact and z<Tsw z>=Treact and z<Tsw

z=0

z<Tsw

goal

bright?

touch!touch! touch! off?
z=0 z=0

Fig. 7. Test Environment for TP2

Testing Real-Time Systems Using UPPAAL 93

20 · touch! · 0 · bright?

However, the fastest sequence satisfying the test purpose is

0 · touch! · 0 · dim? · 0 · touch! · 0 · bright?

The test purpose TP2 can be formulated by a reachability property requiring
that a location in a specific environment automaton can be reached. In Figure 7
an environment automaton tpEnv for TP2 is shown. The automaton restricts
the possible user input so that there is at least Treact time units in between
two consecutive touches. The fastest test sequence satisfying the test purpose is:

0 · touch! · 0 · dim? · Treact · touch! · 0 · bright? · Treact · touch! · 0 · off ?

Coverage Criteria. Often the tester is interested in creating a test suite that
ensures that the specification or implementation is covered in a certain way. This
ensures that a certain level of thoroughness has been achieved in the test gener-
ation process. Here we explain how test sequences with guaranteed coverage of
the IUT model can be computed by model-checking, effectively giving automated
tool support.

A large suite of coverage criteria have been proposed in the literature, such
as statement, transition, and definition-use coverage, each with its own merits
and application domain. We explain how to apply some of these to TA models
(more coverage criteria will be introduced in Section 4.3).

Edge Coverage: A test sequence satisfies the edge-coverage criterion [45] if,
when executed on the model, it traverses every edge of the selected TA-
components. Edge coverage can be formulated as a reachability property in
the following way: add an auxiliary variable ei of type boolean (initially false)
for each edge to be covered (typically realized as a bit array in Uppaal),
and add to the assignments of each edge i an assignment ei := true; a test
suite can be generated by formulating a property requiring that a state can
be reached in which all ei variables are true, i.e., (e0==true ∧ e1==true ∧
. . .∧en==true). The auxiliary variables are needed to enable formulation of
the coverage criterion as a reachability property using the Uppaal property
specification language which is a restricted subset of timed computation tree
logic (TCTL) [3].

Location Coverage: A test sequence satisfies the location-coverage criterion
[45] if, when executed on the model, it visits every location of the selected TA-
components. To generate test sequences with location coverage, we introduce
an auxiliary variable bi of type boolean (initially false for all locations except
the initial) for each location �i to be covered. For every edge with destination
�i: �′

g,a,u−−−−→ �i add to the assignments u bi:=true; the reachability property
will then require all bi variables to be true.

Definition-Use Pair Coverage: The definition-use pair criterion [17] is a
data-flow coverage technique where the idea is to cover paths in which a
variable is defined, i.e. appears in the left-hand side of an assignment, and
later is used, i.e. appears in a guard or the right-hand side of an assignment.

94 A. Hessel et al.

We use (v, ed, eu) to denote a definition-use pair (DU-pair) for variable
v if ed is an edge where v is defined and eu is an edge where v is used. A
DU-pair (v, ed, eu) is valid if eu is reachable from ed and v is not redefined in
the path from ed to eu. A test sequence covers (v, ed, eu) iff (at least) once
in the sequence, there is a valid DU-pair (v, ed, eu). A test sequence satisfies
the (all-uses) DU-pair coverage criterion of v if it covers all valid DU-pairs
of v.

To generate test sequences with definition-use pair coverage, we assume
that the edges for a model are enumerated, so that ei is the number of edge
i. We introduce an auxiliary data-variable vd (initially false) with value
domain {false} ∪ {1 . . . |E|} to keep track of the edge at which variable v
was last defined, and a two-dimensional boolean array du of size |E| × |E|
(initially false) to store the covered pairs. For each edge ei at which v is
defined we add vd := ei, and for each edge ej at which v is used we add the
conditional assignment if (vd �= false)then du[vd, ej] := true. Note that if v
is both used and defined on the same edge, the array assignment must be
made before the assignment of vd.

The reachability property will then require all du[i, j] representing valid
DU-pairs to be true for the (all-uses) DU-pair criterion. Note that a test
sequence satisfying the DU-pair criterion for several variables can be gener-
ated using the same encoding, but extended with one auxiliary variable and
array for each covered variable.

Example 6. The light switch in Figure 3 requires a bit-array of 12 elements (one
per edge). When the environment can touch arbitrarily fast the generated fastest
edge covering test sequence has the accumulated execution time 28. The solution
(there might be more traces with the same fastest execution time) generated by
Uppaal is:

0 · touch! · 0 · dim? · 0 · touch! · 0 · bright?·
0 · touch! · 0 · off ? · 20 · touch! · 0 · bright?·

4 · touch! · 0 · dim? · 4 · touch! · 0 · off ?

4.3 Test Case Generation Using Observers

As described in the previous section, it is in principle possible to generate test
cases by annotating Uppaal timed automata with auxiliary variables, and solve
the problem by reachability analysis. However, for more intricate coverage cri-
teria it can be cumbersome and very time-consuming to find the proper model
annotations. Another problem with using model-checking algorithms and tools
to generate test cases is that they are not really tailored for the problem, which
may lead to problems with performance.

In this section, we shall present another approach to offline test case generation
for real-time systems modeled as timed automata. Instead of using model anno-
tations and reachability properties to specify coverage criteria, we shall present
a language of observers as a generic and formal specification language for cov-
erage criteria. We shall further see how to adapt a model-checking algorithm to

Testing Real-Time Systems Using UPPAAL 95

internally handle information about coverage, so that test-case generation can
be performed in a more efficient way.

The observers presented here are based on the notion of observers described by
Blom et.al., in [7]. In their setting, observers are used to express coverage criteria
of test cases generated from system specification described as extended finite
state machines (EFSMs). In this section, we shall review their work and adapt
the results to our setting, i.e., for timed automata specifications of real-time
systems. We first describe how observers are used to specify coverage criteria.

The Observer Language. As we have seen, a coverage criterion typically
consists of a (rather large) set of items that should be “covered” or examined
by the test suite. The set of items to be covered is derived from a more general
criterion, requiring that some property ψ should be fulfilled, where ψ is a logical
property characterizing the items to be covered. For example, ψ could be satisfied
for all locations or edges of a model, to characterize the location of edge coverage
criteria mentioned in the previous section. In the following, we will use the term
coverage item for an item satisfying ψ, and assume that a coverage criterion is
to cover as many coverage items ψ as possible of a model.

Using standard techniques from model-checking and run-time verification it is
possible to represent a coverage item by an observer that monitors how a timed
automaton executes. Whenever a coverage item characterized by the observer
is fulfilled, the observer will “accept” the trace. We shall assume that an ob-
server can observe the actions in a trace of an automaton, and also other details
about the timed automata performing the action, such as the source and tar-
get locations, and the values of its state variables. This will make it possible to
characterise a wide range of coverage criteria as observers.

Formally, an observer of a timed automaton S = (L, �0, I, E) is a tuple
(Q, q0, Qf , B) where

– Q is a finite set of observer locations
– q0 is the initial observer location.
– Qf ⊆ Q is a set of accepting observer locations.
– B is a set of edges, each of form q

b−→ q′ where q, q′ ∈ Q and b is a predicate
that depend on the S transition (�, v̄) α−→ (�′, v̄′). The evaluation of b can
depend on an input/output action α, and/or the syntactic edge �

g,α,u−−−−→ �′

the S transition is derived from.1

In many cases, the initial location q0 has an edge to itself with the predicate
true. We use the symbol • to represent q0 together with such a self-loop. Simi-
larly, we assume that each qf ∈ Qf has an edge to itself with the predicate true.
We use the symbol � to represent accepting locations. Intuitively, the loop in q0
is often used to allow the observer to “non-deterministically” start monitoring
at any point in a timed trace. The loop in each qf is used to allow an observer
to stay in an accepting location.
1 For Uppaal timed automata extended by variables, b can also depend on the vari-

ables.

