
Vertex-Centric Graph Processing: Good, Bad, and the Ugly

Arijit Khan
Nanyang Technological University, Singapore

arijit.khan@ntu.edu.sg

ABSTRACT
We study distributed graph algorithms that adopt an iterative vertex-
centric framework for graph processing, popularized by Google’s
Pregel system. Since then, there are several attempts to imple-
ment many graph algorithms in a vertex-centric framework, as well
as efforts to design optimization techniques for improvingthe ef-
ficiency. However, to the best of our knowledge, there has not
been any systematic study to compare these vertex-centric imple-
mentations with their sequential counterparts. Our paper addresses
this gap in two ways. (1) We analyze the computational com-
plexity of such implementations with the notion of time-processor
product, and benchmark several vertex-centric graph algorithms
whether they perform more work with respect to their best-known
sequential solutions. (2) Employing the concept of balanced prac-
tical Pregel algorithms, we study if these implementationssuffer
from imbalanced workload and large number of iterations. Our
findings illustrate that with the exception of Euler tour tree algo-
rithm, all other algorithms either perform asymptoticallymore work
than their best-known sequential approach, or suffer from imbal-
anced workload/ large number of iterations, or even both. Wealso
emphasize on graph algorithms that are fundamentally difficult to
be expressed in vertex-centric frameworks, and conclude bydis-
cussing the road ahead for distributed graph processing.

1. INTRODUCTION
In order to achieve low latency and high throughput over mas-

sive graph datasets, data centers and cloud operators consider scale-
out solutions, in which the graph and its data are partitioned hor-
izontally across cheap commodity servers in the cluster. The dis-
tributed programming model for large graphs has been popularized
by Google’s Pregel framework [4], which was inspired by the Bulk
Synchronous Parallel (BSP) model [12]. It hides distribution re-
lated details such as data partitioning, communication, underlying
system architecture, and fault tolerance behind an abstract API.
In Pregel, also known as thethink-like-a-vertexmodel, graph al-
gorithms are expressed as a sequence of iterations called super-
steps. During a superstep, Pregel executes a user-defined function
for each vertex in parallel. The user-defined function specifies the
operation at a single vertexv and at a single superstepS. The su-

c©2017, Copyright is with the authors. Published in Proc. 20thInter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under theterms of the Cre-
ative Commons license CC-by-nc-nd 4.0

persteps are globally synchronous among all vertices, and messages
are usually sent along the outgoing edges from each vertex.

With the inception of the Pregel framework, vertex-centricdis-
tributed graph processing has become a hot topic in the database
community (for a survey, see [13]). Although Pregel provides a
high-level distributed programming abstract, it suffers from effi-
ciency issues such as the overhead of global synchronization, large
volume of messages, imbalanced workload, and straggler prob-
lem due to slower machines. Therefore, more advanced vertex-
centric models (and its variants) have been proposed, e.g.,asyn-
chronous (GraphLab), asynchronous parallel (GRACE), barrierless
asynchronous parallel (Giraph Unchained), data parallel (GraphX,
Pregelix), gather-apply-scatter (PowerGraph), timely dataflow (Na-
iad), and subgraph centric frameworks (NScale, Giraph++).Vari-
ous algorithmic and system-specific optimization techniques were
also designed, e.g., graph partitioning and re-partitioning, combin-
ers and aggregators, vertex scheduling, superstep sharing, message
reduction, finishing computations serially, among many others.

While speeding up any algorithm is always significant in its own
right, there may be circumstances in which we would not benefit
greatly from doing so. McSherry et. al. [5] empirically demon-
strated that single-threaded implementations of many graph algo-
rithms using a high-end 2014 laptop are often an order of magni-
tude faster than the published results for state-of-the-art distributed
graph processing systems using multiple commodity machines and
hundreds of cores over the same datasets. Surprisingly, with the ex-
ception of [14], the complexity of vertex-centric graph algorithms
has never been formally analyzed. As one may realize, this isnot
a trivial problem — there are multiple factors involved in a dis-
tributed environment including the number of processors, compu-
tation time, network bandwidth, communication volume, andmem-
ory usage. To this end, we make the following contributions.

• We formally analyze the computational complexity of vertex-
centric implementations with the notion of time-processor
product [12], and benchmark several vertex-centric graph al-
gorithms whether they perform asymptotically more work in
comparison to their best-known sequential algorithms.

