Vertex-Centric Graph Processing: Good, Bad, and the Ugly

Arijit Khan
Nanyang Technological University, Singapore
arijit. khan@ntu.edu.sg

ABSTRACT

We study distributed graph algorithms that adopt an itezatertex-
centric framework for graph processing, popularized by @as
Pregel system. Since then, there are several attempts te-imp
ment many graph algorithms in a vertex-centric framewoskyall

as efforts to design optimization techniques for improving ef-
ficiency. However, to the best of our knowledge, there has not
been any systematic study to compare these vertex-cemtpie-i
mentations with their sequential counterparts. Our pagdresses
this gap in two ways. (1) We analyze the computational com-
plexity of such implementations with the notion of time-pessor
product, and benchmark several vertex-centric graph idhogos
whether they perform more work with respect to their besivkm
sequential solutions. (2) Employing the concept of baldmac-
tical Pregel algorithms, we study if these implementatisuffer
from imbalanced workload and large number of iterations.r Ou
findings illustrate that with the exception of Euler touretralgo-
rithm, all other algorithms either perform asymptoticatipre work
than their best-known sequential approach, or suffer fnorai-
anced workload/ large number of iterations, or even both.alsle
emphasize on graph algorithms that are fundamentally diffto

be expressed in vertex-centric frameworks, and concluddigy
cussing the road ahead for distributed graph processing.

1. INTRODUCTION

In order to achieve low latency and high throughput over mas-
sive graph datasets, data centers and cloud operatorslenasale-
out solutions, in which the graph and its data are partitioner-
izontally across cheap commodity servers in the clustee dik-
tributed programming model for large graphs has been pdpath
by Google’s Pregel framework [4], which was inspired by thékB
Synchronous Parallel (BSP) model [12]. It hides distribatre-
lated details such as data partitioning, communicatiodgtging
system architecture, and fault tolerance behind an albst@t
In Pregel, also known as thaink-like-a-vertexmodel, graph al-
gorithms are expressed as a sequence of iterations calpea-su
steps. During a superstep, Pregel executes a user-definetibfu
for each vertex in parallel. The user-defined function djescthe
operation at a single vertexand at a single superste&p The su-

©?2017, Copyright is with the authors. Published in Proc. 20ter-

national Conference on Extending Database Technology (BP®arch

21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on Opmceed-
ings.org. Distribution of this paper is permitted under tiwens of the Cre-
ative Commons license CC-by-nc-nd 4.0

persteps are globally synchronous among all vertices, @sdages
are usually sent along the outgoing edges from each vertex.

With the inception of the Pregel framework, vertex-centlis-
tributed graph processing has become a hot topic in the asgab
community (for a survey, see [13]). Although Pregel proside
high-level distributed programming abstract, it suffemsni effi-
ciency issues such as the overhead of global synchronizddime
volume of messages, imbalanced workload, and straggldr- pro
lem due to slower machines. Therefore, more advanced vertex
centric models (and its variants) have been proposed, asgn-
chronous (GraphLab), asynchronous parallel (GRACE)drdess
asynchronous parallel (Giraph Unchained), data parddedghX,
Pregelix), gather-apply-scatter (PowerGraph), timetafliaw (Na-
iad), and subgraph centric frameworks (NScale, Giraph¥ayi-
ous algorithmic and system-specific optimization techesgqwere
also designed, e.g., graph partitioning and re-partitigncombin-
ers and aggregators, vertex scheduling, superstep shargsgage
reduction, finishing computations serially, among mangergh

While speeding up any algorithm is always significant in &0
right, there may be circumstances in which we would not benefi
greatly from doing so. McSherry et. al. [5] empirically demo
strated that single-threaded implementations of manyhrgedgo-
rithms using a high-end 2014 laptop are often an order of iagn
tude faster than the published results for state-of-thdistributed
graph processing systems using multiple commodity mastane
hundreds of cores over the same datasets. Surprisinglythétex-
ception of [14], the complexity of vertex-centric graph @ighms
has never been formally analyzed. As one may realize, thistis
a trivial problem — there are multiple factors involved in &-d
tributed environment including the number of processoosu-
tation time, network bandwidth, communication volume, arein-
ory usage. To this end, we make the following contributions.

o We formally analyze the computational complexity of vertex
centric implementations with the notion of time-processor
product [12], and benchmark several vertex-centric gréph a
gorithms whether they perform asymptotically more work in
comparison to their best-known sequential algorithms.

e We use the concept of balanced, practical Pregel algorithms
[14] to investigate if these vertex-centric algorithmsfeuf
from imbalanced workload and large number of iterations.