96 A. Hessel et al.

loc(up)

q0

target loc(up)

Fig. 8. An observer for location coverage of location up

Example 7. As a very simple example, consider the observer shown in Figure 8
characterizing the coverage item “visit location up of the automaton”. It has an
initial location q0 and an accepting location loc(up). The predicate target loc(up)
is satisfied when location up is reached in the monitored timed automata. Hence,
the observer could e.g., be used to express that location up should be covered in
automaton Cr of Figure 5.

Intuitively, observers have the following semantics: At any specific instant an
observer operates in one or serveral of its locations, say Qi ⊆ Q. At each transi-
tion, the observer traverses all outgoing edges from each location q ∈ Qi, whose
predicates are satisfied (enabled) due to the monitored transition of S. Note that
more than one (or none) of the outgoing edges can be enabled. Thus the possible
successors of a single location q can be zero or more locations. This means that,
if there is a path to an accepting location qf , that can be reached by choosing
the “right” enabled edge after each transition of S, the observer will find that
path, like a non-deterministic automaton would do. In that sense, an observer
will monitor and find all possible coverage items. Later in this section, we will
define formally how observers monitor coverage criteria.

Since, a coverage criterion typically stipulates that a set of coverage items
should be covered, the notion of observers is extended with a parameterization
mechanism so that they can specify a set of coverage items. Parameterized ob-
servers are observers, in which locations and edges may have parameters that
range over given domains. Each possible instantiation of a parameter gives a cer-
tain observer location or edge. For each specified coverage item, the observer has
an accepting (possibly parameterized) location which (for convenience) is given
the name of the corresponding coverage item. When the accepting location is
reached, the trace has covered the corresponding coverage item.

Example 8. The coverage criterion “visit all locations of Cr” can be represented
by a parameterized observer with one initial state, and one parameterized ac-
cepting location, named loc(L), where L is a parameter that ranges over locations
in automaton Cr. For each value � of L, the location loc(�) is entered when the
automaton enters location �. A parameterized observer for location coverage is
shown in Figure 9(a).

Without loss of generality we will, in the following description of observers, use
a single timed automaton corresponding to the TIOTS S in Section 2. Internal
actions of the E will not affect the observer and the extension to a network of
timed automata is straight forward.

Testing Real-Time Systems Using UPPAAL 97

How Observers Monitor Coverage Criteria. In test case generation an
observer observes the transitions of the timed automaton monitored. Reached
accepting locations correspond to covered coverage items. We formally define the
execution of an observer in terms of a composition between a timed automaton
and an observer, which has the form of a superposition of the observer onto the
timed automaton. Each state of this superposition consists of a state of the timed
automaton, together with a set of currently occupied observer locations.

If a predicate b on an observer edge is satisfied by a timed automaton transi-
tion (�, v̄) α−→ (�′, v̄′) we write (�, v̄) α−→ (�′, v̄′) |= b. Formally, the superposition
of an observer (Q, q0, Qf , B) onto a timed automaton S is defined as follows:

– States are of the form 〈(�, v̄)|Q〉, where (�, v̄) is a state of the timed automa-
ton, and Q is a set of locations of the observer.

– The initial state is the tuple 〈(�0, v̄0)|{q0}〉, where (�0, v̄0) is the initial state
of the timed automaton, and q0 is the initial location of the observer.

– A computation step is defined by the following two rules
• 〈(�, v̄)|Q〉 α

� 〈(�′, v̄′)|Q′〉 if (�, v̄) α−→ (�′, v̄′) and
Q′ =

{
q′ | q

b−→ q′ and q ∈ Q and (�, v̄) α−→ (�′, v̄′) |= b
}

• 〈(�, v̄)|Q〉 d
� 〈(�, v̄′)|Q〉 if (�, v̄) d−→ (�, v̄′)

– A state 〈(�, v̄)|Q〉 of the superposition covers the coverage item represented
by the location qf ∈ Qf if qf ∈ Q.

Note that the way the set Q is updated essentially results in an (on-the-fly)
subset construction of the parameterized observer. Initially, Q contains only the
initial observer location q0. In the subsequent computation steps, Q contains the
set of all occupied observer locations, representing already covered and partially
covered coverage items. In each discrete action step, the set of occupied observer
locations Q′ is obtained by generating all possible successors to the locations in
Q, i.e. all q′ such that there exists a q ∈ Q and an edge q

b−→ q′ ∈ B with b
satisfied by the computation step of the timed automaton. The observer set Q
is not affected by delay transitions, indicating that the the notion of observers
presented in this chapter can not observe time delays.

Both the initial and all accepting observer locations (most commonly) have
implicit self-loops with predicate true. This means that in the superposition of
the observer onto a timed automaton, the initial observer location q0 is always
occupied and all reached accepting observer locations (representing covered cov-
erage items) are guaranteed to remain in Q. As mentioned before, The fact that
q0 is always occupied can be intuitively understood as allowing for the observer
to non-deterministically start monitoring a timed automaton (or an IUT) at any
computation step of a run (or at any point during test execution).

Example 9. Figure 9 shows observers specifying a number of coverage criteria
described in the literature [17].

98 A. Hessel et al.

¬def (Y)

q0

da(X, Y) ∧ edge(E)

q1(X, Y, E)

q0

(e)

(c)

¬def (X)

q0

q1(X, E)

edge cov(E)

q0

affect pair(X, E, Z, E′)

du(X, E, E′)

(b)

all def (E)

use(X)

¬def (X)

def (X) ∧ edge(E)

q1(X, E)

q0

loc(L)

(a)

(d)

target loc(L) edge(E) def (X) ∧ edge(E)

use(X) ∧ edge(E′)

da(Y, Z) ∧ edge(E′)

Fig. 9. Five examples of coverage criteria expressed as observers

The all-locations [45] coverage criteria is specified by the observer shown in
Figure 9(a), where the parameter L is any location in a timed automaton (if
restricted to one automaton). If the observer is superposed onto a TIOTS con-
sisting of the timed automaton Cr in Figure 5, we have that L = {on, dn, off , up}
and the edge of the parameterized observer represents one edge for each location
in the automaton Cr i.e. an edge guarded by target loc(on) with target location
loc(on) etc. Here target loc(L) is a predicate which evaluates to true if the ob-
server monitors an edge of the timed automaton Cr with the target location L.
The set of possible coverage items is thus {loc(on), loc(dn), loc(off), loc(up)}.

The all-edges [45] coverage observer in Figure 9(b) is similar to the all-location
coverage observer. Here edge(E) is a predicate which evaluates to true if the
observer monitors edge E of the timed automaton Cr. The edges of the timed
automaton Cr in Figure 5 are E={e0 , . . . , e15}2, and thus the set of possible
coverage items when the observer is superposed onto the timed automaton is
{edge cov (ei) | ei ∈ E }.

The all-definition use-pairs (all-uses [17], reach coverage [26, 41]) coverage
observer is shown in Figure 9(c). It uses the two predicates def (X) and use(X)
that are true if X is defined and used on the monitored edge, respectively (as
defined in Section 4.2). The observer has an accepting location du(X, E, E′), where
X is a variable name, E is an edge on which X is defined, and E′ an edge on which
X is used. Variable X may not be redefined in the trace between E and E′. If the

2 We assume that the edges can be referred to by indexes 0 to 15.

Testing Real-Time Systems Using UPPAAL 99

observer monitors the execution sequence (OFF, x = 0) 5−→ (OFF, x = 5) touch?−−−−→
(dim1, x = 0) dim!−−−→ (DIM, x = 0) 3.14−−→ (DIM, x = 3.14) touch?−−−−→ (bright2, x =

0)
bright!−−−−→ (BRIGHT, x = 0) of the timed automaton in Figure 3 the only covered

coverage item is du(x , OFF
touch?−−−−→ dim1, DIM

touch?−−−−→ bright2).
The all-definitions [51] coverage observer of Figure 9(d) is similar to the all-

definition use-pairs coverage except that only the defining edges are required
to be covered. When the observer is superposed with the timed automaton
in Figure 3 the set of accepting locations is { all def (OFF touch?−−−−→ bright1),
all def (BRIGHT touch?−−−−→ dim2), all def (DIM touch?−−−−→ bright2), all def (OFF touch?−−−−→
dim1), all def (DIM touch?−−−−→ off2), all def (BRIGHT touch?−−−−→ off1) }. The all affect-
pairs (Ntafos’ required k-Tuples [49]) coverage observer is shown in Figure 9(e).
It uses the predicate da(x, y) that is true if the observer monitors a transition in
which the value of variable x affects the value of variable y. The observer accepts
whenever a variable x affects a variable z via another variable y. In this case we
require that x directly affects y which, without redefinition, directly affects z .

