Towards Indexing Functions:

Answering Scalar Product

Queries

Arijit Khan, Pouya Yanki, Bojana Dimcheva, Donald Kossmann
Systems Group, ETH Zurich, SW|tzerIand

{arijit.khan, donaldk}@lnf ethz.ch {pyanki,dbojana}@student.ethz.ch

ABSTRACT

We consider a broad category of analytic queries, denotesd&iar

1. INTRODUCTION

In a wide range of complex data analytic applications, thergju

product queries, which can be expressed as a scalar product b processing often requires computing an expression thalvies

tween a known function over multiple database attributess am
unknown set of parameters. More specifically, given a set-of
dimensional data points, we retrieve all poistsvhich satisfy an
inequality given by a scalar producta, ¢(x)) < b. We assume

that the functions : R¢ — R? is application specific and known
apriori, while the query parametesisand the inequality parameter
b are known only at the time of querying.

Efficiently answering such scalar product queries are ¢iséémn
a wide range of applications including evaluation of com@B&L
functions, time series prediction, scientific simulatiand active
learning. Although some specific subclasses of the aforéomed
scalar product queries and their applications have beefiestin
computational geometry, machine learning, and in movibga
queries, surprisingly no generalized indexing scheme &es pro-
posed for efficiently computing scalar product queries.

We present a lightweight, yet scalable, dynamic, and géineda
indexing scheme, called thelanar index, for answering scalar
product queries in an accurate manner, which is based odehef
indexing functiong(x) for each data point using multiple sets of
parallel hyperplanef?lanar index has loglinear indexing time and
linear space complexity, and the query time ranges fromridga
mic to being linear in the number of data points. Based on gamnex
sive set of experiments on several real-world and synthetiasets,
we show thafPlanar index is not only scalable and dynamic, but
also effective in various real-world applications incluglintersec-
tion finding between moving objects and active learning.

Categories and Subject Descriptors
H.3.3 [Information Systems): Information Search and Retrieval

Keywords

Scalar Product Query, Function Indexing, Planar Index, iktpv
Object Indexing

Permission to make digital or hard copies of all or part o thiork for personal or
classroom use is granted without fee provided that copesar made or distributed
for profit or commercial advantage and that copies bear thiis® and the full cita-
tion on the first page. Copyrights for components of this waslined by others than
ACM must be honored. Abstracting with credit is permitted.cbpy otherwise, or re-
publish, to post on servers or to redistribute to lists, neguprior specific permission
and/or a fee. Request permissions from permissions@agm.or
SIGMOD’14,June 22-27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610493 .

multiple columns in the relational database [21]. In thisdgt we
consider a broad category of queries which can be expresséeé a
scalar product between a known expression (function) oudti-m
ple database attributes and an unknown set of parameteneféve
to such queries as theealar productqueries, and they can be ap-
plied in evaluating comple$SQL functions [21], finding intersec-
tion between moving-object pairs [33], time-series predic[5],
scientific simulations [25], half-space range searchifjgdgiid also
in machine learning [18]. Below, we demonstrate two appilice
of scalar product queries in processing com@€X. functions and
in finding intersection between moving objects.

EXAMPLE 1 (COMPLEX SQL QUERY PROCESSING.
Consider an electricity consumption dataset for individuause-
holds. Each data point (household) has 4 important atteisut
active power, reactive power, voltage, and current. Thepower factor over
this electricity consumption dataset can be measured asatie
betweeructive power and (voltage X current). Thus, given a relation

Consumption(ID, Active Power, Reactive Power, Voltage, Current)

we are interested in the followingSQL function, Criti-
cal_Consume that identifies all households for which thewer
factor IS less than an input threshold.

CREATE FUNCTION Critical _Consume (

INPUT double t hreshol d

RETURN 1D

FROM Consunpti on

WHERE Active Power - threshold * Voltage *
Current < 0)

The aforementione8QL function can be modeled as a scalar prod-
uct query:
((1 -threshold), (ActivePower Voltage X Current)) < 0.

One may note that the above-mentioned scalar product con-
sists of two components — a function over the database atitsb
¢(Active Power Voltage Current) = (Active Power Voltage X
current) and a parameter set (1 threshold). The functional part
of the query is known apriori; and hence, can be indexed —awhil
the parametric part is known only at the time of queryirgan
we answer such queries in sublinear time without perfornaiisg-
quential scan over the entire datasétds worthwhile to mention
that Oracle 11.1 release has built-in support for indexioigulex
SQL functions over multiple attributes [21]. However, theidéx
does not support queries that consist of both complex fonstas
well as unknown parameters.

Figure 1: Application of scalar product query: finding irsection
between moving-object pairs

EXAMPLE 2 (MOVING-OBJECTINTERSECTION. Assume
two sets of objects are moving in a two dimensional plane as
depicted in Figure 1: objects from one set are moving in catrae
circles, while objects from the other set are moving in gfindi
lines. For simplicity, we assume that the objects are moitng
constant linear or angular velocities. Given an input tifnetant
t in the future and an input distancg, find the object pairs from
the two sets which will be withif' unit distance from each other
at timet.

The aforementioned intersection query is critical in stfensim-
ulations, air traffic control, and in massively multi-playenline
games KMIMOGSs). A naive approach to solve such intersection
problem will be to compute the distance for each object gdinse

t. Let us denote the angular velocity and radius of an objech fr
the first set ag andw, and the initial position and velocity of an
object from the second set by, py, v, andu,, respectively. In
order to find intersections, we have to verify for each objeit
from the two sets whether Equation 1 holds true.

AXi + BXs +CX5 + DX4+ EXs + FXg + GX7 < §2
1)

Nevertheless, Equation 1 has the form of a scalar produatygue
and therefore, one can apply our indexing method to evaluate
such queries more efficiently. It is easy to verify that thacfu
tional part consists ofX; r? 4+ p2 + P2 + 2rps + 27Dy,

Xo = 2[ua(r + pz) + uy(r + py)], X3 = —=2rps, Xa = —2rpy,

X5 = —2ruq, X¢ = —2ru,, andX7 = u} + u;. The parametric
part, on the other hand, contaids= 1, B = t, C = 1 + sinwt,

D =1+coswt, E = t(1 + sinwt), F = ¢(1 4+ coswt), and

G = t>. We also note that there exist several spatio-temporal
indexes for moving-object databas@4dD) [8, 23, 32], but their
application is limited to objects moving in straight linesgttwuni-
form velocities. Therefore, scalar product queries andstiigse-
guent indexing method proposed in this study are more geaeda
widely-applicable in scenarios such as objects movingricies or
with acceleration.

Scalar product queries naturally arise in a variety of maehi
learning applications as well, e.g., pool-based activenieg [26]:
given a classifier hyperplane, the query finds the classdaifall
unlabeled data points. More precisely, points in one sidéef
query hyperplane are labeled positive and points in ther cfide
are considered negative; in addition, the query also regquine
identification of the topk closest positive and negative points to
the classifier hyperplane [14, 18]. An important subclasscafar
product queries is the half-space range searching queighvilas
been studied extensively in computational geometry [19R, In
spite of many critical applications, surprisingly no gealed in-
dexing scheme has been proposed to answer scalar produesque
in an online and accurate manner.

In this work, we study the problem of fast online computatdn
scalar product queries in an accurate manner. To this airdeviee
a novel, lightweight, and generalized indexing schemdedahe
Planar index, which can answer our queries very efficiently. Our
offline technique relies on indexing functioti$x) for data points
x with multiple sets of parallel hyperplanes, and pre-corimgut

some information which is linear in the number of the datan{®oi
Our online query evaluation consists of finding the optimetl s
of index hyperplanes for a given query, and then using the pre
computed information to efficiently answer our queries ireaact
manner. The key idea éflanar index is to allow very fast pruning

of the data points without actually computing the scaladpot for
them. Our best case query time is logarithmic in the number of
data points, which is often the case for carefully desigRkhar
indices, and is also verified by performing empirical anialyser
multiple datasets and considering several real-worldieptbns.

Our contribution and roadmap. Our contributions can be sum-
marized as follows:

e We define the fundamental problem of efficiently answering
scalar product queries (Section 3).

We devise a lightweight, yet effective and generalized xnde
ing scheme, called thelanar index, for efficiently answering
scalar product queries in an online and exact manner. (Sec-
tion 4). The proposed technique is based on indexing func-
tion ¢(x) with multiple sets of parallel hyperplanes and pre-
computing some information that is linear in the number of
data points.

Based on thé’lanar index, we develop a fagiruning-and-
verificationstrategy. Given a scalar product query, we first de-
termine the optimal set of index hyperplanes (Section 5J, an
then use our indexed information to accurately accept ectej
several data points without even computing the scalar mtodu
for them. In Section 6, we show how our propo$ddnar in-
dex, coupled with a lower-bound-based pruning method, effi-
ciently retrieves the top-closest points to a query hyperplane.