While the notion of balanced, practical Pregel algorithnas in-
troduced by Yan et. al. [14], they only considered the cotetec
component-based algorithms. On the contrary, in this papeae-
port as many as fifteen different graph algorithms (Tablevhpse
vertex-centric algorithms were implemented in the literat Fi-
nally, we also identify graph workloads and algorithms tratdif-
ficult to be expressed in the vertex-centric framework, dgtifght
some important research directions.

‘ ‘ Graph ” Vertex-Centric ”

Best Sequential ” Vertex-Centric

Workload Algorithm | Complexity Algorithm Complexity More Work? | BPPA?
1 Diameter (Unweighted) [6] O(mn) BFS [9] O(mn) No No
2 PageRank [4] O(mK) power iteration O(mK) No No
3 Connected Component Hash-Min [4] O(md) BFS[3 O(m +n) Yes No
4 Connected Component S-V [14] O((m + n)logn) BFS [3 O(m+n) Yes No
5 Bi-Connected Component 14 O((m + n)logn) DFS [3 O(m +n) Yes No
6 Weakly Connected Component 14 O((m + n)logn) BFS [3 O(m +n) Yes No
7 Strongly Connected Component 14 O((m + n)logn) DFS [11] O(m+n) Yes No
8 Euler Tour of Tree 14 O(n) DFS O(n) No Yes
9 Pre- & Post-order Tree Traversal 14 O(nlogn) DFS O(n) Yes Yes
10 Spanning Tree 14 O((m + n)logn) BFS O(m+n) Yes No
11 Minimum Cost Spanning Tree [10] O(dmlogn) Chazelle’s algorithm O(ma(m,n)) Yes No
12 | Betweenness Centrality (Unweighte 8 O(mn) Brandes’ algorithm O(mn) No No
13 Single-Source Shortest Path 4 O(mn) Dijkstra with Fibonacci heap| O(m + nlogn) Yes No
14 | All-pair Shortest Paths (Unweighted) 6 O(mn) Chan'’s algoithm O(mn) No No
15 Graph Simulatiorf I [1 O(mZ(ng + my)) Henzinger et. al. [2] O ((m +n) (mg + ng)) Yes No

Table 1:Efficiency analysis for vertex-centric graph algorithmsiatles =n, # edges an, diameter =

(a) superstep 0 (b) Superstep 1 (C) Superstep 2
Figure 1:Vertex-centric algorithm for diameter computation in uiigigted graphs

2. PRELIMINARIES

2.1 Time-Processor Product
Time-processor product was employed by Valiant [12] as acom

plexity measure of algorithms on the BSP model, defined by the

following parameters. (1) Bandwidth parametergisthat mea-
sures the permeability of the network to continuously seaffi¢

to uniformly-random destinations. The parametés defined such
that anh-relation will be delivered in timéyg. (2) Synchronization
periodicity is L, where the components at regular intervalslof
time units are synchronized. In a superstep of periodiEity. lo-

cal operations anflL /g | -relation message patterns can be realized.
(3) The number of processorsps Letw; be the amount of local
work performed by processoin a given superstep. Assuragand

messages sent/received by each vertiexO(d(v)) (or, O(din (v)+
dout(v))). (4) The algorithm terminates afté¥(log n) supersteps.
Properties 1-3 offer good load balancing and linear costaahe
superstep, whereas property 4 impacts the total running tim

3. COMPLEXITY ANALYSIS

We summarize the complexity of fifteen vertex-centric graph
gorithms in Table 1. We shall discuss five of them in the foltoyv

3.1 Diameter Computation

We consider a vertex-centric algorithm [6] that computesek-
act diameter of an unweighted graph. Let us denote the eazignt
e(v) of a vertexv as the largest hop-count distance frorto any
other vertex in the graph. The diameteof the graph is defined
as the maximum eccentricity over all its nodes. Instead aliriign
this largest vertex eccentricity one-by-one, the alganithiorks by
computing the eccentricity of all vertices simultaneously

