Towards Indexing Functions: Answering Scalar Product Queries

Arijit Khan, Pouya Yanki, Bojana Dimcheva, Donald Kossmann Systems Group ETH Zurich

Moving Objects

- Position at a future time instance t
- $[x=r \cos (\omega t) \quad y=r \sin (w t)]$
- $[x=p+u t \quad y=q+v t]$

Moving Object Database
$\rightarrow r, \omega$
$\rightarrow p, q, u, v$

Moving Objects

Moving Object Database
$\rightarrow r, \omega$
$\bigcirc p, q, u, v$

- Find all object pairs that will be within distance S at time instance t

$$
\begin{array}{ll}
\mathbf{A X}_{\mathbf{1}}+\mathbf{B} \mathbf{X}_{\mathbf{2}}+\mathbf{C} \mathbf{X}_{\mathbf{3}}+\mathbf{D} \mathbf{X}_{\mathbf{4}}+\mathbf{E} \mathbf{X}_{\mathbf{5}}+\mathbf{F} \mathbf{X}_{\mathbf{6}}+\mathbf{G} \mathbf{X}_{\mathbf{7}} \leq \mathbf{S}^{\mathbf{2}} \\
\hline \mathrm{X}_{1}=\mathrm{r}^{2}+\mathrm{p}^{2}+q^{2}+2 r p+2 r q & \mathrm{~A}=1 \\
\mathbf{X}_{2}=2[u(r-p)+v(r-q)] & \mathrm{B}=\mathrm{t} \\
X_{3}=-2 r p & \mathrm{C}=1+\sin (\omega t) \\
X_{4}=-2 r q & \mathrm{D}=1+\cos (\omega t) \\
X_{5}=-2 r u & \mathrm{E}=\mathrm{t}[1+\sin (\omega t)] \\
X_{6}=-2 r v & \mathrm{~F}=\mathrm{t}[1+\cos (\omega t)] \\
X_{7}=u^{2}+v^{2} & G=t^{2}
\end{array}
$$

Moving Objects

Moving Object Database
$\rightarrow r, \omega$
$\bigcirc p, q, u, v$

- Find all object pairs that will be within distance S at time instance t

$$
\mathrm{AX}_{1}+\mathrm{BX}_{2}+\mathrm{CX}_{3}+\mathrm{DX}_{4}+\mathrm{EX}_{5}+\mathrm{FX}_{6}+\mathrm{GX}_{7} \leq \mathrm{S}^{2}
$$

$X_{1}=r^{2}+p^{2}+q^{2}+2 r p+2 r q$
$X_{2}=2[u(r-p)+v(r-q)]$
A $=1$
$x_{3}=-2 r p$
$x_{4}=-2 r q$
$X_{5}=-2 r u$
$x_{6}=-2 r v$
$X_{7}=u^{2}+v^{2}$
$C=1+\sin (\omega t)$
$D=1+\cos (\omega t)$
$E=t[1+\sin (\omega t)]$
$\mathrm{F}=\mathrm{t}[1+\cos (\omega \mathrm{t})]$
$\mathrm{G}=\mathrm{t}^{2}$

Query
Parameters
(unknown)

Moving Objects

- Find all object pairs that will be within distance S at time instance t
$\mathbf{A X}{ }_{1}+\mathbf{B} X_{2}+\mathbf{C X}_{3}+\mathbf{D} \mathrm{X}_{4}+\mathrm{EX}_{5}+\mathrm{FX}_{6}+\mathbf{G} \mathrm{X}_{7} \leq \mathbf{S}^{2}$

Moving Object Database
$\rightarrow r, \omega$
$\bigcirc p, q, u, v$

Scalar Product Query
(A BCDEFG) $\left(\begin{array}{lllllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7}\end{array}\right) \leq S^{2}$

Parameters (unknown)

Moving Objects Intersection Finding

Moving Object Database
$\rightarrow r, \omega$
$\rightarrow p, q, u, v$

Scalar Product Query:
(A B C D E F G). $\left(\begin{array}{llllll} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6}\end{array} X_{7}\right) \leq S^{2}$

Query
Parameters
(unknown)

More Applications: Complex SQL Function

Patient ID	S	B	ARIM A Time Series Prediction M odel:	
P1	5	80		Heart-Rate at time t $=\mathrm{S} \times \mathrm{t}+\mathrm{B}$
P2	6	40		
P3	4	70		
P4	6	50		
Patient Dataset for Heart-Rate Prediction				

More Applications: Complex SQL Function

Patient ID	S	B
P1	5	80
P2	6	40
P3	4	70
P4	6	50

Patient Dataset for Heart-Rate Prediction

- ARIMA Time Series Prediction Model:
- Heart-Rate at time $t=S \times t+B$
- Find all patients for whom the predicted heart rate at time t is more than an input threshold H.