We conduct a thorough experimental evaluation using skvera
real-world and synthetic datasets. We also comemar
index with a naive sequential scan. Results attest effigienc
and accuracy of thBlanar index (Section 7).

We analyze the performance Bfanar index in the moving-
objects-intersection problem [33] with both uniform (ctarg
velocity) and non-uniform (moving with acceleration) werk
loads, as well as in active learning [14, 18], and thereby-com
pare our generalized framework with state-of-the-art imesh
tailored for such specific applications. (Section 7.5).

2. RELATED WORK
We categorize related work as follows.

Half-space range searchingGiven a fixed sef of data points in

R? and a query hyperplang the half-space range searching prob-
lem asks for the retrieval of all points &f on a chosen side af.

In computational geometry, the half-space range searghisigem

for d-dimension has been considered in [1,2,19]. We compare thei
space and time complexity with that of ours in Table 1. Unfort
nately, all these previous works study the problem with eespo

the asymptoticcomputational complexity — it is very difficult to
implement their preprocessing steps, unlike the lightheRja-

nar index proposed in this work — and to the best of our knowl-
edge, no implementations of [1, 2, 19] exist in the literatuBe-
sides, ourPlanar index is more general and can be used in a va-
riety of applications beyond half-space range searchiogh |s
moving-objects-intersection computation [33] and hyfarp-to-
closest-point finding [18], which is critical in active ledng [26].

Linear constraint queries. In linear constraint queries, the search
region is constrained to the intersection of half spacesiipé by
a set of linear inequalities. The orthogonal range seagchiob-
lem was discussed in [24], in which the query ig-dimensional

Table 1:Time complexity of half-space range search algorithmsiumber of data points] dimensionality of the query spadecardinality of the answer

set,e > 0 any constante = ¢(d) another constant.

Query time

(9(1117%+6 + 1)

1
T (log n)° + 1)
1

P Sk e
Q(r—1-

+1)
m T
O(dlogn +t) ~ O(dn)

Agarwal et. al. [1]
Matousek et. al. [19] || O(n

Arya et. al. [2]

Planar index [this work]

Preprocessing storage] Preprocessing time
O(n) O(nlogn)
O(nloglogn) O(nlogn)

Qim); n<m<n | OmITe + mlogn)¢)
O(n) O(nlogn)

axis parallel hyper rectangle; while non-orthogonal rasgarch-
ing queries are considered in [11]. Most studies in lineast@int
queries apply spatial data structures suchRasee and K-D-B

tree. As an alternative, one could also apply multiflnar in-

dices in answering such linear constraint queries.

Nearest neighbor queries. Efficiently finding the topk nearest
points to a given query point has been studied both in low di-
mension [29] and in high dimension [31]. The problem of find-
ing the nearest subspace from a query point is considereg].in [
Finally, [14, 18] proposed hashing-based approximate oustiio
find the closest point to a query hyperplane, which has applic
tion in active learning [26]. In contrast to tlproximatemethods

in [14, 18], Planar index efficiently finds the top-closest points in
anaccuratemanner for any input value @f.

Top-k queries with ranking function. The top queries retrieve
the top# tuples ordered according to a user-defined ranking func-
tion that combines the values from multiple attributes. ifras.

al. proposed the well-knowmhreshold algorithm for efficiently
computing the tops queries [10] with monotonic ranking func-
tion. The topk retrieval problem with ad-hoc ranking functions has
been studied in [30]. Li et al. optimized the tépguery processing
which requires joining of multiple relations [17]. For a gey on
top-k query processing, see [13]. A subclass of topgueries is
the linear optimization query, where the sum of linearly gixéd
attribute values is calculated as the ranking criterioa 2§, A very
relevant work to ours is [22], which maximizes a scalar paidu
search using a tree-structured index. Nevertheless, atargurod-
uct queries are different from the above-mentioned kapieries
— while the topk queries identify the tog data points that max-
imize a ranking function, our objective is to retrieve alt,(top+
closest) data points which satisfy a given inequality.

Index for moving objects. One of the earliest work in indexing
moving objects is thdistorical R-Tree [20], which indexes the
sampled locations of a moving object using Ritree. Sistla et.
al. prototyped moving-object trajectories using a linearction of
time [27]. Kollios et. al. [16] applied the dual transformrap a
one dimensional trajectory to a point and then used spaiitidés
to answer window queries. THEPR-tree [23] is an extension of
R*-tree to manage moving objects. TBE-tree [15] indexes mov-
ing objects by & -tree using space-filling curves. For a survey on
indexing moving-object databases, see [7]. Time-paraiaet:
join algorithms and moving-objects-intersection queaes stud-
ied in [28] and [33], respectively. In all these studies,adstbeen
assumed that objects tend to move in a linear fashion witbtaon
velocities, and an index update is required when an objexigds
its velocity or direction. Thus, it is difficult to apply s&abf-the-
art indexing schemes for more complex and non-uniform metio
such as objects moving with acceleration or in a circle.

3. PROBLEM STATEMENT

Given a set of data points ¢ and an application specific func-
tion ¢ : R? — R?, we define two novel scalar product queries.

PROBLEM1 (INEQUALITY QUERY). Find all data points
x € R?, which satisfy a scalar product inequalitya, ¢(x)) < b.

PROBLEM 2 (Top-k NEARESTNEIGHBORQUERY). Given
somek, find the topk data pointsx satisfying(a, ¢(x)) < b,
which also minimiz “"”f;“))*b‘ .

Remarks. (1)Both the query parametesse R* and the inequal-
ity parameteb € R are known only at the time of queryinf®) In-
stead of “less than or equal” constraint, one may also haneatgr
than or equal” constraint in the aforementioned querieveNke-
less, our indexing scheme is general enough to addressyah t
of constraints. (3) When the functiong is an identity function,
our inequality query (Problem 1) reduces to the half-sparge
searching problem [1,2,19], while the tépearest neighbor prob-
lem (Problem 2) becomes identical with the hyperplaneearest-
point query [14, 18].

In this study, our objective is to propose a generalized ximg
scheme — which is easily maintainable and updatable — anchwhi
enables faster processing of both the scalar product qeériein
accurate manner.

Since the query parameteisand inequality parametérare not
known apriori, a naive approach to solve these problemsbeitb
perform a sequential scan over the entire dataset. Suchesan
requiresO(nd’) time for the inequality query an@(nd’ + k log k)
time for our topk nearest neighbor problem, wheneis the to-
tal number of data points, andl is the dimensionality of the out-
put of function¢. In Section 4, we introduce our indexing tech-
nigue which helps in efficiently answering both the scaladpict
queries. For the sake of clarity, we first consider the inkgyua
query (Problem 1) in Sections 4 and 5, then we describe how to
answer the togk nearest neighbor query (Problem 2) in Section 6.

4. THE PLANAR INDEX: OVERVIEW

We shall provide a brief overview of oWlanar index in this

section. Given an application specific functign: R — R%
let us consider & -dimensional Euclidean co-ordinate system with

axes(Y1,Ya, ..., Yy). Recall that our scalar product query has the
form g : (a,#(x)) < b, and assume = (a1, az,...,aqs). We
consider a query hyperplardé(q) in R as follows.

H(q) carYr+axYo+ ... +agYy =0 (2)

The normal to the query hyperpladé(q) is given by the vector
a=(a1,az,...,aq).

4.1 Domain of Query Parameters

The exact query parameter values in a scalar product query ar
unknown apriori. Nevertheless, over a period of time, itfigem
easy to identify the domains of those parameters as folllyane
may learn the domair\a; for each query parameter based on
the past queries, and dynamically update their domains timitd.

(2) Often, the parameter domains are application specific. ¥or e
ample, in the moving-objects-intersection problem (Ex&n®), it

Figure 2: Examples of smaller (Sl), intermediate (Il), ancger
(LI) intervals: the query hyperplane is shown as the dasimed |

is more interesting to find the intersecting pairs at a nedfitinear
time, say fromt = 10 to¢ = 15. Thus, one can still have an apri-
ori knowledge about the parameter domains for moving-dbjec
intersection queries, and we update these domains with tDme
the other hand, for the compleXQL function over the electric-
ity consumption dataset (Example 1), thwver ratio by default lies
between 0 and 1. Intuitively, the larger the domains of thergu
parameters are, the more random the query becomes.

For simplicity, we herein make two assumptions:

e a; # 0forall 1 <i < d'. Otherwise, one can simply ignore
the corresponding axis during index construction and query
processing.

e a; > 0Viandb > 0. Similarly, all of ¢(x) are in the first

hyper octant oR?. Otherwise, we perform a translation of
the co-ordinates as discussed in Section 4.5.

4.2 Index Construction

The core of ourPlanar index is a collection of parallel hyper-
planes inRY with a unique normal vectot = (c1,c2,...,Car),
where eacle; is sampled uniformly from the domaifya; of query
parametern;. We consider such parallel hyperplanes — one for
each data poink, as defined in Equation 3.