A Symbolic Semantics of Observers. The way observers monitor coverage
criteria, as defined above for timed automata, will result in an infinite state space
due to the dense representation of time. Therefore, before presenting the test case
generation algorithm, we shall introduce a finite-state symbolic semantics based
on the symbolic semantics of timed automata described in Section 2.3.

Formally, the symbolic semantics of observers superposed onto a timed au-
tomaton is defined as follows:

– Symbolic states are of the form 〈(�, D)|Q〉, where (�, D) is a symbolic state
of the timed automaton, and Q is a set of observer locations.

– A initial symbolic state is a tuple 〈(�0, D0)|{q0}〉, where (�0, D0) is the initial
symbolic state of the timed automaton, and q0 is the initial observer location.

– A computation step is a triple 〈(�, D)|Q〉
α
� 〈(�′, D′)|Q′〉 for �′ and α such

that (�, v̄) α−→ (�′, v̄′),
D′ =

{
v̄′′ | (�, v̄) α−→ (�′, v̄′) ∧ (�′, v̄′) d−→ (�′, v̄′′) ∧ v̄ ∈ D

}
, and

Q′ =
{

q′ | q
b−→ q′ ∧ q ∈ Q ∧ (�, v̄) α−→ (�′, v̄′) |= b

}
.

Note that the evaluation of b does not depend on the clock values of the observed
timed automata. Thus, if (�, v̄) α−→ (�′, v̄′) is a valid transition satisfying b, then
any valid transition (�, v̄′′) α−→ (�′, v̄′′′) in (l, D) α−→ (l′, D′) will also satisfy b.

4.4 Test Case Generation with Observers

In test case generation with observers, we use the superposition of an observer
onto a timed automaton, and view the test case generation problem as a state-
space exploration problem. To cover a single coverage item qf is the problem of
finding a trace

100 A. Hessel et al.

tr = 〈(�0, v̄0)|{q0}〉 d
�

α
� . . .

d′
�

α′
�

d′′
� 〈(�, v̄)|Q〉 such that qf ∈ Q (11)

It can be shown, that the problem can also be stated based on the symbolic
semantics as

tr = 〈(�0, D0)|{q0}〉
α
� . . .

α′

� 〈(�, D)|Q〉 such that qf ∈ Q (12)

We will use ω(tr) = α . . . α′ to denote the word of the trace tr, or just ω whenever
tr is clear from the context. In general, a single trace tr may cover several
accepting locations of the observer. We say that the trace ω covers n accepting
observer states if there are n accepting states in Q, and we use |Qf ∩Q| to denote
the number of accepting states in Q.

Algorithm 1. Test generation for maximum coverage.
Pass:= ∅; Max := 0; ωmax := ω0;1

Wait:= {〈〈(�0, D0)|{q0}〉, ω0〉};2

while Wait�= ∅ do3

select 〈〈(�, D)|Q〉, ω〉 from Wait;4

if |Qf ∩ Q| > Max then5

ωmax := ω; Max := |Qf ∩ Q|;6

if for all 〈(�,D′)|Q′〉 in Pass: Q �⊆ Q′ or D �⊆ D′ then7

add 〈(�, D)|Q〉 to Pass;8

for all 〈(�′′, D′′)|Q′′〉 such that 〈(�, D)|Q〉
α

� 〈(�′′, D′′)|Q′′〉 do9

add 〈〈(�′′, D′′)|Q′′〉, ωα 〉 to Wait;10

return ωmax and Max;11

We are now ready to describe the test case generation algorithm [7]. We shall
restrict the presentation to an algorithm generating a single trace. The same
technique can be used to produce sets of traces to cover many coverage items.
Alternatively, the timed system model S can be annotated with edges that reset
the system to its initial state. A generated trace can then be interpreted as a set
of test cases separated by the reset edges [27].

An abstract algorithm to compute test case is shown in Algorithm 1. The
algorithm computes the maximum number of coverage items that can be visited
(Max), and returns a trace with maximum coverage (ωmax). The two main data
structures Wait and Pass are used to keep track of the states waiting to be
explored, and the states already explored, respectively.

Initially, the set of already explored states is empty and the only state waiting
to be explored is the extended state 〈〈(�0, D0)|{q0}〉, ω0〉, where ω0 is the empty
trace. The algorithm then repeatedly examines extended states from Wait. If a
state 〈(�, D)|Q〉 found in Wait is included in a state 〈(�, D′)|Q′〉 in Pass, then
obviously 〈(�, D)|Q〉 does not need to be further examined. If not, all successor
states that are reachable from 〈(�, D)|Q〉 in one computation step are put on
Wait, with their traces extended with the action of the computation step from

Testing Real-Time Systems Using UPPAAL 101

Test Execution

CoVer

Test Generation

.xml

verdict

.cfg

.cfg

.obs

.xml IUTExecuter

Fig. 10. Uppaal co�er setup

which they are generated. The state 〈(�, D)|Q〉 is saved in Pass. The algorithm
terminates when Wait is empty.

The variables ωmax and Max are initially set to the empty trace and 0,
respectively. They are updated whenever an extended state is found in Wait

which covers a higher number of coverage items than the current value of Max.
Throughout the execution of the algorithm, the value of Max is the maximum
number of coverage items that have been covered by a single trace, and ωmax is
one such trace. When the algorithm terminates, the two values Max and ωmax

are returned.
It has been shown in e.g. [40] how to extract a concrete diagnostic trace from

traces generated by symbolic model-checkers for timed automata. The same tech-
nique can be directly applied to extract concrete traces with Algorithm 1. Thus,
we can compute traces like Equation 11 from traces like Equation 12 generated
by the algorithm. The results on soundness and completeness of symbolic model-
checking for timed automata also applies to Algorithm 1 since the number of
possible elements in the sets Q is guaranteed to be finite.

4.5 Tool Implementation

The concept of observers and the test case generation algorithm presented in this
section have been implemented in a version of the Uppaal tool, called Uppaal

co�er
3 [28,29]. The current implementation uses bit-vector analysis techniques

to represent and manipulate coverage, and supports an extended version of the
observer language described in this section [7]. For a given coverage criterion
(a set of) test cases can be generated from system specifications described as a
network of Uppaal timed automata [27].

A typical setup in which Uppaal co�er is used to test an IUT is shown in
Figure 10. The setup is divided in two parts, a test generation part for generating
3 More information about Uppaal co�er is available at the web site http://user.-
it.uu.se/~hessel/CoVer/.

102 A. Hessel et al.

and transforming test cases into XML-format, and a test execution part that
executes the tests on the IUT in a controlled environment.

The input to Uppaal co�er is a model, an observer, and a configuration file.
The model is an Uppaal timed automata network (.xml) with a system part and
an environment part. The observer (.obs) expresses the coverage criterion that
steers the exploration during test case generation. The configuration file (.cfg)
describes the signals in the timed automata network that should be considered
as external, i.e. the interactions between the system part and the environment
part. The configuration file also specifies the variables that should be passed as
parameters in the input/ output signals.

The Uppaal co�er tool produces a test suite consisting of a set of test
cases (.xml) that are timed traces where each input and output signal has a
list of parameters with values (according to the configuration file). An Executer
interprets the test cases, executes them, and returns a verdict for each test case.