CREATE FUNCTION Critical_Patient (
INPUT double Threshold, double Time RETURN PatientID
FROM Patient
WHERE $S \times \underset{\widehat{\pi}}{\widehat{T i m e}}+B \geq \underline{\hat{U}}$

More Applications: Complex SQL Function

Scalar Product Query

More Applications: Complex SQL Function

Patient ID	S	B
P1	5	80
P2	6	40
P3	4	70
P4	6	50

Patient Dataset for Heart-Rate Prediction

Problem Statement

- Inequality Query

Find all data points x that satisfy: $(a, F(x)) \geq b$

Applications:

> moving-object-intersection finding
> half-space range search
> complex SQL functions

Applications:

$>$ top-k nearest points to hyper plane
$>$ active learning

Related Work

- Half-space Range Searching
- Agarwal et. al. [PODS '98], M atousek et. al. [Computational Geometry ‘92]

THEORY

- Linear Constraint Queries
- Goldstein et. al. [PODS '97]
$\xrightarrow[\text { MACHINE }]{ }$ Nearest Neighbor Queries
MACHINE \quad - Liu et. al. [ICML'12], Jain et. al. [NIPS'10]
LEARNING
- Top-k Queries with Ranking Function
- Chang et. al. [SIGM OD ’00], Xin et. al. [SIGM OD ‘07], Li et. al. [SIGM OD ‘05], Ilyas et. al. [ACM Comp. Survey ‘08], Hristidis et. al. [SIGM OD ‘01], Ram et. al. [KDD '12]
DATABASES

- Index for M oving Objects
- Nascimento et. al. [R-tree, SAC '98], Sistla et. al. [ICDE ‘97], Kollios et. al. [PODS ‘99], Saltenis et. al. [TPR-Tree, SIGM OD ‘00], Jensen et. al. [B×-Tree, VLDB '04], Tao et. al. [SIGM OD '02], Zhang et. al. [M BR Tree, VLDB J '12]

Related Work

Planar Index:
 Geometrical Indexing

Query Processing using Planar Index

Moving Objects

- Find all object pairs that will be within distance S at time instance t
$\mathbf{A X}{ }_{1}+\mathbf{B} X_{2}+\mathbf{C X}_{3}+\mathbf{D} \mathrm{X}_{4}+\mathrm{EX}_{5}+\mathrm{FX}_{6}+\mathbf{G} \mathrm{X}_{7} \leq \mathbf{S}^{2}$

Moving Object Database
$\rightarrow r, \omega$
$\bigcirc p, q, u, v$

Scalar Product Query
(A BCDEFG) $\left(\begin{array}{lllllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7}\end{array}\right) \leq S^{2}$

Planar Index:
 Geometrical Indexing

Query Processing using Planar Index

Planar Index:
 Geometrical Indexing

ETHzürich

Planar Index:
 Geometrical Indexing

Planar Index: Time and Space Complexity

Index Time: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
Index Space: $O(n)$
Query Processing Time: $\mathrm{O}(\mathrm{d} \log \mathrm{n}+\mathrm{t}) \sim \mathrm{O}(\mathrm{d} \mathrm{n})$

Multiple Planar Indices

M ultiple Planar Indices

Best Index Selection at Query Time

Planar Index at Right is Better for the Given Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

List of Experiments

- Datasets:
- Real-World: CM oment, Ctexture, Electricity Consumption
- Synthetic: Independent, Correlated, Anti-Correlated
- List of Experiments:
- Efficiency vs. No of Index
- Efficiency vs. No of Dimension
- Efficiency vs. Randomness of Query
- Efficiency vs. Query Selectivity

```
Experimentally Evaluated Planar
Index in:
> Moving-Object Intersection
> Top-k Nearest Neighbor Query
```

- Pruning Capacity vs. No of Index
- Pruning Capacity vs. No of Dimension
- Pruning Capacity vs. Randomness of Query
- Pruning Capacity vs. Query Selectivity
- Scalability of Index Building, Query Processing
- Dynamic Index Updating
- Memory Usage of Planar Index

Dataset and Query

- Datasets:

	\# Data Points	\# Dimension	\# Attribute Range
CMoment (Real-World)	68,040	9	$(-4.15,4.59)$
Independent (Synthetic)	$1,000,000$	$2-14$	$(1,100)$

- Query:

$$
Q_{1} X_{1}+Q_{2} X_{2}+\ldots+Q_{d} X_{d} \geq \frac{75}{\uparrow}\left(Q_{1}+Q_{2}+\ldots+Q_{d}\right)
$$

- Randomness of Query (QR): $\mathbf{Q}_{\mathrm{i}} \in(\mathbf{1}, \mathrm{n})$

Efficiency (Real-World Dataset)

\#Dimension =9
\#Index = 100

Efficiency (Synthetic Dataset)

\#Index = 100

Dimension = 2
12~170 times better than Baseline

Dimension =6
1.6~400 times better than Baseline

Application: Moving Object ETHzürich Intersection

Intersection Finding among $5 \mathrm{~K} \times 5 \mathrm{~K}$ M oving Objects

Future Time Instant (Min)
Objects moving with uniform velocity

12 ~ 50 times better than Baseline

Objects moving with acceleration
$27 ~ 55$ times better than Baseline

Conclusion

- Scalar product query widely applicable
- Planar index - one generalized index for many problems
- Application in moving object intersection finding
- Future Work: Dynamic updates in planar indices based on past query workload

Software and Dataset: http://people.inf.ethz.ch/khana/software/scalar.tar.gz (Publicly Available)