(¢, p(x)) (©)

Next, our indexing phase consists of sorting all data painta

a list £ in ascending order ofc, ¢(x)) values. Let us denote by
L(j5), 1 < j < n, the data poink with the j-th smallest value of
(c, ¢(x)). Clearly, ourPlanar index has loglinear indexing time
and linear space complexity in the number of data points dtso
worthwhile to mention that as the queries change over time, w
update the parameter domahu,;, which results in deletion of old
indices as well as inclusion of new indices.

4.3 Query Processing

Let us denote by(l, 7) thei-th co-ordinate of the intersection
point between the query hyperplafi&¢) and the axis;. Simi-
larly, assume(kx, 7) denotes the-th co-ordinate of the intersection
point between the index hyperplafé(x) and the axisY;. We
have, (g,i) = £ and (x,4) = “ﬁﬂ Next, we define a parti-
tion of the data points into three non-overlapping intes\fat effi-
ciently processing our inequality queries.

H(X) Y1+ ceYo+ ... teqg Yy

DEFINITION 1 (SMALLER INTERVAL). Thesmaller interval
denoted by8I, consists of all data points for which the index hy-
perplaneH (x) intersects the axes at points closer to the origin as
compared to the intersection points between the query plgres
H (q) and the corresponding axes. Formally,

Algorithm 1 Online Algorithm for the Inequality Query

Require: sorted listC of x in asc. order ofc, ¢(x)),
query(a, ¢(x)) < b.
Ensure: all x satisfying the query.
1: find intermediate (II) and smaller (SI) intervals. [Binarge8ch onl]
2: forall j € Sldo

3 x> L(G).
4. outputx.
5: end for

6: forall j € Il do

7. if x = L(j) satisfies the querthen
8: outputx.

9. endif

10: end for

St= {x: (vi)(I1(x,9)] < [/(g,9)]) } 4)

DEFINITION2 (LARGER INTERVAL). The larger interval
denoted asLl, consists of data pointsx for which the index
hyperplane H (x) intersects the axes at points farther from the
origin as compared to the intersection points between thenqu
hyperplaneH (¢) and the corresponding axes. Formally,

LI = {x: (Vi) ([1(x,9)] > |1, 9)])} ®)

DEFINITION3 (INTERMEDIATE INTERVAL). Theintermedi-
ate interval referred to adl, consists of those data pointswhich
belong to neither the smaller interval nor the larger intakv

= {x: (30,) (1x,9)| < [Hg, D), [1(x,)] > Mg, 7))}
(6)

ExAmMPLE 3. Figure 2 illustrates an example of three non-
overlapping intervals inR2. In Figure 2, Sl={x1,x2},
||:{X37X4},andL|={X5,X67X7}.

One may notice that we consider an absolute value of the co-
ordinates of our intersection points. This is to make ourrgue
processing algorithm applicable for queries outside tt fiyper
octant as well. However, for the sake of simplicity, we defex
discussion of processing queries outside the first hypanbcintil
Section 4.5.

Two interesting observations arise from the definitionsiofin-
tervals, which are given below.

OBSERVATION 1. All data points in the larger interval do not
satisfy the inequality query, and therefore, can be rejcte

OBSERVATION 2. All data points in the smaller interval satisfy
the inequality query, and hence, can be accepted.

PrROOF. Omitted due to lack of space. (]

Observations 1 and 2 create the basis for accepting andingjec
several data points without actually computing the scaladycts
for them. We only need to evaluate the query for the data point
which are in the intermediate interval. Nevertheless glaee two
important questions at this stag@:) how can we quickly identify
the smaller and larger intervals, and subsequently replodata
points that satisfy the given inequality query, a&) can we re-
duce the cardinality of the intermediate interval? For thst fjues-
tion, we propose a binary-search-based efficient querggssing
algorithm (Algorithm 1), which is discussed below. For oecend
question, we propose the usage of multiBlanar indices — the
details of which are given in Section 5.

Particularly, given an inequality query, we first identifyetin-
tersection co-ordinategd, i) between the query hyperpla#&(q)
and the corresponding axes. Recall that we have alreadydsibre
data pointsx in a list £ in ascending order of theifc, ¢(x)) val-
ues. Now, for each axi¥;, we perform a binary search on list
and find two locations il — denoted a$mall(i) andLarge(s),
respectively, and formally defined in Equations 7.

Small(i) = max{j : L(j) = x,1(x,7) < 1(g,%)}

Large(i) = min{j : £(j) = x,1(x,i) > 1(g,4)} @)

The above-mentioned binary search operations reqir® log n)
time. UsingSmall(¢) andLarge(i) values for alli, we then com-
pute the boundaries of Sl, LI, and Il as follows.

imin = min {Small(i)}; jmaz = Large(i
J ié?fﬂf){ @} J ﬁfi’é){ ge(i)}

I — L[jmin +1: jmaw — 1]

Ll = L[jmaz : 1] (8)

Computing the interval boundaries requires anotét’) time. Fi-
nally, we report two sets of data points in the answer @gtfor all
data points in the intermediate interval, we evaluate th&asprod-
uct, and then report those data points which satisfy thengiealar
product inequality, as well a&) we also report all data points in
the smaller interval. Therefore, the time complexity of oufine
query-processing algorithm ©(d’'(logn + |I1]) + t), where|ll |

is the cardinality of the intermediate interval, ahds the cardi-
nality of our answer set. Here, we emphasize that the sizbeof t
intermediate interval can be zero for carefully desigRé&har in-
dex. Therefore, our best case query-processing time caityple
logarithmic in the number of data points.

4.4 Dynamic Updates of Planar Index

Our Planar index is lightweight, and hence, easily maintainable

and dynamically updatable. Let us consider a collection data
points. Given an update ifi(x) associated with some data point
x, we can reflect such update in our index structur®{’ log n)
time. Alternatively, when we dynamically introduce a nBdanar
index, it requiresD(nd’ log n) time. Also, the storage complexity
of our index structure i€)(n). These time and space complexity
results attest th&lanar index is efficient, dynamic, and scalable.

4.5 Queries outside First Hyper Octant

In order to complete the overview of titanar index, we shall
discuss how to answer scalar product queries outside thayjpsr
octant. Fortunately, ouPlanar index is very general, and it can
support both data points and queries outside the first hyganb

Without loss of generality, let us assume that the inequpkt-

rameterd is always non-negative in the query, while the query

parameteryai,az,...,aq) can be both positive and negative.
Since, for eacla,;, we have an apriori knowledge about its domain
Aa;, it is possible to identify the hyper octant in which a query
hyperplane will intersect the co-ordinate axes. Let us tetius
hyper-octant a®), and the sign of an axi¥; in this hyper octant
O is denoted asign(0, 7). Clearly,sign(0O, i) € {+1,—1}. For
example, the sign of any axis in the first hyper octant is +1.

In order to build thePlanar index, we first perform &ranslation
operation such that afi(x) for data pointsc are in the hyper octant

O in the modified co-ordinate system. We claim that after such a

translation, the query hyperplane still intersects the iffextiaxes
in the same hyper octanl.

Translated Co-
ordinate System

Original Co-
ordinate System

Figure 3: Examples of translation: the query hyperplanersgcts
the co-ordinate axes in the same hyper octant after tréoslat

CLAaIM 1. Consider a query hyperplan& (¢) that intersects
the co-ordinate axes in the hyper octafit Perform a transla-
tion such that allp(x) lie in the hyper octan©O in the modified
co-ordinate system. After this translatioH,(q) will intersect the
modified axes in the same hyper octént

PROOF First, we shall define the translation operation which
places all¢(x) in the hyper octan©. For eachi € (1,d’), find
the setX; of data pointsk for which ¢;(x) has a sign opposite to
sign(0, 7). Formally,

X, = {x : sign(é:(x)) # sign(0, i)} ©)

From the setX;, we find the translation parameté, which is
defined as the largest absolute valuegfx) for anyx € X;.

0i = max i (x)] (10)

Finally, we define our translation operation for ale (1,d’) as

given in Equation 11, wherg;(x) denotes the-th co-ordinate of
¢(x) in the new co-ordinate system.

¢i(x) = ¢i(x) +sign(0, i)d; (1

Itis worthwhile to mention that the aforementioned tratistawill
place all¢(x) in the hyper octan© in the new co-ordinate sys-
tem. Now, we shall analyze the effect of this translationrapien
on the query hyperplane. By using the principles of co-atirye-
ometry, the query hyperplane in the new co-ordinate systenbe
represented as follows:

H(q) . alYf —+ CLQYQI + ...+ CLd/Yél = b/,
d/
whereb’ = b+ > "[sign(0, i)a;d;]

i=1

(12)

We note thatsign(O, i)a; is positive, andd; is non-negative as
well, for all i € (1,d'). Hence,b’ is a positive term in Equa-
tion 12. Therefore, the query hyperplafgq) still intersects the
co-ordinate axes in the same hyper octarih the new co-ordinate
system. This completes the proofl]

Figure 3 provides an illustration of our translation medkamin

R2. Once we perform the translation, the query processing can

follow our proposed technique as outlined in Algorithm 1.vNe
ertheless, for the sake of simplicity, hereinafter we sbafisider
query processing only in the first hyper octant. In our experits,
we applied the aforementioned translation technique tb \dith
queries and data points outside the first hyper octant.