Uppaal co�er has been used in a large case study in collaboration with
Ericsson, in which model-based testing was applied to test a WAP gateway [29].
In the case study, the session and transaction layers of the WAP protocol were
modeled in detail as Uppaal timed automata, and observers were used to specify
the coverage criteria the test suites should satisfy. The Uppaal co�er tool was
applied to generate test suites that were automatically translated into executable
test scripts that revealed several discrepancies between the model and the actual
implementation.

The observer techniques presented in this section have also been implemented
in a tool operating on a subset of the functional language Erlang [8]. The tool
has been applied in a case study in collaboration with the Swedish tele commu-
nication company Mobile Arts AB.

5 Online Testing

The previous section described offline test generation from timed automata spec-
ifications given test purposes or coverage criteria specified as observer automata
or reachability properties, but was limited to deterministic specifications. How-
ever, for many real-time systems the ordering or timing of events cannot be
known a priory, and hence its behavior can not be appropriately captured by a
deterministic model.

Moreover, as elaborated in Section 6.3, timed automata cannot be deter-
minized, and hence using determinization as intermediate step as is done by
many untimed test generators is infeasible for timed automata, and other ap-
proaches are necessary. Here we present online testing which is a promising
approach. We present a real-time online testing algorithm, its soundness, com-
pleteness and implementation.

5.1 Non-determinism and Time

In general non-determinism in specification is used as a means of abstraction. It
may be that the exact circumstances in the implementation that lead to different

Testing Real-Time Systems Using UPPAAL 103

event orderings or timings are not known or would require a model with too
many details. It may also be that the implementation internally exhibits non-
determinism which cannot be observed or controlled by the tester, e.g., the exact
arrival order and timings of external interrupts. A further typical use of non-
determinism is to model optional behavior that is permitted, but not required
by all implementations.

Non-determinism plays a particular role in real-time systems because it is
used to express timing uncertainty. A typical real-time requirement is that the
IUT must deliver an output within a given time bound, but as long as the
deadline is satisfied, the IUT conforms. In TIOTS, this is specified as a non-
deterministic choice between letting time pass and producing an output. In timed
automata this is described syntactically by using an invariant on a location with
the outgoing edge producing the output (see e.g., location l2 of Figure 5(a) where
the compressor is required to switch on (and off) within r time units.

Further, outputs from the IUT may be delayed by an unpredictable amount of
time in the communication software between the test host and IUT. Some timing
tolerance on most output actions is often required.

A non-deterministic model may reach/occupy several possible states after
having executed an action, and as a consequence it may have different possible
next behaviors. This possible set of states represents the uncertainty the tester
has about the exact state of a (conforming) IUT, and the tester must be prepared
to accept any legal next behavior according to the state set.

Example 10. As examples, consider the simple compressor controller of
Figure 5(a). Upon receiving a medium temperature reading the controller may ei-
ther stay off or switch on the compressor, see Equation 6. Further consider the
timed automata in Figure 11. The following equations list the states that can be
reached after an observable action and a delay. Note that in the second case even
a single transition can result in more (infinite with dense time) states. In this ex-
ample it is not known when the clock x is reset on the internal transition.

{〈l0, x = 3〉} After a = {〈l2, x = 3〉, 〈l4, x = 3〉, 〈l3, x = 0〉}

{〈l5, x = 0〉} After 4 = {〈l5, x = 4〉, 〈l6, 0 ≤ x ≤ 4〉}

l0

l1

l2

l3

l4

x>=7
a?

a?

a?
x=0

(a) S1

l5 l6
x=0

(b) S2

Fig. 11. Two non-deterministic timed automata

104 A. Hessel et al.

Such non-deterministic timed specifications are algorithmically and computa-
tionally more complex to analyze than their untimed counter parts because they
require symbolic manipulation of sets of infinite sets of states.

5.2 A Real-Time Online Testing Algorithm

The test specification input to Algorithm 2 consists of two weakly input enabled
and non-blocking TIOTSs S ‖ E respectively modelling the IUT and its environ-
ment. It maintains the current reachable state set Z ⊆ S ×E that the test spec-
ification can possibly occupy after the timed trace σ observed so far. Knowing
this state-set allows it to choose appropriate inputs and to validate IUT outputs.
Moreover, if the computed state set becomes empty (S ‖ E After σ = ∅), the
IUT has exhibited a timed trace not in the test specification, and the IUTcannot
be rtioco conforming, see Section 3. The possible set of states is computed incre-
mentally event by event.

Algorithm 2. Test generation and execution: TestGenExe(S, E , IUT, T).
Z := {(s0, e0)}; // initialize the state set with initial state1

while Z �= ∅ ∧ �iterations ≤ T do2

switch between action, delay and restart randomly do3

case action: // offer an input4

if EnvOutput(Z) �= ∅ then5

randomly choose i ∈ EnvOutput(Z);6

send i to IUT,;7

Z := Z After i;8

case delay: // wait for an output9

randomly choose d ∈ Delays(Z);10

sleep for d time units or wake up on output o at d′ ≤ d;11

if o occurs then12

Z := Z After d′;13

if o /∈ ImpOutput(Z) then return fail ;14

else Z := Z After o15

else Z := Z After d; // no output within d delay16

case restart: Z := {(s0, e0)}; reset IUT; // reset and restart17

if Z = ∅ then return fail else return pass;18

The tester can perform three basic actions: either send an input (enabled
environment output) to the IUT, wait for an output for some time, or reset
the IUT and restart. If the tester observes an output or a time delay it checks
whether this is legal according to the state set. The state set is updated whenever
an input is given, or an output or a delay is observed.

Illegal occurrence or absence of an output is detected if the state set becomes
empty which is the result if the observed trace is not in the specification. The

Testing Real-Time Systems Using UPPAAL 105

functions used in Algorithm 2 are defined as: EnvOutput(Z) = {a ∈ Ain | ∃(s, e) ∈
Z.e

a−→}, ImpOutput(Z) = {a ∈ Aout | ∃(s, e) ∈ Z.s
a−→}, and Delays(Z) =

{d | ∃(s, e) ∈ Z.e
d⇒} 4. Note that EnvOutput is empty if the environment has

no outputs to offer. Similarly, the Delays function cannot pick at random from
the entire domain of real-numbers if the environment must produce an input to
the IUT model before a certain moment in time.

5.3 Soundness and Completeness

Algorithm 2 constitutes a randomized algorithm for providing stimuli to (in
terms of input and delays) and observing resulting reactions from (in terms of
output) a given IUT. Under a testing hypothesis about the behavior of the IUT
and given that the TIOTSs S and E satisfy the below given assumptions, the
randomization used in Algorithm 2 may be chosen such that the algorithm is
both complete and sound in the sense that it (eventually with probability one)
gives the verdict “fail” in all cases of non-conformance and the verdict “pass” in
cases of conformance.

The hypothesis is based on the results on digitization techniques in [57]5 which
allow the dense-time trace inclusion problem between two sets of timed traces
to be reduced to discrete time. In particular it suffices to choose unit delays in
Algorithm 2 (assuming that the models and the IUT share the same magnitude
of a time unit).

Moreover, if the behavior of the IUT is a non-blocking, input enabled, de-
terministic TIOTS with isolated outputs the reaction to any given timed input
trace σ = d1i1 . . . dkikdi+1 is completely deterministic. More precisely, given the
stimuli σ there is a unique ρ ∈ TTr(IUT) such that ρ ↑ Ain = σ, where ρ ↑ Ain is
the natural projection of the timed trace ρ to the set of input actions. If the IUT
is allowed to be non-deterministic it cannot be guarenteed that all its behavior
have been revealed.

Theorem 1. Assume that the behavior of IUT may be modeled6 as a weakly in-
put enabled, non-blocking, deterministic TIOTS with isolated outputs, TTr(IUT)
and TTr(E) are closed under digitization and that TTr(S) is closed under inverse
digitization. Then Algorithm 2 with only unit delays is sound and complete in
the following senses:
4 According to the definition of rtiocoe given in Section 3, all environment traces and

delays must be considered, not only the delays that can occur in the parallel com-
position of S and E ; in a parallel composition a delay is only permitted if both
components agree. Therefore Delays(Z) extracts the possible delays from the envi-
ronment component e of the system state (s,e) to ensure that the algorithm will try
to wait beyond the specified deadlines before supplying a new input.