We illustrate in Figure 1 the eccentricity computation noetlof
one vertex. Initially, each vertex adds it's own unique idthe
outgoing messages (sent along the outgoing edges) andalse t

r; be the number of messages sent and received, respectiyely, b history set, which resides in the local memory of that vertak

processoi. Letw = max?_; w;, andh = max?_, (max(s;, rs)).
Then, the time for a supersteprisax(w, gh, L).

ter the initial superstep, the algorithm operates by itegathrough
the set of received ids, which correspond to the verticesstva the

If we have multiple processors, we can solve a problem more original messages. The receiving vertex then construeisaf sut-

quickly by dividing it into independent sub-problems andivsw
them at the same time, one at each processor. Given an iaput, Si
the running timel'(n) is the elapsed time from when the first pro-
cessor begins executing to when the last processor stopstag

A BSP algorithm for a given problem is called efficient if itopes-
sor boundP(n) and time bound’(n) are such that time-processor
productP(n)T'(n) = O(S), whereS is the running time of the
best-known sequential algorithm for the problem, provitteat L
and g are below certain critical values. Therefore, with this met
ric, we measure whether a vertex-centric algorithm perfonmore
work, compared to the problem’s best-known sequentialrilgo.

2.2 Balanced, Practical Pregel Algorithms

For an undirected graph, we denoted{y) the degree of vertex
v. On the other hand, let;,, (v) andd..:(v) denote the in-degree
and out-degree, respectively, of vertexn a directed graph. A
Pregel algorithm is called a balanced, practical Pregeardakgn
(BPPA) [14] if it satisfies the following. (1) Each vertexuses
O(d(v)) (or, O(din(v) +dout(v))) Storage. (2) The time complex-
ity of the vertex-compute() function for each vertexs O(d(v))
(or, O(din(v) + dout(v))). (3) At each superstep, the size of the

1K is # iterations for convergence,() functional inverse of Ackermann’s func-
tion. n, andm the number of nodes and edges, respectively, in the quephgra

2For higher values o, the time-processor product would be even higher.

going messages by adding each element of the incoming setiwhi
was not seen yet. The reason for keeping a history of thenatigi
ing ids that were received earlier is to prevent the re-pyapan of

a message to the same vertices. The history set also sepesnto
the set of total messages by eliminating message paths thdd w
never result in the vertex’s eccentricity.

Assuming the graph is connected, each vertex will process a
message from each originating vertex exactly once. Theitigo
terminates when the largest eccentricity is calculatedt there-
fore, the diameter of the graph is equal to the number of stges
(minus 1, for the final, non-processing superstep).

Since each vertex generates a unique message, there dre tota

O(n) messages. Each message is pag3gt) times, resulting in

a message complexity @¥(mn). There are totaD(J) supersteps.
Each vertex processesmessages; therefore, the overall computa-
tion cost isO(n?). Assuming bandwidth parametéy = O(1),

the time-processor product@(mn), which is equal to the com-
plexity of the best-known sequential algorithm.

However, this vertex-centric algorithm is not BPPA becay$g
The number of messages that each vertextays can be asymptot-
ically larger thanO(d(v)) at later supersteps. (2) Given that each
vertexv must store a history of the messages received, each vertex
storesO(n) vertex IDs, which is larger tha®(d(v)). (3) There
are totalO(¢) supersteps, which could be larger th@flog n).

6@%@@”@6

(©

(@) (b)

Figure 2:Forest structure of S-V algorithm [14]

----- &-@8
A

(a) Tree- (D) Star-hooking (C) Shortcut-
hooking ting
Figure 3:Tree hooking, star hooking, and shortcutting [14]

3.2 Connected Component
We study two vertex-centric algorithms: Hash-min and S-4][1

3.2.1 Hash-Min Algorithm

We assume that each vertex in a grépls assigned a unique ID.
The color of a connected componentiris defined as the smallest
vertex among all vertices in the component. In Superste@dh e
vertexv initializesmin(v) as the smallest vertex in the ¢} U
neighbors(v)), sendsmin(v) to all v's neighbors, and votes to
halt. In each subsequent superstep, a verteRtains the smallest
vertex from the incoming messages, denotedubyif v < v, v
setsmin(v) = w and sendsnin(v) to all its neighbors. Finally,
v votes to halt. When all vertices vote to halt and there is n@ ne
message in the network, the algorithm terminates.