5. QUERY PROCESSING WITH
MULTIPLE PLANAR INDICES

In this section, we introduce multiplelanar indices in order
to reduce the size of the intermediate interval during @entinery
processing. For a pre-defined budgetwe index functiong(x)

for each data poink with b planar indices. Thus, given a scalar
product query, our objective is to use the bleknar index to an-
swer our query. We here emphasize that the query-processiag
reduces with smaller cardinality of the intermediate iér In-
deed, when ouPlanar index is parallel to the query hyperplane,
the cardinality of the intermediate interval is zero, and tjuery
processing requires only logarithmic time in the number atad
points. Since the exact query parameters are not knownrgprio
by introducing multiplePlanar indices, it is more likely that one
can find an index hyperplane which is “close” to being palatie
the query hyperplane. Below, we first introduce our techesqto
find the bestPlanar index at the time of querying (Section 5.1),
and then we discuss our method to select multigienar indices
during pre-processing (Section 5.2).

5.1 BestIndex Selection at Query Time

One naive approach to find the b&snar index will be as fol-
lows. Given a query, count the number of points in the intelime
ate interval for eacfPlanar index, and then select the index which
generates an intermediate interval with the minimum caildin
However, such a naive approach, in the asymptotic sensénias
complexity equal to the largest cardinality of any interiagel in-
terval. This creates a well-known “chicken and egg” probldm
other words,given a query, is it possible to find the best planar
index without actually counting the number of points in thieii-
mediate interval for each indexPhis is a difficult problem unless
one has apriori information about the distribution of dadanfs. To
this aim, we propose two greedy heuristics for finding the Bés
nar index: (1) volume minimization of the intermediate interval,
and(2) angle minimization with the query hyperplane.

5.1.1 Volume Minimization of Intermediate Interval

Assuming that the data points are distributed uniformlg,libst
Planar index is the one which minimizes the “volume” of the in-
termediate interval for a given query. Below we clarify thation
of volume spanned by the intermediate intervaRif.

Let us denote by; the intersection point between the query hy-
perplaneH (¢) and thei-th co-ordinate axig;. We recall that the
i-th co-ordinate of the intersection poiqt is denoted as(l,).
Next, for aPlanar index with normal vectoe = (c1, c2, ..., cq’),
we consider the set of hyperplané&q;) passing through these
intersection pointsy;, and parallel to index hyperplanes with nor-
mal vectorc. The equation of such a hyperplaf€q;) is given in
Equation 13.

H(qi) Y1+ Yo+ ... teqgYy = cil(q, Z) (13)

There will bed’ such hyperplanes for total intersection points.
We find two hyperplane&l .., and H,,;, among them which has
maximum and minimum values ofl(q, ¢), respectively.

Hpao = H(qs,) @ 41 = arg max ¢l (g, 4)
ie(1,d)

Hpin = H(qiy) @ 92 = argmin ¢;l(q, 7) (14)

i€(1,d’)
We are now ready to formally define the volume of the interratedi
interval.

DEFINITION4 (VOLUME OF INTERMEDIATE INTERVAL).
Given a query hyperplane and Rlanar index, we define the
volume of the intermediate interval as the volume of the type
surface bounded by the two hyperplan®s,q., Hmin, and the
co-ordinate axes.

As an example, Figure 4 shows the volume of intermediatevate
in three dimension for a given query and a planar index. lasye

Figure 4: Volume of intermediate interval in 3D: the queryby
plane is marked by dotted lines, and the volume of the intdiate
interval is shown as the shaded region.

to verify that any point which lies on the hyper surface baabty

H oz, Hmin, and the co-ordinate axes — except the points on the
boundary ofH,,;, — is in the intermediate interval. On the other
hand, points which are outside the aforementioned hypdacair
belong to either the smaller or the larger interval.

CLAIM 2. Given a query hyperplane andRianar index, con-
sider the hyper surface bounded by the two hyperplafgs,.,
H..in, and the co-ordinate axes. If a data point (except the points
on the boundary off ;) lies on this hyper surface, then itis also
in the intermediate interval. On the other hand, if some pbas
outside this hyper surface, then it is either in the smalleinahe
larger interval.

PrROOF. Omitted due to lack of space.[]

Therefore, assuming uniform distribution of the data pmimne
will select thePlanar index which reduces the volume of the in-
termediate interval for a given query. Unfortunately, firglithe
volume of a hyper surface in higher dimension itself is a \giffy-
cult problem. Since the volume of a hyper surface is roughty p
portional to the “stretch” of the hyper surface along eads,axe
greedily decide the be§tianar index as the one which minimizes
the maximum stretch of the intermediate interval along axig.a
We formally define our problem statement of selecting thé Bkes
nar index in Problem 3.

PrROBLEM 3. Consider a set of- Planar indices. Given a
scalar product query;, the stretch of the intermediate interval due
to some planar index (with normal vectoJ along the axisY; is
computed as follows.

Stretch(c, i) = l[max cil(q, k) — .

i | k
o L o, ex1(9, k)]

(15)

The besPlanar index is selected as the one which minimizes the
maximum stretch of the intermediate interval along any,aes,

arg min r?axl} Stretch(c, 7) (16)

c ie€{l,d

ExXAMPLE 4. Consider a query hyperplang (q) : Y1 +2Y2 +
5Y3 = 10, and aPlanar index with normal vecto(1, 1,2). The
query hyperplane intersects the ax®s, Y2, and Y3 at points
q1 = (10707 0)1 qz2 = (07570)1 and qs = (0707 2)1 respec-
tively. Thus, we gelt(q,1) = 10, I(¢,2) = 5, andl(q,3) = 2.
Now, let us consider the hyperplanes passing through tleesat-
tion pointsq1, q2, andqs, respectively, and with the same normal
vector(1, 1, 2) as thePlanar index.

H(qu): Y1+ Y2 +2Ys =10
H(g2): Y1+ Y24+2Y3=5
H(gs): Y1+ Y2+2Y3=4

H(qi), H(qz), and H(qs) intersect the axes at poinfs0, 0, 0),
(0,10,0),(0,0,5); (5,0,0), (0,5,0),(0,0,2.5); and (4,0,0),
(0,4,0),(0,0,2), respectively. Therefore, the stretch of the inter-
mediate interval due to thiBlanar index along axe%1, Y2, and

Y3 are (10 — 4), (10 — 4), and (5 — 2), respectively. Thus, the
maximum stretch due to thianar index along any axis i6.

Corollary 1 shows that if there exist sorféanar index which is
parallel to the query hyperplane, our greedy method as gezpm
Problem 3 is capable to select the best index.

COROLLARY 1. If somePlanar index is parallel to the query
hyperplane, both the volume and the maximum stretch of the in
mediate interval is zero.

Finally, in terms of time complexity, our method finds the thes
(heuristically)Planar index independent of the data set cardinal-
ity. More precisely, given a set of Planar indices and a scalar

product query iR?, we can find the be®lanar index according
to problem 3 inO(rd’) time.

5.1.2 Angle Minimization with Query Hyperplane

Our second heuristic method to select the best planar irglex i
quite straightforward, and it works by minimizing the angle-
tween the query hyperplane and soRianar index. Let us con-
sider a scalar product quegy: (a, ¢(x)) > b and aPlanar index
with normal vectore. The angle between the query hyperplane and
(a,c)
_ . lafle” _
thePlanar index as the best index which minimizes the angle with
the given query hyperplane.

It is worthwhile to mention that if somBlanar index is parallel
to the query hyperplane, it makes an angle of zero degreethéth
query hyperplane. Thus, analogous to our volume mininopati
based heuristic, the angle minimization-based technidge se-
lects the besPlanar index, when there exists sonanar index
which is parallel to the query hyperplane.

Given a collection of- Planar indices and a scalar product in-
equality query iR? | the angle minimization technique finds the
best (heuristicallyPlanar index inO(rd’) time.

In our empirical analysis, we found that the minimum-
volume-based best index selection method usually outpesfthe
minimum-angle-based best index selection criterion.

the Planar index is given bycos ™" (

). We greedily select

5.2 Multiple Planar Index Selection
at Preprocessing Time

For a pre-defined budgét how do we select the initidl Planar
indices? We recall that each query parameteis selected from
some domaim\a;. We pick our indices uniformly from the same
domains, and later we remove tledundantindices — aPlanar
index is redundant if there exists anotfanar index with normal
vectors parallel to each other. We note thatlanar indices incur
space complexity) (nb), wheren is the number of data points.