5 We refer the reader to [57] for the precise definition of digitization and inverse digi-
tization.

6 The assumption that the IUT can be modeled by a formal object in a given class
is commonly referred to as the test hypothesis. Only its existence is assumed, not a
known instance.

106 A. Hessel et al.

1. Whenever TestGenExe(S, E , IUT, T) = fail then IUT rtiocoE S.
2. Whenever IUT rtiocoE S then Prob

(
TestGenExe(S, E , IUT, T) = fail

) T→∞−−−−→
1
where T is the maximum number of iterations of the while-loop before exiting.

Proof. The proof can be found in [38].

From [57, 34] it follows that the closure properties required in Theorem 1 are
satisfied if the behavior of the IUT and the E are TIOTSs induced by closed timed
automata (i.e. where all guards and invariants are non-strict) and S is a TIOTS
induced by an open timed automaton (i.e. with guards and invariants being
strict). In practice these requirements are not restrictive, e.g. for strict guards
one can always scale the clock constants to obtain arbitrary high precision.

5.4 Tool Implementation

The online testing algorithm Algorithm 2 is implemented in a tool named Up-

paal-TRON [38]: Uppaal extended for Testing Real-time systems ONline. It
implements the setup shown in Figure 12.

We assume that the IUT is a black-box whose state is not directly observable,
i.e., only physical input and output actions are observable. The adapter is an IUT
specific hardware/software component that connects the IUT to TRON and is
responsible for translating abstract input “in” test events into physical stimuli
and physical IUT output observations into abstract model outputs “out”. All
events are time-stamped at testing tool side, meaning that the adapter model
should be included as part of implementation specification. TRON engine loads
the test specification which is a network of timed automata partitioned into
models of the environment and the IUT. The goal of TRON is to emulate and
replace the environment of the IUT: stimulate the IUT with input that is deemed
relevant by the environment part of the model, based on the timed sequence of
input and output actions performed so far.

Because TRON executes on platforms whose execution cannot be entirely
predicted and controlled (e.g. due to operating system scheduling and tool anal-
ysis performance issues), Algorithm 2 is implemented in such a way that TRON
checks the validity of output with timing and also the actual timing of input

Simulated Environment

ImplementationEnvironment
assumptions specification

out?

in!

out!

in?

"in"

"out" Under Test

Implementation
output

input

P
h

ys
ic

al
 A

P
I

A
d

ap
te

r

A
d

ap
te

r
A

P
I

UPPAAL TRON engine

Fig. 12. TRON test setup

Testing Real-Time Systems Using UPPAAL 107

execution. TRON provides an application programming interface to enable pro-
gramming of adapters, and provides the means for loading this as a dynamically
linked library.

Internally, TRON uses matured efficient timed automata symbolic reachability
algorithm from Uppaal [4] to compute the symbolic state set which means
that the model semantics is preserved and analysis is efficient for online testing.
Thus, to compute the operator After the online testing algorithm manipulates
sets of symbolic states (�, D), see Section 2.3, and is constructed such that it
terminates even if the model contains τ action loops. Further information about
the implementation of the required symbolic operations can be found in [38].

To evaluate online testing we have created a number of small academic speci-
fications and implementation (and mutants thereof). The results regarding both
performance and error detection capability are promising. More details can be
found in [38]. We have also evaluated online testing on an industrial case [44], an
electronic refrigeration controller provided by the Danish manufacturer Danfoss
A/S. Besides temperature based compressor regulation it has numerous features
for handling alarms and defrosting cycles, etc.

We found that real-time online testing is an effective means of detecting dis-
crepancies between the model and the implementation in practice. It also appears
feasible performance-wise for such realistic models.

However, large and very non-deterministic models can run into a state explo-
sion making it problematic to update the state-set in real-time which may limit
the granularity of time constraints that can be checked in real-time. In a typical
test run in the Danfoss case, the state-set varied typically between a few symbolic
states and a few hundred symbolic states. Exploring these is unproblematic for
the modern model-checking engine employed by TRON. Updating even medium
sized state-sets with around a 100 states requires only a few milli-seconds of
CPU-time on a modern PC. The largest encountered state-sets (around 3000
states) were very infrequent, and required around 300 milli-seconds.

Real-time online testing thus appears feasible for a large range of embedded
systems.

5.5 Testing = Environment Emulation + Implementation
Monitoring

On closer inspection it turns out that online testing consists of two logically
different functions, namely environment emulation and IUT monitoring:

Environment Emulation: An environment emulator (completely or partly)
replaces the real environment of the IUT, and stimulates the IUT with new
inputs based on the history of previous inputs and observed outputs. An en-
vironment emulator thus executes online in real-time and actively stimulates
the IUT, but does not assign verdicts to the observed trace.

IUT Monitoring: A monitor passively observes the timed input/output se-
quence produced between the IUTand its real-environment, and determines
whether this behavior is (relativized input/output) conforming to the

108 A. Hessel et al.

specification. Hence, the monitor functions as a test oracle. Monitoring is
also sometimes called passive testing.

The monitor can be executed in three different ways. It may run real-
time online in which case non-conformance is reported immediately. This
requires that the monitor has sufficient computational resources to analyze
the model at the pace dictated by the IUT. Alternatively the monitor may
be executed online, but at its own pace (virtual time). Events that are un-
processed are buffered until the monitor becomes ready. Non-conformance
will be reported while the IUTis running, but typically some time after it
has occurred. Finally, the monitor can be executed offline (post-mortem) on
a collected (finite) trace.

Until now we have presented our framework, test-generation and execution
algorithm, and TRON as a tool that performs environment emulation and online
real-time monitoring as an integrated program.

However, in some situations it is beneficial to separate the two functions in
different parts/tools. For example, the two functions can be performed by ded-
icated tools specialized for the particular function or executed on dedicated
platforms (e.g., a hard real-time operating system/computer for environment
emulation and a fast (soft-real-time) number-crunching computer for monitor-
ing). Another example is performance. It may not be possible to evaluate a
large detailed model of the IUT online in real-time (models of the IUT tends to
be larger and much more detailed than the environment model). With a sepa-
rate monitoring function this can be done afterwards or on a separate dedicated
computer.

The explicit separation of the test specification into an environment part and
an IUT part allows TRON to be configured easily to perform both pure emulation
and monitoring as described in the following.

We denote the behavioral model of the IUT with input actions Ain and out-
put actions Aout by S(Ain , Aout). Similarly, we denote the environment by
E(Aout , Ain). Also let U(Ain , Aout) and O(Ain , Aout) denote respectively the
most (universal) and least (passive) discriminating and least discriminating timed
automata, see Section 3. The universal timed automaton is capable of performing
any trace. The passive timed automata silently consume input actions.

To use TRON for pure environment emulator use the intended environment
model E(Aout , Ain) and replace the IUT-model S(Ain , Aout) by U(Ain , Aout).
In consequence TRON will produce timed traces only in E(Aout , Ain). Non-
conformance will never be reported because U(Ain , Aout) allows any timed trace.
This configuration is depicted in Figure 13(a).

Similarly, pure monitoring can be achieved using a slightly modified IUT-
model S′ = S(∅, Ain ∪ Aout) where all input actions are changed to output
actions, see Figure 13(b). This model contains the same traces (ignoring i/o label-
ing) as the original. The environment model must be completely passive and not
contain any inputs (as seen from the IUT point of view), O′ = O(Ain ∪ Aout , ∅).
Thus, with no essential modification to TRON or Algorithm 2 the monitoring
can be executed in simulated time or offline. If the monitor is uncertain about

Testing Real-Time Systems Using UPPAAL 109

output

input

IUT
i

oE U

Env. Emulator

(a) Environment Emulation.

input

output IUT
real

ENV

O′
i

o S′

Monitor

(b) Monitoring.