• We use the concept of balanced, practical Pregel algorithms
[14] to investigate if these vertex-centric algorithms suffer
from imbalanced workload and large number of iterations.

While the notion of balanced, practical Pregel algorithms was in-
troduced by Yan et. al. [14], they only considered the connected
component-based algorithms. On the contrary, in this paperwe re-
port as many as fifteen different graph algorithms (Table 1),whose
vertex-centric algorithms were implemented in the literature. Fi-
nally, we also identify graph workloads and algorithms thatare dif-
ficult to be expressed in the vertex-centric framework, and highlight
some important research directions.



Graph Vertex-Centric Best Sequential Vertex-Centric
Workload Algorithm Complexity Algorithm Complexity More Work? BPPA?

1 Diameter (Unweighted) [6] O(mn) BFS [9] O(mn) No No
2 PageRank1 [4] O(mK) power iteration O(mK) No No
3 Connected Component Hash-Min [4] O(mδ) BFS [3] O(m+ n) Yes No
4 Connected Component S-V [14] O((m+ n) log n) BFS [3] O(m+ n) Yes No
5 Bi-Connected Component [14] O((m+ n) log n) DFS [3] O(m+ n) Yes No
6 Weakly Connected Component [14] O((m+ n) log n) BFS [3] O(m+ n) Yes No
7 Strongly Connected Component [14] O((m+ n) log n) DFS [11] O(m+ n) Yes No
8 Euler Tour of Tree [14] O(n) DFS O(n) No Yes
9 Pre- & Post-order Tree Traversal [14] O(n log n) DFS O(n) Yes Yes
10 Spanning Tree [14] O((m+ n) log n) BFS O(m+ n) Yes No
11 Minimum Cost Spanning Tree1 [10] O(δm logn) Chazelle’s algorithm O(mα(m,n)) Yes No
12 Betweenness Centrality (Unweighted) [8] O(mn) Brandes’ algorithm O(mn) No No
13 Single-Source Shortest Path [4] O(mn) Dijkstra with Fibonacci heap O(m+ n logn) Yes No
14 All-pair Shortest Paths (Unweighted) [6] O(mn) Chan’s algoithm O(mn) No No
15 Graph Simulation1 [1] O(m2(nq + mq)) Henzinger et. al. [2] O ((m + n) (mq + nq)) Yes No

Table 1:Efficiency analysis for vertex-centric graph algorithms: #nodes =n, # edges =m, diameter =δ

0

A

BC

D

E

F

(a) Superstep 0

0

1

1

1

1

A

BC

D

E

F

(b) Superstep 1

0

1

1

1

2

1

A

BC

D

E

F

(c) Superstep 2
Figure 1:Vertex-centric algorithm for diameter computation in unweighted graphs

2. PRELIMINARIES
2.1 Time-Processor Product

Time-processor product was employed by Valiant [12] as a com-
plexity measure of algorithms on the BSP model, defined by the
following parameters. (1) Bandwidth parameter isg, that mea-
sures the permeability of the network to continuously send traffic
to uniformly-random destinations. The parameterg is defined such
that anh-relation will be delivered in timehg. (2) Synchronization
periodicity isL, where the components at regular intervals ofL
time units are synchronized. In a superstep of periodicityL, L lo-
cal operations and⌊L/g⌋-relation message patterns can be realized.
(3) The number of processors isp. Let wi be the amount of local
work performed by processori in a given superstep. Assumesi and
ri be the number of messages sent and received, respectively, by
processori. Letw = maxp

i=1
wi, andh = maxp

i=1
(max(si, ri)).

Then, the time for a superstep ismax(w, gh,L).
If we have multiple processors, we can solve a problem more

quickly by dividing it into independent sub-problems and solving
them at the same time, one at each processor. Given an input sizen,
the running timeT (n) is the elapsed time from when the first pro-
cessor begins executing to when the last processor stops executing.
A BSP algorithm for a given problem is called efficient if its proces-
sor boundP (n) and time boundT (n) are such that time-processor
productP (n)T (n) = O(S), whereS is the running time of the
best-known sequential algorithm for the problem, providedthatL
andg are below certain critical values. Therefore, with this met-
ric, we measure whether a vertex-centric algorithm performs more
work, compared to the problem’s best-known sequential algorithm.