6. TOP-K NEAREST NEIGHBOR
QUERIES

In this section, we shall discuss our solution techniquettfier
top-k nearest neighbor query (Problem 2). Specifically, given a
scalar product query : (a,¢(x)) < b and an integek, we are
interested in the top- points which satisfy the scalar product in-
equality and also minimiz¢a, ¢(x)) — b|/|al. The topk near-
est neighbor queries are useful in pool-based active legui2i6],

Y2

\

[N
Lower-Bound- N

Distance
between index
hyper plane
and query
hyper plane

Figure 5: Lower-bound-distance: finding the top-k closesgtative
points to query hyperplane in 2D.

where given a query hyperplane, one would like to identifytthp-

k closest positive or negative data points from the query hype
plane [14, 18]. We note that the distance of a paifitom a hyper-
plane(a, x) = bis given by|(a,x) — b|/|al|. Therefore, our tog
nearest neighbor query reduces to the hyperplane-tostgaoint
query when the functios is an identity function.

To answer the tog-nearest neighbor queries efficiently, we use
thePlanarindexing scheme as introduced earlier. Our online query
processing involves a novel pruning-based technique,ledupith
a top+ buffer that stores the top-nearest neighbor points found
so far. Particularly, we first consider all data points in thter-
mediate interval, and if any of them, say satisfies the inequality
constraint, it is inserted in the tap-buffer based onp(x)’s dis-
tance from the query hyperplane. Next, we consider the datag
x from the smaller interval in descending order of theire(x))
values. We terminate our algorithm when the two followingdie
tions are satisfied1) The top# buffer is full, and(2) for an index
hyperpland{ (x) corresponding to some data paiin the smaller
interval, if the “lower-bound distance” dff (x) to the query hyper-
planeH (q) — denoted a&BS(H (x), H(q)), which is illustrated
in Figure 5 and formally defined in Equation 17 — is greatentha
the maximum distance stored in the thpuffer. An outline of our
top-k nearest-neighbor-finding method is given in Algorithm 2.

DEFINITIONS5 (LOWER-BOUND DISTANCE). Consider a
queryq : (a, ¢(x)) < b and aPlanar index with normal vector
given byc = (c1,c2,...cq/). FOr some data poink in the
smaller interval, we define the “lower-bound distance” ofeth
index hyperplaneH (x) to the query hyperplandi(q) as the

ot (c, d(x)) — b|

smallest value of*: forall i € (1,d’). Formally,

|al

% (e, ¢(x)) —]

LBS(H(XLH(q)) al

an

min
ie(1,d’)

Below, we state Claim 3 that forms the basis of our pruning-tec
nigue employed in Algorithm 2 (see lines 10-11).

CLAIM 3. Consider two data pointg1, x2 in the smaller in-
terval such thatc, ¢(x1)) is larger than(c, ¢(x2)). Then, it holds
thatLBS (H (x1), H(q))) is smaller than{&:20x2l bl

la]

PrROOF. Omitted due to lack of space.[]

Claim 3 provides the theoretical justification of our prupariteria,
which says that if, for some data poixr{ in the smaller interval,
LBS(H (x1,H(q))) is greater than the largest distance stored in
our top# buffer, then we can safely prune all other data pokys
from the smaller interval that satisfy, ¢(x2)) < (¢, #(x1)).

Finally, we analyze the complexity of our tdprearest neighbor
algorithm. In order to find the boundaries of intermediate langer

Algorithm 2 Online Algorithm for Topk Nearest Neighbor Query

Require: sorted listC of x in asc. order ofc, ¢(x)),
query(a, ¢(x)) < b, and an integek.
Ensure: Top-k nearest neighbor points which satisfy the query.
1: Top+ bufferB — ¢
2: find intermediate (I1) and smaller(Sl) intervals. [BinargaBch onl]
* Process Intermediate Interval */
3: forall j €1l do
4: if x — L(j) satisfies the querthen
5: insertx into 5.
6: endif
7: end for/* Process Smaller Interval */
8: forall j € Slin dsc. ordedo

9. x— L)

10: if Bfull and LBS(H (x), H(g)) > largest dist. in3 then
11: terminate.

12: endif

13: insertx into B.

14: end for

15: report data points itf3.

intervals, we requir€(d’ logn) time. Since we need to verify all
the data points in the intermediate interval before insgrthem
in the top# buffer, it requires anothe®(d'|I1]) time, wherglll | is
the cardinality of the intermediate interval. Next, assuha total
k1 data points from the smaller interval are verified before @ ¢
terminate our algorithm. Then, the overall time complexityour
nearest-neighbor-finding algorithmd¥(d’ log n+ (|11 |+ k1) (d' +
log k)). In the best case, that is, when fRkanar index is parallel
to the query hyperplane, |ll|=0, ahd = k + 1, wherek is the

top-k value given as the input. Thus, our best case time complexity

isO(d'logn + d'k + klogk).

7. EXPERIMENTAL RESULTS

We present experiments to assess the performance &lanar
index for answering scalar product queries. We evaluaterygu
processing efficiency (Section 7.2), index time, memoryl dy-
namic updates (Section 7.3), and scalability (Section Fdjther-
more, we analyze the performance Rifinar index in two real-
world applications: (1) finding intersection between moving ob-
jects with both uniform and non-uniform workloads (Sectrob.1)
and (2) reporting the topk nearest points to a query hyperplane
(Section 7.5.2), which is critical in pool-based activerteag [26].

Table 2:Dataset characteristics.

Dataset # Data Points # Dimension Attribute Range
Indp 1,000,000 2-14 (1, 100)
Corr 1,000,000 2-14 (1, 100)
Anti 1,000,000 2-14 (1, 100)
CMoment 68,040 9 (-4.15, 4.59)
CTexture 68,040 16 (-5.25, 50.21)
Consumption 2,075,259 4 (0, 254)

texture, and the corresponding datasets Glkéomentand CTex-
ture, respectively. The first datasetddimensional with attribute
values between (-4.15, 4.59), whereas the second datasetlis
mensional and its attribute values are in (-5.25, 50.21)th Bioe
datasets are publicly available frohtt p://archive.ics.
uci . edu/ m /dat asets. htmi .

Electric Power Consumption. The Consumptiordataset con-
sists of electric power consumption measurements for 22885
individual households. Each data point has 4 dimensiansie
power (range: 0-11 KWatt)reactive power (range: 0-1 KWatt)yolt-
age (range: 223-254 \olt), anelrrent (range: 0-48 Ampere). This
dataset is downloadable frommt t p://archive.ics. uci.
edu/ m / dat asets. htn .

Query selection and parameter settingFor the real-worldCon-
sumptiondataset, we consider a complex non-lin&QL query:
find all households for which thewer factor is less than an input
threshold. Note thatpower factor is defined as the ratio betweeaa
tive power and {oltage X current). For details, see Example 1. We
select the query parameter “threshold” uniformly from tahege
(0.100,1.000); i.e., we allo®00 possible query normal vectors.
For the real-world image datasets and for all syntheticagdsa
we consider a more generalized form of the scalar-produsrtyqu

d d
Z a;ix; < 0.25(Z a; max(i)) (18)
i=1 i=1
Here, we assume that our data poirts= (z1, z2,...,z4) ared-

dimensional, andnax(i) denotes the maximum value of tieh
dimension in the data set. We multiply the right hand sidewf o
query by aninequality parametef.25 — this results in a small
fraction of data points satisfying our queries. We furthannthis
inequality parameter in Figure 11, and thereby analyze aaryg
processing performance with differaqiery selectivitylt is worth-
while to mention that if too many data points satisfy the gutre
time complexity in the asymptotic sense gets clos®fa), since

The code is implemented in C++ and the experiments were per- We need to report all the data points in the result set. Hemee,

formed on a single core of a 100GB, 2.50GHz Xeon server.

7.1 Environmental Setup

Datasets.We involve three synthetic and three real-world datasets,

each containing a collection of multi-dimensional datanpmi

Synthetic. We generate three synthetic datasets by using the

generator obtained from [4]. In thedependentdataset, all at-
tribute values are generated independently from a pre-atefange
with a uniform distribution. TheCorrelateddatabase represents
an environment in which points that have higher values indine
mension also have higher values in the other dimensionshdn t

anti-correlateddataset, points which have higher values in one di-

mension have lower value(s) in one or all of the other dimasi
The cardinality of each of our synthetic datasets is 1M andave
the dimensionality of data points from 2 to 14. The range chea
attribute lies between (1,100).

Image. The real-worldimage database contains image fea-
tures extracted from a Corel image collectitnt { p: / / corel .
di gi tal river. comwith 68,040 photos. We consider two sets
of features for our experiments: color moments and co-oecge

design our queries in a way such that a small percentage déthe
points satisfy these queries.