Fig. 13. Model based emulation and monitoring

input

output IUT

O′
i

o S′

U

i

oE

Monitor

Env. Emulator

Fig. 14. Model-based Testing via Combined Environment Emulation and Monitoring

the state of the IUT when started, Algorithm 2 can be started with a different
(over-approximated) state-set instead of the initial state.

Finally, we observe that online testing can be obtained by running two in-
stances of TRON, one performing monitoring and the other environment emula-
tion, see Figure 14. The two instances may possibly run on different computers.

6 Discussion and Future Work

Model-based test generation for real-time specifications has been investigated
by others (see e.g., [50, 43, 11, 30, 22, 13, 56, 47, 36, 27, 42]), but remain relatively
immature. In this section we discuss our approach to timed testing and compare
to important related work. Also we mention topics for future work in the area.

110 A. Hessel et al.

6.1 Conformance Relations

The choice of conformance relation is important for both theoretical and practi-
cal reasons, yet there is still no wide spread consensus in the community about
its definition.

Our relativized timed input/output conformance relation is a timed and
environment-relativized extension of a solid and widespread implementation re-
lation used in model based conformance testing of untimed systems, namely the
input/output conformance relation by Tretmans [58]. Informally, input/output
conformance requires for all specification traces that the implementation never
produces an output not allowed by the specification, and that it never refuses
to produce an output (forever stays quiescent) when the specification requires
one. As also noted in [36, 42] a timed input/output conformance relation can
be obtained (assuming input enabledness) as timed trace inclusion between the
implementation and its specification.

A fundamental question is how quantitative properties like real-time can be
observed of the physical IUT. E.g., can event occurrences be observed at time
points or only within error bounds, and should such fundamental physical uncer-
tainties be an explicit part of the theory? Similarly, does a concept like quiescence
make sense in a real-time system, or are only time bounded (finite time) ob-
servations possible? New alternative timed implementation relations have been
formulated by Briones and Brinksma in [12].

Another question is related to the goal of real-time testing. Timed trace in-
clusion does not allow the implementation to be faster than the specification. In
some cases this may be unsafe. However, in many other cases it seems natural
that the implementation should be allowed to be as fast as possible. Therefore
faster-than type relations have been proposed [19, 46]. Thus there seem to be
a unclear cut boundary between real-time correctness testing and performance
testing.

6.2 Specification of Tests

The test cases to be executed on the IUT can be selected by different means.
Typical approaches are test purposes, model-coverage criteria, fault-models (see
e.g., [30, 22]) , or randomly.

Test purposes are specific observation objectives formulated by the test en-
gineer, see e.g. [23, 54]. Another popular approach is to cover the model in the
hope that a covering test suite is also thorough. Further, model coverage is an
important measure for estimating the confidence the developers can have in the
executed tests.

In typical approaches, the selection of test cases follows some particular cov-
erage criterion, such as coverage of control states, edges, etc. For finite-state
machines several approaches focus on particular coverage criteria, e.g., Bouquet
and Legeard [9] synthesize test cases corresponding to combinations of choices
of control flow and boundary values of state variables. Nielsen and Skou [48]
generate test cases from timed automata that cover different time-domains rep-
resented as reachable symbolic states.

Testing Real-Time Systems Using UPPAAL 111

Since different coverage criteria are suitable in different situations, and satisfy
different constraints on fault detection capability, cost, information about where
potential faults may be located, etc., it is highly desirable that a test generation
tool is able to generate test suites in a flexible manner, for a wide variety of
different coverage criteria. In other words, a test generation tool should accept
a simple specification of a coverage criterion, given in a language that can eas-
ily specify a large set of coverage criteria, and be able to generate test suites
accordingly. Hong et al [32,31] describe how flow-based coverage criteria can be
expressed in temporal logic. Friedman et al [24] specifies coverage by giving a set
of projections of the state space (e.g., on individual state variables, components
of control flow) that should be covered, possibly under some restrictions.

The observer approach described in this chapter generalizes these approaches
and provides such a flexible language. Test purposes can in some sense be re-
garded as coverage observers, but are not used to specify more generic coverage
criteria and do not make use of parameterization, as we do.

Where offline test generationuses symbolic and constraint solving algorithms to
satisfy a coverage criterion, online test generators typically uses cheap randomized
choice techniques, and can thus not guarantee satisfaction of the coverage crite-
ria, or only provide a probabilistic guarantee provided (unrealistic) long execution
time. The achieved coverage of an online testing session can easily be evaluated
post-mortem by comparing the collected timed trace with the model. This can
for instance be done by executing the timed trace on the model suitably extended
with auxiliary coverage or meta-variables, as described in Section 4.2. Another ap-
proach is to dynamically collect coverage information during the test run and use
this to guide (reduce the random choices) toward uncovered parts of the model.

Except for the obvious extensions of untimed coverage criteria, there exists
very little research [48, 16] that deals explicitly with real-time coverage criteria,
i.e., criteria that tries to cover the time domain and timer/clock values of a timed
specification. Future work includes formulating such real-time coverage criteria
and extending the observer approach to allow easy specification of these.

6.3 Test Generation Algorithms

Many model-checker based test generators that generate tests from a coverage
criterion invoke the model checker for each coverage item resulting in a single
test case per coverage item, see e.g., [25]. This not only results in many test cases
and a large test generation overhead, but also a large test execution overhead
because many sub-sequences will be identical. It may be more efficient to cover
several items by the same test, and generate a test suite that covers the model
as much as possible, as our algorithm in Section 4.4. However, this requires that
the model checker is extended with dedicated search and pruning algorithms
and efficient bit vector encodings of the coverage criteria. We also expect such
efficient encodings to play an important role in monitoring and guiding the online
test generator toward a coverage goal.

Moreover, whereas most other work on optimizing test suites, e.g. [1, 60, 33],
focus on minimizing the length of the test suite, our technique may also reduce

112 A. Hessel et al.

the actual execution time, because it considers that some events take longer to
produce or and take real-time constraints into account. It may even produce the
time optimal test sequences.

Most offline algorithms explicitly determinize the specification [18, 35, 47] as
an intermediate step. However, for expressive formalisms like TA this approach
is problematic because in general they cannot be determinized.

It is well-known that from the theory of timed automata that non-deterministic
timed automata (unlike finite automata) cannot be determinized to a language
equivalent deterministic timed automata [2]. It is also not in general possible to
remove internal transitions from a timed automata (and when they can, it may be
very costly) [61]. Much work on timed test generation from TA therefore restrict
the amount and type of allowed non-determinism: [56,22,27] completely disallow
non-determinism, [36, 47] restrict the use of clocks, guards or clock resets. This
gives a less expressive and less flexible specification language. In contrast, online
testing is automatically adaptive and only implicitly determinizes the specifica-
tion, and only partially up to the concrete trace observed so far.

Our approach to online testing is inspired by the (untimed) algorithm pro-
posed by Tretmans et. al. in [63,6]. They have implemented online testing from
Promela [63] and Lotos specifications in the TorX [62] tool, and practical ap-
plication to real case studies show promising results [59, 62, 6]. However, TorX

provides no support for real-time. Similarly to Krichen and Tripakis [55, 42] we
use symbolic reachability computation algorithms to track the current state-set
for timed automata with unrestricted non-determinism. We extend the Uppaal

model-checker resulting in an integrated and mature testing and verification tool.
It seems likely that a combination of the strengths of offline and online test-

ing will require the notion of games. In a two-player game one player is trying
to reach a winning state by performing controllable game-moves while being
affected by uncontrollable moves by the opponent. Translated into testing this
corresponds to the situation where the tester is trying reach a state where the test
purpose (or coverage criterion) is satisfied by giving controllable inputs to the
IUT (the opponent) that responds by making uncontrollable and unpredictable
output actions. The goal of the test generator is to compute a winning strategy
that will partly be computed statically and partly be interpreted and computed
dynamically. Although promising work is in progress on such timed games [10]
the required concepts are not sufficiently well developed yet.