It takes at most)(§) supersteps for the ID of the smallest ver-
tex to reach all the vertices in a connected component, aaddh
superstep, each vertextakes at most(d(v)) time to compute
min(v) and sends/receive®(d(v)) messages each usir@(1)
space. Therefore, it is a balanced Pregel algorithm (iatisfees
properties 1-3), but not BPPA since the number of superstaps
be larger thar©(log n), e.g., for a straight-line graph.

Each superstep consists@fm) messages an@(m) computa-
tions. Assumingy = O(1), the time-processor product®(mJ).
This is more than the complexity of the best-known sequkatia
gorithm, which is due to BFS with complexit(m + n).

3.2.2 Shiloach-Vishkin (S-V) Algorithm

In the S-V algorithm, each vertex maintains a pointeD[u].
Initially, D[u] = u, forming a self-loop as depicted in Figure 2(a).
During the algorithm, vertices are arranged by a forest shah
all vertices in each tree in the forest belong to the sameexed
component. The tree definition is relaxed a bit to allow tke toot
w to have a self-loop (see Figures 2(b) and 2(c)), iYy] = w;
while D[v] of any other verteX in the tree points tae's parent.

The S-V algorithm proceeds in iterations, and in each iienat
the pointers are updated in three steps (Figure 3)tré&)hooking
for each edgéu, v), if u’s parentw = D[u] is a tree root, hookw
as a child ofv’'s parentD[v] (i.e., merge the tree rooted atinto
v's tree); (2)star hooking for each edgéu, v), if u is in a star (see
Figure 2(c) for an example of star), hook the stav’stree as Step
(1) does; (3shortcutting for each vertex, move vertexv and its
descendants closer to the tree root, by hookirtg the parent of
v's parent, i.e., settind@[v] = D[D[v]]. The algorithm terminates
when every vertex is in a star. We perform tree hooking in $igp
and star hooking in Step (2) only iP[v] < D][u], which ensures
that the pointer values monotonically decrease.

It was proved that the above S-V algorithm computes condecte

oo
@) O,
oROMOIO)
Euler Tree o
(a) Euler tour (b) conjoined-
tree: vertex 5 is

super-vertex
Figure 4:Euler Tour and MCST construction

components irO(log n) supersteps [14]. However, the algorithm
is not a BPPA because a vertexmay become the parent of more
thand(v) vertices and hence receives/sends more th{an mes-
sages in a superstep. On the other hand, the overall numbreysf
sages and computations in each superstep are bound2hhyand
O(m), respectively. Withy = O(1), we have the time-processor
product =O((m + n)logn). As earlier, this is higher than the
complexity of the best-known sequential algorithm.

3.3 Euler Tour Tree Traversal

A Euler tour is a representation of a tree, where each tree edg
(u,v) is considered as two directed edgesv) and (v,u). As
shown in Figure 4(a), a Euler tour of the tree is simply a Hafer
circuit of the directed graph, that is, a trail that visitesvedge
exactly once, and ends at the same vertex where it starts.

We assume that the neighbors of each vertex v are sorted ac-
cording to their IDs, which is usually common for an adjagenc
list representation of a graph. For a vertexlet first(v) and
last(v) be the first and last neighbor ofin that sorted order; and
for each neighbow of v, if u # last(v), let next,(u) be the
neighbor ofv next tow in the sorted adjacency list. We also de-
fine next, (last(v)) = first(v). As an example, in Figure 4(a),
first(0) =1, last(0) = 6, nexto(1) = 5, andnexto(6) = 1.

Yan et. al. [14] designed a 2-superstep vertex-centricrihgn
to construct the Euler tour as given below. In Superstep ¢h ea
vertexv sends message:, next,(u)) to each neighbou; in Su-
pertep 2, each vertex receives the messade, next,(u)) sent
from each neighbow, and storesiext, (u) with v in u’s adjacency
list. Thus, for every vertex, and each of its neighbar, the next
edge of(u, v) is obtained agv, next, (u)), which is the Euler tour.

The algorithm requires a constant number of superstepsehy e
superstep, each vertexsends/receive®(d(v)) messages, each
usingO(1) space. By implementingext,(.) as a hash table asso-
ciated withv, we can obtaimext. (u) in O(1) expected time given
u. Therefore, the algorithm is BPPA. In addition, wigh= O(1),
the time-processor product @(n). This matches with the time
complexity of the best-known sequential algorithm.