In Equation 18, we assume that each query paranagtisruni-
formly selected from a pre-defined domain. We denote the size
of A;, that is|A;|, as therandomness of the queRQ). Partic-
ularly, if our data points ar@-dimensional, then there aq‘éi|d
possible query normal vectors. Since we do not know the exact
query parameters, our objective is to employ only a few numbe
of Planar indices for quickly answering any such query from the
potential query set. We vary the randomness of query (R@) o
to 12, while the number dPlanar indices is varied from 1 to 200.

All experimental results are averaged over 100 runs. Inal o
experiments, we found that the minimum-volume-based begx
selection method (Section 5) results in improved queryiefiity as
compared to its counter part: minimum-angle-based beskisd-
lection criterion. Thus, we employed the minimum-volunsséd
best index selection method in all our experiments.

Competing Method. We compare the performance of dRlianar
index with a baseline method that performs a naive sequeota
over the entire dataset.

#ind=1
#ind=10
#ind=50
#ind=100
baseline

70
60

45

Query Time (ms)

&
Query Time (ms)

Query Time (ms)

=)

[
100 200 base
Index fine

(a) ConsumptiongQL func.)

10 50

RQ=2 RQ=4 RQ=8 RQ=12

(b) CMoment

#ind=1
#ind=10
#ind=50
#ind=100
baseline

#ind =1

#ind =10
#ind = 50
#ind = 100
#ind = 200

Ll

CMom CText Consum

(d) Index Time

=
—
—
—
—

Index Time (Sec)

RQ=2 RQ=4 RQ=8 RQ=12

(c) CTexture

Figure 6:Index and query-processing times using real-world datg€emsumptionCMoment andCTexturg

indp s
corr EEEEN baseline m——

HI‘ 1l

RQ=2 RQ=4 RQ=8 RQ=12
(a) Dimension=2

anti —— indp

corr mmm—

anti ——
baseline m—
80

30
15

oo w
o

1
0
0

Query Time (ms)
Query Time (ms)
Query Time (ms)

0.2
0.01

In

RQ=2 RQ=4 RQ=8 RQ=12
(b) Dimension=6

0.01

indp s
corr mm—

anti ——
baseline m—

Ll

RQ=2 RQ=4 RQ=8 RQ=12
(c) Dimension=10

indp
corr mm—

anti ——
baseline m—
180

150

250
200

101

70
50
30

=3

101

Query Time (ms)
3

50
15

Lull

RQ=2 RQ=4 RQ=8 RQ=12

(d) Dimension=14

o

Figure 7:Query-processing time using synthetic datasetsy Corr, andAnti): # dimensions = 2- 14, and randomness of query (RQ) varied from 22,

index = 100. Baseline running times are for any of the thye¢hetic datasets.

indp s
corr mm—

anti ——
baseline m—

indp s
corr mm—

anti ——
baseline m—

3o

90
80

o

6

=3

15
05
0.2

40
30
20

Query Time (ms)
Query Time (ms)
Query Time (ms)

Hl H|H il s,

1 10 50 100
Index

(b) Dimension=6

H HIH Hln

10 50 100
Index

(a) Dimension=2

o

1

Figure 8:Query-processing time using synthetic dataskisy Corr, andAnti):
= 4. Baseline running times are for any of the three syntltztasets.

7.2 Query-Processing Efficiency

7.2.1 Efficiency on Real-World Dataset

We show the performance of our query-processing technique o
real-world datasets in Figure 6. Note that we execute thergén
ized scalar product query as given in Equation 18 dvitoment
andCTexturedatasets, while we evaluate the performance of a non-
linear SQL function using theConsumptiordata.

For the evaluation of th&QL function with theConsumption
dataset, the baseline method requires 62 ms, while ouritpahin
with 200Planar indices takes only 9 ms — thereby, improving the
query-processing efficiency by 7 times (see Figure 6(a)).

Figure 6(b) shows that with 100 indices, RQ=4, and using the
CMomentdataset, our query-processing time is 2 times faster than
the baseline method — the baseline requires 9 ms, while arnygu
processing finishes in 4 ms. With the same set of parametdrs an
using theCTexturedataset, our method is about 150 times faster:
the baseline needs 15 ms, while our query-processing takgs o
0.1 ms (Figure 6(c)).

7.2.2 Efficiency on Synthetic Datasets

We present in Figures 7 and 8 the query-processing timeg usin
three synthetic datasetsdp, corr, andanti, by varying the number
of dimensions, number of indexes, and randomness of quepy. (R
We observed that with 10Rlanar indices and dimensionality up to
6, our query-processing times are 4 orders of magnituderfesin
the baseline when RQ=2: 0.01 ms for our method vs. 88 ms using
baseline; and itis 14 times faster when RQ=4: 6 ms for our ateth
vs. 88 ms using baseline (see Figure 7(b)). However, as therdi
sionality increases, our query-processing time also &sge. Nev-
ertheless, with lower query randomness (up to RQ=4) Rlanar

indp s
corr mm—

anti —
baseline m—

indp
corr mm—

Il

1

anti —
baseline m—

160
140
120

200
180
160
140

Query Time (ms)

10

1S3

70
50
30

1]

10 50 100
Index

(d) Dimension=14

H HIH H.H afl
10 50 100
Index

(c) Dimension=10

S

1

dimensions = 2- 14 and # index = * 100, randomness of query (RQ)

index-based query-processing times are at least 2 to 3 fasteyr

as compared to the baseline method: 99 ms for our method 8s. 20
ms using baseline in Figures 8(c). When both the dimensignal
and randomness of query are higher, our query-processnaggits
closer to the baseline running time (see Figure 7(d)). Thiduie

to the fact that as RQ increases, the number of possible qaery
mals increases exponentially, and it is difficult to obtaisirailar
improvement in query times by linearly increasing the nunrdife
Planar indices. Rather, it is more beneficial to dynamically update
our indices based on the recent queries, as we shall deratmistr
Section 7.3 that our index construction times are very déble.

We recall that the key idea éflanar index is to allow very fast
pruning of the data points without actually computing thalac
product for them. In Figures 9 and 10, we show the pruning per-
centage, that is, the percentage of data points that canceetad
or rejected without actually computing the scalar prodocttiem.
With 100 indices, dimensions up to 6 and RQ up to 4, we found tha
almost 96-100% of the data points can be pruned directly (Fig-
ure 10(b)). These results attest high quality of Blanar indexing
scheme. It is worthwhile to mention that with high dimensilaty
and high query randomness (e.g., dimensionality=14 and1Rp=
100 Planar indices still achieve about 4660% pruning of data
points (Figure 9(d)), but the corresponding query-praogssmes
get very close to the baseline time (Figure 7(d)). This isabse
in our query-processing method, the points in the interitedin-
terval require a random access — which takes more time; as com
pared to the fact that all data points are accessed sequigntia
the baseline method

We note that in higher dimensiong (6), our query-processing
requires more time for thanticorrelateddata, as compared to the
other two synthetic datasets. This is because irattiecorrelated

indp = indp =
corr m— corr m—
anti —— anti ——

100
90
80
70
60
50
40

100
90
80
70
60
50

Pruning Percentage
Pruning Percentage

I

RQ=2 RQ=4 RQ=8 RQ=12
(b) Dimension=6

30

RQ=2 RQ=4 RQ=8 RQ=12
(a) Dimension=2

Pruning Percentage

indp = indp =
corr m— corr m—
anti —— @ anti ——
100 & 100
90 § 9
8
80 s 80
o
70 o 70
2
60 S 60
H
50 H I g 50 I
40 H 40 H
30 30 H i

RQ=2 RQ=4 RQ=8 RQ=12
(c) Dimension=10

RQ=2 RQ=4 RQ=8 RQ=12

(d) Dimension=14

Figure 9:Pruning percentage for synthetic datasets: # dimensions 42, and randomness of query (RQ) =212, # index = 100.

indp indp s
corr corr
anti ——

100
90
80
70
60
50
40

100
90
80
70
60
50

Pruning Percentage
Pruning Percentage

1

10
Index

(b) Dimension=6

30

1 10 50

Index

(a) Dimension=2

100 1 50 100

Pruning Percentage

indp indp s
corr corr
anti —— anti ——

Pruning Percentage

Ll

1 10 50
Index

(d) Dimension=14

1l

10

Index

(c) Dimension=10

1 50 100 100

Figure 10:Pruning percentage for synthetic datasets: # dimensions 42 and # index = & 100, randomness of query (RQ) = 4.

100

indp indp s anti ——
corr corr EEEEE baseline m——
anti ——

Query Selectivity (%)
Query Time (ms)

n
0.10 0.25 0.50 0.75 1.00
Inequality Parameter

(a) Dimension=6

0.10 0.25 0.50 0.75 1.00

Inequality Parameter

(b) Dimension=6

Query Selectivity (%)

100

indp mmmmm indp s anti ——
corr corr EEEEE baseline m—
anti ——

Query Time (ms)

] B
0.10 0.25 0.50 0.75 1.00
Inequality Parameter

(c) Dimension=10

0.10 0.25 0.50 0.75 1.00

Inequality Parameter

(d) Dimension=10

Figure 11:Query selectivity and query-processing time with varyingguality parameter: synthetic datasets, # index = 10@poraness of query (RQ) = 4.