The Uppaal framework is perfectly suited for exploring timed properties of
the model, but there is little effort done toward combining it with more compli-
cated test data generation. The recent release of Uppaal supports C-like data
declarations which would enable to combine and implement ideas from [37].

6.4 Real-Time Test Execution and Diagnostics

The execution of real-time test cases is also a challenge, both for online and
offline generated tests, because the test execution system is a real-time system
with deadlines and potential narrow tolerances. There are two main problems.
One is that the host platform may cause unpredictable real-time performance

Testing Real-Time Systems Using UPPAAL 113

of the tester because of scheduling latency, competing processes, i/o activity
and disturbances from competing processes. The other is that there is commu-
nication media between the tester and the IUT that must be factored into the
test generation or execution. It introduces latency and uncertainty on the order
and timing of observations. These problems are not only technical engineering
problems, but also seem to require clarification at a semantic and theoretical
level.

When non-conformance has been detected the next step is to diagnose why
the run failed. It may be an error in the specification, the adaptor layer, or the
implementation. If the error is in the implementation the exact cause has to be
found and corrected, and regression testing must be performed.

For online testers these issues are especially problematic, because test se-
quences are typically very long and randomly generated, and hence are difficult
to diagnose and reproduce for regression testing. The current TRON implemen-
tation assumes that the fault appears in the last testing step and gives a hint
about what output was expected and when, and prints information about the
last known non-empty state-set. While very helpful, it does not necessarily in-
dicate the cause of the fault, which may have been caused by an internal fault
executed by the IUT much earlier. Also TRON allows a recorded timed trace to
be replayed against the implementation. However, doing so for long traces with
narrow timing tolerances is technically very challenging.

In the future we plan to combine coverage facts with information about passed
and failed test runs, in the hope that difference in coverage (of the model or code)
could help locate the cause of the error, an approach inspired by the concept of
delta-debugging [64].

7 Conclusions

In this chapter we reviewed progress on formal model-based testing of real-time
systems. We presented a testing framework consisting of a formal, timed speci-
fication language, timed automata, and a formal real-time correctness relation,
relativized input/output conformance. We conclude that this framework is solid,
technically sound and works well in practice. Based on this common framework
we demonstrated two extreme approaches to timed test generation. In offline (op-
timal) satisfaction of test purpose or coverage criterion is the aim, while online
testing ensures thoroughness through volume and brute-force.

These approaches are implemented by (substantially) extending the efficient
algorithms and data structures from the Uppaal model-checker. We find such
a mature tool and efficient machinery important for the practical use of the test
generation techniques.

Overall, we conclude that significant progress has been made in the area of
timed testing, but also that many exciting and important challenges remain.
These range from technical engineering problems to principal semantic (and
perhaps philosophical) ones.

114 A. Hessel et al.

Acknowledgements

We would like to thank the anonymous reviewers for their detailed and construc-
tive comments that greatly helped improving this presentation.

References

1. Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.Ü.: An Optimization Technique for
Protocol Conformance Test Generation Based on UIO Sequences and Rural Chi-
nese Postman Tours. IEEE Transactions on Communications 39(11), 1604–1615
(1991)

2. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for Real-Time Systems. In:
Proc. of Logic in Computer Science, Jun 1990, pp. 414–425. IEEE Computer So-
ciety Press, Los Alamitos (1990)

4. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.:
Uppaal implementation secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT
2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)

5. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.:
Efficient Guiding Towards Cost-Optimality in UPPAAL. In: Margaria, T., Yi, W.
(eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 174–188. Springer,
Heidelberg (2001)

6. Belinfante, A., Feenstra, J., de Vries, R.G., Tretmans, J., Goga, N., Feijs, L., Mauw,
S., Heerink, L.: Formal test automation: A simple experiment. In: Csopaki, G.,
Dibuz, S., Tarnay, K. (eds.) 12th Int. Workshop on Testing of Communicating
Systems, pp. 179–196. Kluwer Academic Publishers, Dordrecht (1999)

7. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test
cases using observer automata. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004.
LNCS, vol. 3395, pp. 125–139. Springer, Heidelberg (2005)

8. Blom, J., Jonsson, B.: Automated test generation for industrial erlang applications.
In: Proc. 2003 ACM SIGPLAN workshop on Erlang, Uppsala, Sweden, pp. 8–14
(August 2003)

9. Bouquet, F., Legeard, B.: Reification of executable test scripts in formal
specification-based test generation: The java card transaction mechanism case
study. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 778–795. Springer, Heidelberg (2003)

10. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal Strategies in Priced
Timed Game Autoamata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004.
LNCS, vol. 3328, Springer, Heidelberg (2004)

11. Braberman, V., Felder, M., Marré, M.: Testing Timing Behaviors of Real Time
Software. In: Quality Week 1997, San Francisco, USA, pp. 143–155 (April-May
1997)

12. Briones, L.B., Brinksma, E.: A Test Generation Framework for Quiescent Real-
Time Systems. In: Grabowski, J., Nielsen, B. (eds.) International workshop on
Formal Approaches to Testing of Software. Co-located with IEEE Conference on
Automates Software Engineering 2004, Linz, Austria, pp. 64–78 (September 2004)

13. Cardell-Oliver, R.: Conformance Testing of Real-Time Systems with Timed Au-
tomata. Formal Aspects of Computing 12(5), 350–371 (2000)

Testing Real-Time Systems Using UPPAAL 115

14. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage
to software testing. Software Engineering Journal 9(5), 193–200 (1994)

15. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering 4(3), 178–187 (1978)

16. Clarke, D., Lee, I.: Testing Real-Time Constraints in a Process Algebraic Setting.
In: 17th International Conference on Software Engineering (1995)

17. Clarke, L.A., Podgurski, A., Richardsson, D.J., Zeil, S.J.: A formal evaluation of
data flow path selection criteria. IEEE Trans. on Software Engineering 15(11),
1318–1332 (1989)

18. Cleaveland, R., Hennessy, M.: Testing Equivalence as a Bisimulation Equivalence.
Formal Aspects of Computing 5, 1–20 (1993)

19. Cleaveland, R., Zwarico, A.E.: A Theory of Testing for Real-Time. In: Sixth Annual
IEEE Symposium on Logic in Computer Science, pp. 110–119 (1991)

20. Daws, C., Olivero, A., Yovine, S.: Verifying ET-LOTOS programs with Kronos.
In: Hogrefe, D., Leue, S. (eds.) Proc. of 7th Int. Conf. on Formal Description
Techniques, North-Holland, Amsterdam (1994)

21. Dill, D.: Timing Assumptions and Verification of Finite-State Concurrent Systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

22. En-Nouaary, A., Dssouli, R., Khendek, F., Elqortobi, A.: Timed Test Cases Genera-
tion Based on State Characterization Technique. In: 19th IEEE Real-Time Systems
Symposium (RTSS 1998), December 2–4 1998, pp. 220–229 (1998)

23. Fernandez, J.-C., Jard, C., Jéron, T., Viho, C.: An experiment in automatic gener-
ation of test suites for protocols with verification technology. Science of Computer
Programming 29 (1997)

24. Friedman, G., Hartman, A., Nagin, K., Shiran, T.: Projected state machine cov-
erage for software testing. In: Proc. ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 134–143 (2002)

25. Heimdahl, M.P.E., Rayadurgam, S., Visser, W., Devaraj, G., Gao, J.: Auto-
generating Test Sequences Usiong Model Checkers: A Case Study. In: Petrenko,
A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, Springer, Heidelberg (2004)

26. Herman, P.M.: A data flow analysis approach to program testing. Australian Com-
puter J. 8(3) (November 1976)

27. Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-Optimal Real-
Time Test Case Generation using UPPAAL. In: Petrenko, A., Ulrich, A. (eds.)
FATES 2003. LNCS, vol. 2931, pp. 136–151. Springer, Heidelberg (2004)