3.4 Minimum Cost Spanning Tree

Salihoglu et. al. implemented the parallel (vertex-centvier-
sion of Boruvka’s minimum cost spanning tree (MCST) aldorit
[10] for a weighted, undirected graghi. The algorithm iterates
through the following phases, each time adding a set of etiges
the MCSTS it constructs, and removing some vertices fréhun-
til there is just one vertex, in which case the algorithmdalt

1. Min-Edge-Picking: In parallel, the edge list of each ver-
tex is searched to find the minimum weight edge from that xerte
Ties are broken by selecting the edge with minimum destinati
ID. Each picked edgév, u) is added toS. As proved in Boru-
vka’'s algorithm, the vertices and their picked edges forgjoitit
subgraphdl, Ts, . . ., Tk, each of which is a&onjoined-treei.e.,
two trees, the roots of which are joined by a cycle (Figure}(b
We refer to the vertex with the smaller ID in the cycle Bf as
the super-vertex of’;. All other vertices inT; are called its sub-
vertices. The following steps merge all of the sub-vertmesvery
T; into the super-vertex df;.

2. Super-vertex Finding: First, we find all the super-vertices.
Each vertex sets its pointer to the neighbompicked in Min-Edge-
Picking. Then, it sends a messageuvtpointer. Ifv finds that it
received a message from the same vertex to which it sent ageess
earlier, it is part of the cycle. The vertex with the smallerih the
cycle is identified as the super-vertex. After this, eactievefinds
the super-vertex of the conjoined-tree it belongs to udie@tmple
Pointer Jumpingalgorithm. The inputR to the algorithm is the set
of super-vertices, and the inp#tis the set of sub-vertices.
Simple-Pointer-Jumping-AlgorithiiR?, S)

repeat until every vertex inS points to a vertex iR

for each vertexv that does not point to a vertex i do
perform a pointer jumpy.pointer— v.pointer.pointer

3. Edge-Cleaning-and-RelabelingWe shrink each conjoined

tree into the super-vertex of the tree. This is performedHsews.
In the set of edges aff, each vertex is renamed with the ID of
the super-vertex of the conjoined tree to which it belonghe T
modified graph may have self-loops and multiple edges. Al se
loops are removed. Multiple edges are removed such thattbaly
lightest edge remains between a pair of vertices.

The above operations can be implementedi@) supersteps,
which is due to the maximum number of iterations required for
the simple pointer jumping algorithm. Each superstep hassage
and computation complexit)(m). The three above phases are
repeated, that is, the graph remaining after:tlie iteration is the
input to thei + 1-th iteration, unless it has just one vertex, in which
case the algorithm halts. Furthermore, the number of \etaf
the graph at theé + 1-th iteration is at most half of the number
of vertices at the-th iteration. Hence, the number of iterations
is at mostO(logn). With g = O(1), the time-processor product
is O(mdlogn). This is higher than the complexity of the best-
known sequential algorithm for MCST, which@(ma(m, n)) by
Chazelle’s algorithm. Herey() is the functional inverse of Ack-
ermann’s function, and it grows extremely slowly, so that &
practical purposes it may be considered a constant no githaie
4. Even if we consider widely-used Prim’s algorithm (seqist
it has time complexityO(m + nlogn) using fibonacci heap and
adjacency list. In summary, the vertex-centric algoritomMCST
performs more work than the problem’s sequential solutions

The algorithm is not in BPPA, since (1) the Edge-Cleanind-an
Relabeling step increases the number of neighbors of thersup
vertices, and (2) the number of superstep®{g logn).

3.5 Difficult Problems for
Vertex-Centric Model

An important question is whethedl kinds of graph analytics
tasks and algorithms can be expresstitientlyat vertex level. (1)
Vertex-centric model usually operates on the entire grayiich is
often not necessary for online ad-hoc queries [15], inclgdihort-
est path, reachability, and subgraph isomorphism. (2) foidel is
not well-suited for graph analytics that require a subgregfitric
view around vertices, e.g., local clustering coefficiengrgle and
motifs counting. This is due to the communication overhessd;
work traffic, and the large amount of memory required to cocst
multi-hop neighborhood in each vertex’s local state [7].N8t all
distributed algorithms for the same graph problem can bdeimp
mented in a vertex-centric framework. As an example, itfigodilt
to implement the distributed union-find algorithm for thexnected
component problem using a vertex-centric model [5]. Howeve
this algorithm is useful for graph streams. (4) State-ef-dint re-
search on vertex-centric graph processing mainly focuselion-

ited number of graph workloads such as PageRank and codnecte [15]

components, and it is largely unknown whether some otheely4d

used graph computations, e.g., modularity optimizatiancfam-
munity detection, betweenness centrality (weighted ggaphflu-
ence maximization, link prediction, partitioning, and eedtding
can be implemented efficiently over vertex-centric systems