Baseline running times are for any of the three synthetiass.

dataset, points which have higher values in one dimensior ha data points and dimensionality of each point up to 14, ouexnd

lower value(s) in one or all of the other dimensions — thugeit-
erates more data points in the intermediate interval.

7.2.3 Efficiency with Varying Query Selectivity

We varied the inequality parameter of our query in Equatién 1
from 0.10 to 1.00, and thereby analyze the effect of quergcsel
tivity over query-processing time using three synthetiadats. In

Figure 11, we consider RQ=4, number of indices=100, and vary

the dimension from 6 to 10. We observe that the query selectiv
ity increases as we increase the inequality parameterr@bl(a),
11(c)), while the query-processing time first increasesthad de-
creases, which is more prominent in Figure 11(b). This isbse if
the inequality parameter is too high or too low, a high petrage of
data points could be directly accepted or rejected usingjoary-
processing technique. As expected, our query-processingis
maximum when the inequality parameter is betweenQ®&d5.

7.3 Index Building Time and Memory Usage

Figure 13(a) shows index construction times with varying di
mensionality and varying number &flanar indices using three
synthetic datasets. Note that the indexing time is independf
the particular type of synthetic data. The time to constaun in-
dex for 1M data points varies from only 2.54 sec to 2.92 sec, fo
dimensionality of the data points from 2 to 14. These smatier
dexing times justify that our indices are dynamically updhée with
changes in the query, aiitds more beneficial to update ofanar
indices over time as opposed to maintain a large number a¢asd

Figure 6(d) affirms modest index-building times (0:4211 sec)
to construct on®lanar index) over three real-world datasets.

Memory Usage.We show the memory consumption by our index
structure in Figure 13(b) using three synthetic datasets.n@®m-
ory consumption is quite modest: even for 100 indices with 1M

structure uses less than 5GB memory. In addition, the meowry
sumption of ouPlanar indices is almost independent with respect
to the dimensionality of the data points, and it increasesalily
with the number of data points and also with the number otiesli

Dynamic Updates in Data Points.In these experiments, we an-
alyze our index-structure-modification time based on dyinam-
dates in the data points. Figure 13(c) shows that if we haeady
indexed 1M data points of dimensionality 10, and later 5%hef t
data points, that is 50K data points, change their valuesanely-
namically update our index structure in 170 ms Pénar index

— which is equivalent to only 3.4 ms per data point p&anar in-
dex. Henceit is more beneficial to update our indices dynamically
if there is a change in small percentage of data paints

7.4 Scalability

We analyze scalability of our query-processing technigsiag!
three synthetic datasets. For this experiment, we congielgr
ments of the original datasets with humber of data point$10.1
0.3M, 0.5M, 0.7M, and 1M, respectively. The correspondimpix-
building and query-processing times are presented in Eifjar

We observe that the indexing time increases loglinearli wie
number of data points, while the query time increases sedily.
Such results assess high scalabilityRdé&nar index construction
and the subsequent processing of scalar product queries.

7.5 Applications of Planar Index

7.5.1 Moving-Obijects Intersection

We show an application d?lanar index in finding intersections
between two sets of moving objects. Every object set hasradrd
ity 5K, that is, each query verifies for the intersection ol28is-
tinct object pairs. We consider three different scenarigh foth

#Index = 1 @ #Index = 1 R #Index = 1 @ #Index = 1 @
) #Index = 10 I #Index = 10 I #Index = 10 I #Index = 10
3 #Index = 50 £ #Index = 50 £ #Index = 50 £ #Index = 50
> 100 #Index = 10 . LT o 90 r #Index = 100 o 90 r #Index = 100 @ #Index = 100
£ 30 P - £ Baseline £ Baseline E 9o | Baseline
E 10 " 60 60 -
5 5 . 2 45 2 45 F &
2 o8 J— 3 30 . 3 30 * 3 30
0.2 4o L — 15 15 &,
- 1 = 1 J e e E
0.1M 0.3M 0.5M 0.7M ™M 0.1M 0.3M 0.5M 0.7M ™M 0.1M 0.3M 0.5M 0.7M M 0.7M ™M
Data Points # Data Points # Data Points # Data Points
(a) all synthetic datasets (b) indp (c) corr (d) anti

Figure 12:Scalability with varying number of data points using sytithdatasets: # index=~1100, randomness of query (RQ) = 4, and # dimensions =6.

#dim=6 —
#dim=10 ==

950

#ind=50
135 1 ind=100

400
200

5000 | #dim=14
2000

500

Index Time (Sec)

50

Memory Consumption (MB;
Per Index Update Time (ms)

100
20
40

2 6 10 14 1 10 50 100 base 1 5 10 25
Dimension # Index fine Percentage Data Point Updates

(a) Index Building Time (b) Memory Consumption (c) Dynamic Updates
Figure 13:Index construction time, memory usage, and dynamic indelatgs using synthetic datasets

g Baseline 2) o Basel

£ £ £ aseline

£ 1000 E 6200 Baseline E 1110

2 g 2500 2 2 2 2 2

@ — @B~ Y @B~

§E 80 Planar Index §E ggg .‘”"u""’u"’"'u"."u"‘ | §E

o o o

£ 40 o, %, N T, £ 80 I & Planar Index

> 20 > Planar Index > 40} o

o) MBR Tree < o) mn we me oo sa

E: E: E: 204 w w ws w
10 11 12 13 14 15 10 11 12 13 14 15 10 11 12 13 14 15

Future Time Instant (Min) Future Time Instant (Min) Future Time Instant (Min)

(a) Linearly Moving Objects (b) Circular Moving Objects (c) Accelerating Objects

Figure 14:Planar index in finding moving object intersection: unifoamd non-uniform workloads

uniform (e.g., objects moving with constant linear and dagve- 15 min. We vary the future time-instants in our queries betwe
locity) and non-uniform (e.g., accelerating objects) voakis. 10~15 min, and it can be an intermediate time-instant, e.g5 11.
min, for which no index exists. We compare our query-process
times with state-of-the-aNIBR-tree-based method [33] (which is
an improvement over the widely-us@®PR-tree [23]), and also
with a baseline method which verifies all 56K object pairs. The
authors of [33] kindly provided us a C++ implementation.

Figure 14(a) shows that the performanc@t£nar index is com-
parable to that of [33] when an index is available for the feitime-
instant. OtherwiseRlanar index-based method is at most 4 times
slower than [33]; and therefore, it is beneficial to applyestaf-the-
art method [33] for objects moving in straight lines with fanim
velocity. However, it is difficult to apply such spatio-teorpl in-
dexes for complex and non-uniform motions, such as objeots m
ing in circles or with acceleration. Below, we show two ex#esp
whenPlanar index is quite effective in complex and non-uniform
motions, and these results show the generalitylahar index.

Objects moving with uniform velocity. We consider a simulat-
ing scenario [23, 33] with two sets of objects generatedaunify
within a 2D space of 1006« 1000 mil¢. Every object is mov-
ing linearly with a uniform velocity between G-l mile/min in
both (positive or negative) X and Y-directions. Given a fetu
time-instantt at the time of querying, we want to find all ob-
ject pairs which will be within 10 miles from each other at ¢éim
t. The above-mentioned intersection query can be expressed a
a scalar product queryAX; + BX, + CX3 < 100, where
the functional part consists of1 = (px — ¢z)> + (py — qy)%,
Xo = 2(pr — ¢2)(Ua — va) + (Py — @)(uy —)], X3 =
(uz — v2)?® + (uy — vy)? and the parametric part is given by
A =1, B =t andC = t>. Here,p,, py, uz, andu, denote the
initial X- and Y-coordinates, velocity along X- and Y-ditemns,
respectively, for an object from the first set. We defineq,, vz,

andv, analogously. Circular moving objects. We consider two sets of objects gen-
Since, our index for a future time-instant is good for angmgr €rated uniformly within a 2D space of 100 100 mile’. One
queries over a certain period of time surrounding that tins¢ant, set of objects are moving with a uniform velocity betweenall

we apply the “MOVIES” technique [9] — for a short period of &m mile/min in both (positive or negative) X and Y-direction3he
we use an index to answer the incoming queries. After that, we Other setof objects are moving in concentric circles withua uni-
throw that index away and use a new index. Note that we caryappl formly selected from 4.100 mile, and angular velocity uniformly
the “MOVIES” technique due to two reasons. (1) We keep migtip ~ Selected from 4.5 degree/min. We uslanar index to find inter-
Planar indices corresponding to several time-instants, and selec S€cting object pairs at a future time. For details, see elahp/ie
the best index at the time of querying. As an example, we demon Show the intersection-finding times in Figure 14(b), with tisage

strate below that by keeping indexes for only 6 time-instante of 6 Planar indices corregponding to future }ime-insFants 10,

can efficiently answer queries for a duration of 5 minute$.Q@r 11,12, 13, 14, and 15 min. Our index building requires only’10
index building requires only 10.8 sec for every time-instavhile sec for every time-instant. We observe tRénar index outper-

an update in one moving object requires only 0.5 ms to uptiete t forms the baseline technique by 2.85 times.