28. Hessel, A., Pettersson, P.: A test generation algorithm for real-time systems. In:
Ehrich, H.-D., Schewe, K.-D. (eds.) Proc. of 4th Int. Conf. on Quality Software,
September 2004, pp. 268–273. IEEE Computer Society Press, Los Alamitos (2004)

29. Hessel, A., Pettersson, P.: Model-Based Testing of a WAP Gateway: an Industrial
Study. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS
2006 and PDMC 2006. LNCS, vol. 4346, Springer, Heidelberg (2007)

30. Higashino, T., Nakata, A., Taniguchi, K., Cavalli, A.R.: Generating Test Cases
for a Timed I/O Automaton Model. In: Csopaki, G., Dibuz, S., Tarnay, K. (eds.)
Testing of Communicating Systems: Method and Applications, IFIP TC6 12th
International Workshop on Testing Communicating Systems (IWTCS), Budapest,
Hungary, September 1–3, 1999. IFIP Conference Proceedings, vol. 147, pp. 197–
214. Kluwer, Dordrecht (1999)

31. Hong, H.S., Cha, S.D., Lee, I., Sokolsky, O., Ural, H.: Data flow testing as model
checking. In: ICSE 2003: 25th Int. Conf. on Software Enginering, May 2003, pp.
232–242 (2003)

116 A. Hessel et al.

32. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test
coverage. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002.
LNCS, vol. 2280, pp. 327–341. Springer, Heidelberg (2002)

33. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A Temporal Logic Based Theory of Test
Coverage and Generation. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and
TACAS 2002. LNCS, vol. 2280, pp. 327–341. Springer, Heidelberg (2002)

34. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for
timed automata. In: 18th IEEE Symposium on Logic in Computer Science (LICS
2003), Ottawa, Canada, June 2003, pp. 198–207. IEEE Computer Society Press,
Los Alamitos (2003)

35. Jéron, T., Morel, P.: Test generation derived from model-checking. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 108–122. Springer, Heidel-
berg (1999)

36. Khoumsi, A., Jéron, T., Marchand, H.: Test cases generation for nondeterministic
real-time systems. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931,
Springer, Heidelberg (2004)

37. Koopman, P.W.M., Alimarine, A., Tretmans, J., Plasmeijer, M.J.: Gast: Generic
automated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003)

38. Larsen, K., Mikucionis, M., Nielsen, B.: Online Testing of Real-time Systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) International workshop on Formal Ap-
proaches to Testing of Software. Co-located with IEEE Conference on Automates
Software Engineering 2004, Linz, Austria (September 2004)

39. Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson,
P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced
timed automat. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001)

40. Larsen, K.G., Pettersson, P., Yi, W.: Diagnostic Model-Checking for Real-Time
Systems. In: Proc. of Workshop on Verification and Control of Hybrid Systems III,
October 1995. LNCS, vol. 1066, pp. 575–586. Springer, Heidelberg (1995)

41. Laski, J.W., Korel, B.: A data flow oriented program testing strategy. IEEE Trans-
actions on Software Engineering SE-9(3), 347–354 (1983)

42. Krichen, M., Tripakis, S.: Black-box Conformance Testing for Real-Time Systems.
In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, Springer, Heidelberg
(2004)

43. Mandrioli, D., Morasca, S., Morzenti, A.: Generating Test Cases for Real-Time
Systems from Logic Specifications. ACM Transactions on Computer Systems 13(4),
365–398 (1995)

44. Mikucionis, M., Larsen, K.G., Nielsen, B., Skou, A.: Testing rea-time embedded
software using uppaal-tron —an industrial case study. In: Embedded Software (EM-
SOFT), New Jersey, USA (September 2005)

45. Myers, G.: The Art of Software Testing. Wiley-Interscience, Chichester (1979)
46. Núñez, M., Rodŕıguez, I.: Conformance Testing Relations for Timed Systems. In:

Grieskamp, W., Weise, C. (eds.) International workshop on Formal Approaches
to Testing of Software, Co-located with Computer Aided Verification, Edinburgh,
Scotland, UK (July 2005)

47. Nielsen, B., Skou, A.: Automated Test Generation from Timed Automata. In:
Tools and Algorithms for the Construction and Analysis of Systems, April 2001,
pp. 343–357 (2001)

48. Nielsenand, B., Skou, A.: Automated test generation from timed automata. Inter-
national Journal on Software Tools for Technology Transfer 5, 59–77 (2003)

Testing Real-Time Systems Using UPPAAL 117

49. Ntafos, S.: A comparison of some structural testing strategies. IEEE Transaction
on Software Engineering 14, 868–874 (1988)

50. Peleska, J., Amthor, P., Dick, S., Meyer, O., Siegel, M., Zahlten, C.: Testing Re-
active Real-Time Systems. In: Material for the School – 5th International School
and Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT 1998), Lyngby, Denmark (1998)

51. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Transactions on Software Engineering 11(4), 367–375 (1985)

52. RCTA, Washington D.C., USA. RTCA/DO-178B, Software Considerations in Air-
borne Systems and Equipment Certifications (December 1992)

53. Rokicki, T.G., Myers, C.J.: Automatic verification of timed circuits. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 468–480. Springer, Heidelberg (1994)

54. Rusu, V., du Bousquet, L., Jéron, T.: An approach to symbolic test generation. In:
Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp.
338–357. Springer, Heidelberg (2000)

55. Tripakis, S.: Fault Diagnosis for Timed Automata. In: Damm, W., Olderog, E.-R.
(eds.) FTRTFT 2002. LNCS, vol. 2469, Springer, Heidelberg (2002)

56. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing Timed Automata. The-
oretical Computer Science 254(1–2), 225–257 (2001)

57. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

58. Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg
(1999)

59. Tretmans, J., Belinfante, A.: Automatic testing with formal methods. In: Eu-
roSTAR 1999: 7th European Int. Conference on Software Testing, Analysis & Re-
view. Barcelona, Spain. EuroStar Conferences, Galway, Ireland, November 8–12
(1999)

60. Ümit Uyar, M., Fecko, M.A., Sethi, A.S., Amar, P.D.: Testing Protocols Modeled
as FSMs with Timing Parameters. Computer Networks: The International Journal
of Computer and Telecommunication Networking 31(18), 1967–1998 (1999)

61. Diekert, V., Gastin, P., Petit, A.: Removing epsilon-Transitions in Timed Au-
tomata. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp.
583–594. Springer, Heidelberg (1997)

62. de Vries, R., Tretmans, J., Belinfante, A., Feenstra, J., Feijs, L., Mauw, S., Goga,
N., Heerink, L., de Heer, A.: Côte de resyste in PROGRESS. In: STW Technology
Foundation, editor, PROGRESS 2000 – Workshop on Embedded Systems, October
2000, pp. 141–148. The Netherlands, Utrecht (2000)

63. de Vries, R.G., Tretmans, J.: On-the-fly conformance testing using SPIN. Software
Tools for Technology Transfer 2(4), 382–393 (2000)

64. Zeller, A., Hildebrandt, R.: Simplifying and Isolating Failure-Inducing Input. IEEE
Transactions on Software Engineering 28(2), 183–200 (2002)

	Testing Real-Time Systems Using UPPAAL
	Introduction
	Approach and Chapter Outline
	Offline Test Generation
	Online Testing

	Specification of Real-Time Systems
	Environment and System Modelling
	Timed I/O Transition Systems
	Timed Automata

	Relativized Timed Conformance
	Offline Test Generation
	Test-Case Generation by Model-Checking
	Coverage-Based Test Case Generation
	Test Case Generation Using Observers
	Test Case Generation with Observers
	Tool Implementation

	Online Testing
	Non-determinism and Time
	A Real-Time Online Testing Algorithm
	Soundness and Completeness
	Tool Implementation
	Testing = Environment Emulation + Implementation Monitoring

	Discussion and Future Work
	Conformance Relations
	Specification of Tests
	Test Generation Algorithms
	Real-Time Test Execution and Diagnostics

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