4. DISCUSSION AND CONCLUSION

Our analysis shows that vertex-centric algorithms ofteffiesu
from imbalanced workload/ large number of iterations, agdgrm
more work than their best-known sequential algorithms.

Due to such difficulties, alternate proposals exist wheeetitire
graph is loaded on a single machine having larger memoryar o
multi-core machine with shared-memory. Neverthelessridiged
graph processing systems would still be critical due to wefol-
lowing reasons. First, graph analysis is usually an inteliate step
of some larger data analytics pipeline, whose previous akoli-
ing steps might require distribution over several machitesuch
scenarios, distributed graph processing would help todeexgpen-
sive data transfers. Second, distributed-memory systemsrglly
scale well, compared to their shared-memory counterparts.

However, one distributed model might not be suitable for all
kinds of graph computations. Many recent distributed syste
e.g., Trinity, NScale, and Apache Flink support multiplegzigms,
including vertex-centric, subgraph-centric, dataflovg ahared ac-
cess. But, perhaps more importantly, we need to identifyafhe
propriate metrics to evaluate these systems. In additidimte-
processor product and BPPA that we studied in this work, one
can also investigate the speedup and cost/computation.ofifves
critical metrics areexpressibilityandusability, which were mostly
ignored due to their qualitative nature. The former idesdifihe
workloads that can be efficiently implemented in a distglolftame-
work, while the later deals with ease in programming, e gmaln-
specific languages, declarative programming, high-lebstrac-
tion to hide data partitioning, communication, system #eciure,
and fault tolerance, as well as availability of debuggingd prove-
nance tools. With all these exciting open problems, thisaesh
area is likely to get more attention in the near future.

5. REFERENCES

[1] A.Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, and M. galA Distributed
Vertex-Centric Approach for Pattern Matching in Massivey@rs. INEEE
International Conference on Big Data013.

[2] M. R.Henzinger, T. A. Henzinger, and P. W. Kopke. CompgtSimulations on
Finite and Infinite Graphs. IROCS 1995.

[3] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient Algthhms for Graph
Manipulation.Commun. ACM16(6):372-378, 1973.

[4] G.Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, |. HpiN. Leiser, and
G. Czajkowski. Pregel: A System for Large-scale Graph Fasiog. In
SIGMOD, 2010.

[5] F. McSherry, M. Isard, and D. G. Murray. Scalability! BattWhat Cost? In
HOTOS 2015.

[6] C. Pennycuff and T. Weninger. Fast, Exact Graph Diam@temputation with
Vertex Programming. IIMPGM, 2015.

[7] A. Quamar, A. Deshpande, and J. Lin. NScale: Neighbothoentric Analytics

on Large Graphs. INLDB, 2014.

M. Redekopp, Y. Simmhan, and V. K. Prasanna. Optimizetiand Analysis of

BSP Graph Processing Models on Public Cloud$PPS 2013.

L. Roditty and V. V. Williams. Fast Approximation Algdhims for the Diameter

and Radius of Sparse Graphs 3mOG 2013.

8 =

[10] S. Salihoglu and J. Widom. Optimizing Graph Algorithors Pregel-like
Systems. I'WVLDB, 2014.

[11] R. Tarjan. Depth-First Search and Linear Graph Aldwnis.SIAM Journal on
Computing 1(2):146-160, 1972.

[12] L. G. Valiant. A Bridging Model for Parallel ComputatiocCommun. ACM
33(8):103-111, 1990.

[13] D.Yan, Y. Bu, Y. Tian, A. Deshpande, and J. Cheng. BiggbrAnalytics
Systems. I'SIGMOD, 2016.

[14] D.Yan,J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregebatithms for

Graph Connectivity Problems with Performance Guarante@éLDB, 2014.
Q. Zhang, D. Yan, and J. Cheng. Quegel: A General-PerSystem for
Querying Big Graphs. 8IGMOD, 2016.

