Towards Indexing Functions: Answering Scalar Product Queries

Arijit Khan, Pouya Yanki, Bojana Dimcheva, Donald Kossmann

Systems Group ETH Zurich

Moving Objects Intersection Finding

Moving Object Database

Position at a future time instance t

•
$$[x = r \cos(\omega t) \quad y = r \sin(wt)]$$

•
$$[x = p + ut \quad y = q + vt]$$

ETH zürich

Moving Objects Intersection Finding

Moving Object Database

۲	Find	all	object	pairs	that	will	be	within
	dista	nce	S at tim	ne insta	ance t			

$\mathbf{AX}_1 + \mathbf{BX}_2 + \mathbf{CX}_3 + \mathbf{DX}_4 + \mathbf{EX}_5 + \mathbf{FX}_5$	$C_6 + GX_7 \le S^2$
$X_1 = r^2 + p^2 + q^2 + 2rp + 2rq$	A = 1
$X_2 = 2[u(r-p) + v(r-q)]$	B = t
X ₃ = -2rp	$C = 1 + sin(\omega t)$
$X_4 = -2rq$	$D = 1 + \cos(\omega t)$
X ₅ = -2ru	$E = t[1 + sin(\omega t)]$
$X_6 = -2rv$	$F = t[1 + \cos(\omega t)]$
$X_7 = U^2 + V^2$	G = t ²

ETH zürich

Moving Objects Intersection Finding

Moving Object Database

Find all object pairs that will be within distance S at time instance t $AX_1 + BX_2 + CX_3 + DX_4 + EX_5 + FX_6 + GX_7 \le S^2$ $X_1 = r^2 + p^2 + q^2 + 2rp + 2rq$ A = 1 $X_2 = 2[u(r-p) + v(r-q)]$ B = t $C = 1 + sin(\omega t)$ $X_3 = -2rp$ $X_4 = -2rq$ $D = 1 + \cos(\omega t)$ $X_5 = -2ru$ $E = t[1 + sin(\omega t)]$ $X_6^{"} = -2rv$ $X_7^{"} = u^2 + v^2$ $F = t[1 + \cos(\omega t)]$ $G = t^2$ Function (known) Query **Parameters**

(unknown)

Moving Objects Intersection Finding

Moving Object Database

Find all object pairs that will be within

distance S at time instance t

 $\mathbf{A}X_1 + \mathbf{B}X_2 + \mathbf{C}X_3 + \mathbf{D}X_4 + \mathbf{E}X_5 + \mathbf{F}X_6 + \mathbf{G}X_7 \leq \mathbf{S}^2$

Moving Objects Intersection Finding

Patient Dataset for Heart-Rate Prediction

- ARIMA Time Series Prediction Model:
- Heart-Rate at time t = S × t + B

Patient ID	S	В
P1	5	80
P2	6	40
P3	4	70
P4	6	50

Patient Dataset for Heart-Rate Prediction

- ARIMA Time Series Prediction Model:
- Heart-Rate at time t = S × t + B
- Find all patients for whom the predicted heart rate at time t is more than an input threshold H.

```
CREATE FUNCTION Critical_Patient (

INPUT double Threshold, double Time

RETURN PatientID

FROM Patient

WHERE S \times Time + B \ge H)

\widehat{1}

Unknown

3
```

Patient ID	S	В
P1	5	80
P2	6	40
P3	4	70
P4	6	50

ETH zürich

Patient Dataset for Heart-Rate Prediction

Problem Statement

Inequality Query

Find all data points x that satisfy: (a, F(x)) \geq b

Applications:

- moving-object-intersection finding
- half-space range search
- complex SQL functions

Top-k Nearest Neighbor Query

Find the top-k data points x satisfying (a, F(x)) \geq b, that also minimize: |(a, F(x))-b|/|a|

Applications:

- top-k nearest points to hyper plane
- ➤ active learning

Related Work

Half-space Range Searching

- Agarwal et. al. [PODS '98], Matousek et. al. [Computational Geometry '92]

THEORY

MACHINF

I FARNING

- Linear Constraint Queries
- Goldstein et. al. [PODS '97]

Nearest Neighbor Queries

- Liu et. al. [ICML '12], Jain et. al. [NIPS '10]

Top-k Queries with Ranking Function

- Chang et. al. [SIGMOD '00], Xin et. al. [SIGMOD '07], Li et. al. [SIGMOD '05], Ilyas et. al. [ACM Comp. Survey '08], Hristidis et. al. [SIGMOD '01], Ram et. al. [KDD '12]

Index for Moving Objects

- Nascimento et. al. [R-tree, SAC '98], Sistla et. al. [ICDE '97], Kollios et. al. [PODS '99], Saltenis et. al. [TPR-Tree, SIGMOD '00], Jensen et. al. [B^x-Tree, VLDB '04], Tao et. al. [SIGMOD '02], Zhang et. al. [MBR Tree, VLDB J '12]

ETH zürich

Related Work

Query Processing using Planar Index

Moving Objects Intersection Finding

Moving Object Database

Find all object pairs that will be within

distance S at time instance t

 $\mathbf{A}X_1 + \mathbf{B}X_2 + \mathbf{C}X_3 + \mathbf{D}X_4 + \mathbf{E}X_5 + \mathbf{F}X_6 + \mathbf{G}X_7 \leq \mathbf{S}^2$

Query Processing using Planar Index

ETH zürich

Planar Index: Geometrical Indexing

ETH zürich

Planar Index: Time and Space Complexity

Multiple Planar Indices

Multiple Planar Indices

9/ 15

Best Index Selection at Query Time

Planar Index at Right is Better for the Given Query

9/15

List of Experiments

Datasets:

- Real-World: CMoment, Ctexture, Electricity Consumption
- Synthetic: Independent, Correlated, Anti-Correlated

List of Experiments:

- Efficiency vs. No of Index
- Efficiency vs. No of Dimension
- Efficiency vs. Randomness of Query
- Efficiency vs. Query Selectivity
- Pruning Capacity vs. No of Index
- Pruning Capacity vs. No of Dimension
- Pruning Capacity vs. Randomness of Query
- Pruning Capacity vs. Query Selectivity
- Scalability of Index Building, Query Processing
- Dynamic Index Updating
- Memory Usage of Planar Index

Experimentally Evaluated Planar Index in:

- Moving-Object Intersection
- Top-k Nearest Neighbor Query

Dataset and Query

Datasets:

	# Data Points	# Dimension	# Attribute Range
CMoment (Real-World)	68,040	9	(- 4.15, 4.59)
Independent (Synthetic)	1,000,000	2 - 14	(1, 100)

• Query: $Q_1 X_1 + Q_2 X_2 + \dots + Q_d X_d \ge \underline{75} (Q_1 + Q_2 + \dots + Q_d)$ Query Selectivity

Randomness of Query (QR): $Q_i \in (1, n)$

Efficiency (Real-World Dataset)

Efficiency (Synthetic Dataset)

Index = 100

Application: Moving Object ETH zürich Intersection

Intersection Finding among 5K × 5K Moving Objects

Conclusion

- Scalar product query widely applicable
- Planar index one generalized index for many problems
- Application in moving object intersection finding
- Future Work: Dynamic updates in planar indices based on past query workload

Software and Dataset: http://people.inf.ethz.ch/khana/software/scalar.tar.gz (Publicly Available)