2.2 Balanced, Practical Pregel Algorithms
For an undirected graph, we denote byd(v) the degree of vertex

v. On the other hand, letdin(v) anddout(v) denote the in-degree
and out-degree, respectively, of vertexv in a directed graph. A
Pregel algorithm is called a balanced, practical Pregel algorithm
(BPPA) [14] if it satisfies the following. (1) Each vertexv uses
O(d(v)) (or,O(din(v)+dout(v))) storage. (2) The time complex-
ity of the vertex-compute() function for each vertexv is O(d(v))
(or, O(din(v) + dout(v))). (3) At each superstep, the size of the

1
K is # iterations for convergence,α() functional inverse of Ackermann’s func-

tion. nq andmq the number of nodes and edges, respectively, in the query graph.
2For higher values ofg, the time-processor product would be even higher.

messages sent/received by each vertexv isO(d(v)) (or,O(din(v)+
dout(v))). (4) The algorithm terminates afterO(log n) supersteps.
Properties 1-3 offer good load balancing and linear cost at each
superstep, whereas property 4 impacts the total running time.

3. COMPLEXITY ANALYSIS
We summarize the complexity of fifteen vertex-centric graphal-

gorithms in Table 1. We shall discuss five of them in the following.

3.1 Diameter Computation
We consider a vertex-centric algorithm [6] that computes the ex-

act diameter of an unweighted graph. Let us denote the eccentricity
ǫ(v) of a vertexv as the largest hop-count distance fromv to any
other vertex in the graph. The diameterδ of the graph is defined
as the maximum eccentricity over all its nodes. Instead of finding
this largest vertex eccentricity one-by-one, the algorithm works by
computing the eccentricity of all vertices simultaneously.

We illustrate in Figure 1 the eccentricity computation method of
one vertex. Initially, each vertex adds it’s own unique id tothe
outgoing messages (sent along the outgoing edges) and also to the
history set, which resides in the local memory of that vertex. Af-
ter the initial superstep, the algorithm operates by iterating through
the set of received ids, which correspond to the vertices that sent the
original messages. The receiving vertex then constructs a set of out-
going messages by adding each element of the incoming set which
was not seen yet. The reason for keeping a history of the originat-
ing ids that were received earlier is to prevent the re-propagation of
a message to the same vertices. The history set also serves toprune
the set of total messages by eliminating message paths that would
never result in the vertex’s eccentricity.

Assuming the graph is connected, each vertex will process a
message from each originating vertex exactly once. The algorithm
terminates when the largest eccentricity is calculated; and there-
fore, the diameter of the graph is equal to the number of supersteps
(minus 1, for the final, non-processing superstep).

Since each vertex generates a unique message, there are total
Θ(n) messages. Each message is passedO(m) times, resulting in
a message complexity ofO(mn). There are totalO(δ) supersteps.
Each vertex processesn messages; therefore, the overall computa-
tion cost isO(n2). Assuming bandwidth parameter2 g = O(1),
the time-processor product =O(mn), which is equal to the com-
plexity of the best-known sequential algorithm.

However, this vertex-centric algorithm is not BPPA because: (1)
The number of messages that each vertexv relays can be asymptot-
ically larger thanO(d(v)) at later supersteps. (2) Given that each
vertexv must store a history of the messages received, each vertex
storesO(n) vertex IDs, which is larger thanO(d(v)). (3) There
are totalO(δ) supersteps, which could be larger thanO(log n).



(a)

W V U

(b) (c)
Figure 2:Forest structure of S-V algorithm [14]

w
x

v

u

w

x

v
u

(a) Tree-
hooking

w
x

v

u

x

v

w

u

(b) Star-hooking

y

x

u

w

y

x w

u

(c) Shortcut-
ting

Figure 3:Tree hooking, star hooking, and shortcutting [14]

3.2 Connected Component
We study two vertex-centric algorithms: Hash-min and S-V [14].

3.2.1 Hash-Min Algorithm
We assume that each vertex in a graphG is assigned a unique ID.

The color of a connected component inG is defined as the smallest
vertex among all vertices in the component. In Superstep 1, each
vertexv initializesmin(v) as the smallest vertex in the set({v} ∪
neighbors(v)), sendsmin(v) to all v’s neighbors, and votes to
halt. In each subsequent superstep, a vertexv obtains the smallest
vertex from the incoming messages, denoted byu. If u < v, v
setsmin(v) = u and sendsmin(v) to all its neighbors. Finally,
v votes to halt. When all vertices vote to halt and there is no new
message in the network, the algorithm terminates.