existing index structure (corresponding to one time-imgtal here- Objects moving with acceleration. We simulate anon-uniform
fore, itis quite efficient to build a new index as well as dymeatly workloadby assuming that objects in one set are moving with ac-
update the existing index structure. celeration, while the objects in the other set are still mgwvith

In our simulation, we keep €lanar indices at a time, corre- constant velocity. The objects are generated uniformhhiwit
sponding to the future time-instants:= 10, 11, 12, 13, 14, and 3D space of 1000« 1000 x 1000 mile. Objects from the first

Table 3:Top+ nearest-neighbor-finding time usihgdp dataset; # dimen-
sions = 6, RQ=4, # index = 100

Top-k Checked Points/Total Points Query Time (ms) || Baseline Time
(%) [Planar index] [Planar index] (ms)
50 10.97 33 89
1000 11.29 36 89
10000 12.62 42 89

set are moving with an initial velocity between 8.1 mile/min
and acceleration between 0:00.05 mile/mirf in (positive or neg-
ative) X, Y, and Z-directions. Objects from the second set ar
moving with uniform velocity between 0-11 mile/min in (posi-
tive or negative) X, Y, and Z-directions. The correspondimigr-
section query can be formulated as a scalar product quehydivit
mensionality 5:AX; + BX: + CXs + DX5 + EX5s < 100,
where X1 = (px — :)* + (0y — 4y)° + (= — ¢2)°, X
2[(pz — ¢e) (tz —va) + (Py — @) (ty —vy) + (P — ¢z) (uz — v2)],
X3 = (“w_'Uz)2+(“y—Uy)2+(uz_UZ)2+aw(pz—qz)+ay(py_
Py)+az(pz—p:), Xa = az (e —vz)+ay(uy —vy)+az(uz—vz),
X5 = %(aﬁ—‘—ai-‘—aﬁ);andﬁl =1,B=t0C=1t*D =1t

E = t*. Here,a,, ay, anda. denote the acceleration of an object
from the first set along th&’, Y, and Z directions, respectively.
The other notations are used as before. We show the intiEnsect
finding times in Figure 14(c), with the usage oPtanar indices
corresponding to future time-instantts= 10, 11, 12, 13, 14, and
15 min. Our index building requires only 11.3 sec for evemyet
instant. We observe th&lanar index outperforms the baseline
technique by 2550 times. These results show that flanar in-
dices are very effective even for non-uniform workloads.

7.5.2 Finding Top: Nearest Points

We show another application 8flanar index in finding the top-
k closest positive or negative points to a query hyperplarrectw
has application in active learning [26]. We present our ltesn
Table 3 with thendp dataset and query in the form of Equation 18.
We observe that 10Blanar indices achieve about 2.5 times speed-
up over a sequential scan. It is also worthwhile to mentiat th
our method finds the top-closest points in aaccuratemanner, as
opposed to thepproximatemethods proposed in [14, 18].

8. CONCLUSIONS

In this paper, we studied scalar product queries — a widely-
applicable set of analytic queries whose parameters argrkooly
at the time of querying. We defind®dlanar index, a geometric ap-
proach that allows for online processing of scalar produetrigs
in an efficient and accurate manner, as confirmed by an extensi
experimental evaluation conducted on various synthetitraal-
world datasets. We further show the application$tznar index
in the moving-objects-intersection problem and in actaéarhing.
Future work can be in two directions: sinB¢anar index has
high pruning capacity for low-dimensional datasets, it ldduwe in-
teresting to apply various dimensionality reduction téghas as a
preprocessing method. One may also use machine learnihg tec
nigues to dynamically update the indices based on pastegeri

9. REFERENCES

[1] P. K. Agarwal, L. Arge, , J. Erickson, P. G. Franciosa, dn8. Vitter.
Efficient Searching with Linear Constraints. RODS 1998.

[2] S. Arya, D. M. Mount, and J. Xia. Tight Lower Bounds for kace
Range Searchindiscrete Comput. Geoy7(4):711-730, 2012.

[3] R. Basri, T. Hassner, and L. Zelnik-Manor. Approximateaxest
Subspace SearchPAMI, 33(2):266—-278, 2011.

[4] S. Borzsonyi, D. Kossmann, and K. Stocker. The Skyline@jor.
In ICDE, 2001.

(5]
(6]

(7]
(8]

El

[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]
[19]
[20]

[21]
[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]

[30]

(31]

[32]

[33]

G. Box and G. Jenkinslime Series Analysis: Forecasting and
Control. San Francisco: Holden-Day, 1970.

Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Land J. R.
Smith. The Onion Technique: Indexing for Linear Optimieati
Queries. INSIGMOD 2000.

S. Chen, C. S. Jensen, and D. Lin. A Benchmark for Evalgati
Moving Object IndexesPVLDB, 1(2):1574-1585, 2008.

S. Chen, B. C. Ooi, K.-L. Tan, and M. A. Nascimento.ZBF Tree: a
Self-Tunable Spatio-Temporal'BTree Index for Moving Objects. In
SIGMOD, 2008.

J. Dittrich, L. Blunschi, and M. A. V. Salles. MOVIES: leaing
Moving Objects by Shooting Index Imagé3eolnformatica
15(4):727-767, 2011.

R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation atghms
for Middleware. InPODS 2001.

J. Goldstein, R. Ramakrishnan, U. Shaft, and J.-B. Yac&ssing
Queries by Linear Constraints. RODS 1997.

V. Hristidis, N. Koudas, Y. Papakonstantinou, Y. Pagadtantinou,
and L. J. Ca. PREFER: A System for the Efficient Execution of
Multiparametric Ranked Queries. 8iIGMOD, 2001.

I. F. llyas, G. Beskales, and M. A. Soliman. A Survey opTloQuery
Processing Techniques in Relational Database Syst@id.
Comput. Sury.40(4):11:1-11:58, 2008.

P. Jain, S. Vijayanarasimhan, and K. Grauman. Hashiyggekplane
Queries to Near Points with Applications to Large-Scaleivict
Learning. INNIPS 2010.

C. S. Jensen, D. Lin, and B. C. Ooi. Query and Update EfitcB+
Tree based Indexing of Moving Objects.\t.DB, 2004.

G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexivigbile
Objects. INPODS 1999.

C. Li, K. C.-C. Chang, , I. F. llyas, and S. Song. RankSQiuery
Algebra and Optimization for Relational Top-K Queries. In
SIGMOD, 2005.

W. Liu, J. Wang, Y. Mu, S. Kumar, and S.-F. Chang. Compact
Hyperplane Hashing with Bilinear Functions.l@ML, 2012.

J. Matousek. Reporting Points in Halfspad8emputational
Geometry2(3):169 — 186, 1992.

M. A. Nascimento and J. R. O. Silva. Towards Historical fees. In
SAG 1998.

Oracle. Oracle Function-based Indexeslly Release

P. Ram and A. G. Gray. Maximum Inner-product Search g€ione
Trees. INKDD, 2012.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. pet.o
Indexing the Positions of Continuously Moving Objects. In
SIGMOD 2000.

H. SametApplications of Spatial Data Structures - Computer
Graphics, Image Processing, and Gi&ldison-Wesley, 1990.

H. Samet, J. Sankaranarayanan, and M. Auerbach. Inglétethods
for Moving Object Databases: Games and Other Applicatibns.
SIGMOD 2013.

B. Settles. Active Learning Literature Survey. CS TeRkport, Univ.
of Wisconsin—Madison, 2009.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Miod) and
Querying Moving Objects. IICDE, 1997.

Y. Tao and D. Papadias. Time-Parameterized Queries in
Spatio-Temporal Databases.$hiGMOD, 2002.

J. Uhlmann. Satisfying General Proximity/Similari@ueries with
Metric TreesInf. Process. Lett40(4):175-179, 1991.

D. Xin, , J. Han, and K. C. Chang. Progressive and Seledilerge:
Computing Top-k with Ad-Hoc Ranking Functions. iGMOD,
2007.

P. Y. Yianilos. Data Structures and Algorithms for NestrNeighbor
Search in General Metric Spaces.3®DA 1993.

M. Yiu, Y. Tao, and N. Mamoulis. The ®alTree: Indexing Moving
Objects by Space Filling Curves in the Dual Spa¢eDB J,
17(3):379-400, 2008.

R. Zhang, J. Qi, D. Lin, W. Wang, and R. C.-W. Wong. A Highl
Optimized Algorithm for Continuous Intersection Join Qaerover
Moving ObjectsVLDB J, 21(4):561-586, 2012.