It takes at mostO(δ) supersteps for the ID of the smallest ver-
tex to reach all the vertices in a connected component, and ineach
superstep, each vertexv takes at mostO(d(v)) time to compute
min(v) and sends/receivesO(d(v)) messages each usingO(1)
space. Therefore, it is a balanced Pregel algorithm (i.e., satisfies
properties 1-3), but not BPPA since the number of superstepscan
be larger thanO(log n), e.g., for a straight-line graph.

Each superstep consists ofO(m) messages andO(m) computa-
tions. Assumingg = O(1), the time-processor product isO(mδ).
This is more than the complexity of the best-known sequential al-
gorithm, which is due to BFS with complexityO(m+ n).

3.2.2 Shiloach-Vishkin (S-V) Algorithm
In the S-V algorithm, each vertexu maintains a pointerD[u].

Initially, D[u] = u, forming a self-loop as depicted in Figure 2(a).
During the algorithm, vertices are arranged by a forest suchthat
all vertices in each tree in the forest belong to the same connected
component. The tree definition is relaxed a bit to allow the tree root
w to have a self-loop (see Figures 2(b) and 2(c)), i.e.,D[w] = w;
while D[v] of any other vertexV in the tree points tov’s parent.

The S-V algorithm proceeds in iterations, and in each iteration,
the pointers are updated in three steps (Figure 3): (1)tree hooking:
for each edge(u, v), if u’s parentw = D[u] is a tree root, hookw
as a child ofv’s parentD[v] (i.e., merge the tree rooted atw into
v’s tree); (2)star hooking: for each edge(u, v), if u is in a star (see
Figure 2(c) for an example of star), hook the star tov’s tree as Step
(1) does; (3)shortcutting: for each vertexv, move vertexv and its
descendants closer to the tree root, by hookingv to the parent of
v’s parent, i.e., settingD[v] = D[D[v]]. The algorithm terminates
when every vertex is in a star. We perform tree hooking in Step(1)
and star hooking in Step (2) only ifD[v] < D[u], which ensures
that the pointer values monotonically decrease.

It was proved that the above S-V algorithm computes connected

0

1

3

2 4

5 6

Euler Tree

(a) Euler tour

5

4

1

2 3

6

7

8 9

(b) Conjoined-
tree: vertex 5 is
super-vertex

Figure 4:Euler Tour and MCST construction

components inO(log n) supersteps [14]. However, the algorithm
is not a BPPA because a vertexv may become the parent of more
thand(v) vertices and hence receives/sends more thand(v) mes-
sages in a superstep. On the other hand, the overall number ofmes-
sages and computations in each superstep are bounded byO(n) and
O(m), respectively. Withg = O(1), we have the time-processor
product =O((m + n) log n). As earlier, this is higher than the
complexity of the best-known sequential algorithm.

3.3 Euler Tour Tree Traversal
A Euler tour is a representation of a tree, where each tree edge

(u, v) is considered as two directed edges(u, v) and (v, u). As
shown in Figure 4(a), a Euler tour of the tree is simply a Eulerian
circuit of the directed graph, that is, a trail that visits every edge
exactly once, and ends at the same vertex where it starts.

We assume that the neighbors of each vertex v are sorted ac-
cording to their IDs, which is usually common for an adjacency
list representation of a graph. For a vertexv, let first(v) and
last(v) be the first and last neighbor ofv in that sorted order; and
for each neighboru of v, if u 6= last(v), let nextv(u) be the
neighbor ofv next tou in the sorted adjacency list. We also de-
fine nextv(last(v)) = first(v). As an example, in Figure 4(a),
first(0) = 1, last(0) = 6, next0(1) = 5, andnext0(6) = 1.

Yan et. al. [14] designed a 2-superstep vertex-centric algorithm
to construct the Euler tour as given below. In Superstep 1, each
vertexv sends message〈u, nextv(u)〉 to each neighboru; in Su-
pertep 2, each vertexu receives the message〈u, nextv(u)〉 sent
from each neighborv, and storesnextv(u) with v in u’s adjacency
list. Thus, for every vertexu and each of its neighborv, the next
edge of(u, v) is obtained as(v, nextv(u)), which is the Euler tour.

The algorithm requires a constant number of supersteps. In every
superstep, each vertexv sends/receivesO(d(v)) messages, each
usingO(1) space. By implementingnextv(.) as a hash table asso-
ciated withv, we can obtainnextv(u) in O(1) expected time given
u. Therefore, the algorithm is BPPA. In addition, withg = O(1),
the time-processor product =O(n). This matches with the time
complexity of the best-known sequential algorithm.

3.4 Minimum Cost Spanning Tree
Salihoglu et. al. implemented the parallel (vertex-centric) ver-

sion of Boruvka’s minimum cost spanning tree (MCST) algorithm
[10] for a weighted, undirected graphG. The algorithm iterates
through the following phases, each time adding a set of edgesto
the MCSTS it constructs, and removing some vertices fromG un-
til there is just one vertex, in which case the algorithm halts.

1. Min-Edge-Picking: In parallel, the edge list of each ver-
tex is searched to find the minimum weight edge from that vertex.
Ties are broken by selecting the edge with minimum destination
ID. Each picked edge(v, u) is added toS. As proved in Boru-
vka’s algorithm, the vertices and their picked edges form disjoint
subgraphsT1, T2, . . . , Tk, each of which is aconjoined-tree, i.e.,
two trees, the roots of which are joined by a cycle (Figure 4(b)).
We refer to the vertex with the smaller ID in the cycle ofTi as
the super-vertex ofTi. All other vertices inTi are called its sub-
vertices. The following steps merge all of the sub-verticesof every
Ti into the super-vertex ofTi.



2. Super-vertex Finding: First, we find all the super-vertices.
Each vertexv sets its pointer to the neighborv picked in Min-Edge-
Picking. Then, it sends a message tov.pointer. If v finds that it
received a message from the same vertex to which it sent a message
earlier, it is part of the cycle. The vertex with the smaller ID in the
cycle is identified as the super-vertex. After this, each vertex finds
the super-vertex of the conjoined-tree it belongs to using theSimple
Pointer Jumpingalgorithm. The inputR to the algorithm is the set
of super-vertices, and the inputS is the set of sub-vertices.
Simple-Pointer-Jumping-Algorithm(R,S)

repeat until every vertex inS points to a vertex inR
for each vertexv that does not point to a vertex inR do

perform a pointer jump:v.pointer→ v.pointer.pointer
3. Edge-Cleaning-and-Relabeling:We shrink each conjoined

tree into the super-vertex of the tree. This is performed as follows.
In the set of edges ofG, each vertex is renamed with the ID of
the super-vertex of the conjoined tree to which it belongs. The
modified graph may have self-loops and multiple edges. All self-
loops are removed. Multiple edges are removed such that onlythe
lightest edge remains between a pair of vertices.

The above operations can be implemented inO(δ) supersteps,
which is due to the maximum number of iterations required for
the simple pointer jumping algorithm. Each superstep has message
and computation complexityO(m). The three above phases are
repeated, that is, the graph remaining after thei-th iteration is the
input to thei+1-th iteration, unless it has just one vertex, in which
case the algorithm halts. Furthermore, the number of vertices of
the graph at thei + 1-th iteration is at most half of the number
of vertices at thei-th iteration. Hence, the number of iterations
is at mostO(log n). With g = O(1), the time-processor product
is O(mδ log n). This is higher than the complexity of the best-
known sequential algorithm for MCST, which isO(mα(m,n)) by
Chazelle’s algorithm. Here,α() is the functional inverse of Ack-
ermann’s function, and it grows extremely slowly, so that for all
practical purposes it may be considered a constant no greater than
4. Even if we consider widely-used Prim’s algorithm (sequential),
it has time complexityO(m + n log n) using fibonacci heap and
adjacency list. In summary, the vertex-centric algorithm for MCST
performs more work than the problem’s sequential solutions.

The algorithm is not in BPPA, since (1) the Edge-Cleaning-and-
Relabeling step increases the number of neighbors of the super-
vertices, and (2) the number of supersteps isO(δ log n).

3.5 Difficult Problems for
Vertex-Centric Model

An important question is whetherall kinds of graph analytics
tasks and algorithms can be expressedefficientlyat vertex level. (1)
Vertex-centric model usually operates on the entire graph,which is
often not necessary for online ad-hoc queries [15], including short-
est path, reachability, and subgraph isomorphism. (2) Thismodel is
not well-suited for graph analytics that require a subgraph-centric
view around vertices, e.g., local clustering coefficient, triangle and
motifs counting. This is due to the communication overhead,net-
work traffic, and the large amount of memory required to construct
multi-hop neighborhood in each vertex’s local state [7]. (3) Not all
distributed algorithms for the same graph problem can be imple-
mented in a vertex-centric framework. As an example, it is difficult
to implement the distributed union-find algorithm for the connected
component problem using a vertex-centric model [5]. However,
this algorithm is useful for graph streams. (4) State-of-the-art re-
search on vertex-centric graph processing mainly focused on a lim-
ited number of graph workloads such as PageRank and connected
components, and it is largely unknown whether some other widely-

used graph computations, e.g., modularity optimization for com-
munity detection, betweenness centrality (weighted graphs), influ-
ence maximization, link prediction, partitioning, and embedding
can be implemented efficiently over vertex-centric systems.

4. DISCUSSION AND CONCLUSION
Our analysis shows that vertex-centric algorithms often suffer

from imbalanced workload/ large number of iterations, and perform
more work than their best-known sequential algorithms.

Due to such difficulties, alternate proposals exist where the entire
graph is loaded on a single machine having larger memory, or on a
multi-core machine with shared-memory. Nevertheless, distributed
graph processing systems would still be critical due to the two fol-
lowing reasons. First, graph analysis is usually an intermediate step
of some larger data analytics pipeline, whose previous and follow-
ing steps might require distribution over several machines. In such
scenarios, distributed graph processing would help to avoid expen-
sive data transfers. Second, distributed-memory systems generally
scale well, compared to their shared-memory counterparts.

However, one distributed model might not be suitable for all
kinds of graph computations. Many recent distributed systems,
e.g., Trinity, NScale, and Apache Flink support multiple paradigms,
including vertex-centric, subgraph-centric, dataflow, and shared ac-
cess. But, perhaps more importantly, we need to identify theap-
propriate metrics to evaluate these systems. In addition totime-
processor product and BPPA that we studied in this work, one
can also investigate the speedup and cost/computation. Twoother
critical metrics areexpressibilityandusability, which were mostly
ignored due to their qualitative nature. The former identifies the
workloads that can be efficiently implemented in a distributed frame-
work, while the later deals with ease in programming, e.g., domain-
specific languages, declarative programming, high-level abstrac-
tion to hide data partitioning, communication, system architecture,
and fault tolerance, as well as availability of debugging and prove-
nance tools. With all these exciting open problems, this research
area is likely to get more attention in the near future.

5. REFERENCES
[1] A. Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, and M. Saltz. A Distributed

Vertex-Centric Approach for Pattern Matching in Massive Graphs. InIEEE
International Conference on Big Data, 2013.

[2] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing Simulations on
Finite and Infinite Graphs. InFOCS, 1995.

[3] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient Algorithms for Graph
Manipulation.Commun. ACM, 16(6):372–378, 1973.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A System for Large-scale Graph Processing. In
SIGMOD, 2010.

[5] F. McSherry, M. Isard, and D. G. Murray. Scalability! Butat What Cost? In
HOTOS, 2015.

[6] C. Pennycuff and T. Weninger. Fast, Exact Graph DiameterComputation with
Vertex Programming. InHPGM, 2015.

[7] A. Quamar, A. Deshpande, and J. Lin. NScale: Neighborhood-centric Analytics
on Large Graphs. InVLDB, 2014.

[8] M. Redekopp, Y. Simmhan, and V. K. Prasanna. Optimizations and Analysis of
BSP Graph Processing Models on Public Clouds. InIPDPS, 2013.

[9] L. Roditty and V. V. Williams. Fast Approximation Algorithms for the Diameter
and Radius of Sparse Graphs. InSTOC, 2013.

[10] S. Salihoglu and J. Widom. Optimizing Graph Algorithmson Pregel-like
Systems. InVLDB, 2014.

[11] R. Tarjan. Depth-First Search and Linear Graph Algorithms.SIAM Journal on
Computing, 1(2):146–160, 1972.

[12] L. G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM,
33(8):103–111, 1990.

[13] D. Yan, Y. Bu, Y. Tian, A. Deshpande, and J. Cheng. Big Graph Analytics
Systems. InSIGMOD, 2016.

[14] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregel Algorithms for
Graph Connectivity Problems with Performance Guarantees.In VLDB, 2014.

[15] Q. Zhang, D. Yan, and J. Cheng. Quegel: A General-Purpose System for
Querying Big Graphs. InSIGMOD, 2016.


