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ABSTRACT
We consider a broad category of analytic queries, denoted byscalar
product queries, which can be expressed as a scalar product be-
tween a known function over multiple database attributes and an
unknown set of parameters. More specifically, given a set ofd-
dimensional data points, we retrieve all pointsx which satisfy an
inequality given by a scalar product:〈a, φ(x)〉 ≤ b. We assume
that the functionφ : Rd → R

d′ is application specific and known
apriori, while the query parametersa and the inequality parameter
b are known only at the time of querying.

Efficiently answering such scalar product queries are essential in
a wide range of applications including evaluation of complex SQL
functions, time series prediction, scientific simulation,and active
learning. Although some specific subclasses of the aforementioned
scalar product queries and their applications have been studied in
computational geometry, machine learning, and in moving-object
queries, surprisingly no generalized indexing scheme has been pro-
posed for efficiently computing scalar product queries.

We present a lightweight, yet scalable, dynamic, and generalized
indexing scheme, called thePlanar index, for answering scalar
product queries in an accurate manner, which is based on the idea of
indexing functionφ(x) for each data pointx using multiple sets of
parallel hyperplanes.Planar index has loglinear indexing time and
linear space complexity, and the query time ranges from logarith-
mic to being linear in the number of data points. Based on an exten-
sive set of experiments on several real-world and syntheticdatasets,
we show thatPlanar index is not only scalable and dynamic, but
also effective in various real-world applications including intersec-
tion finding between moving objects and active learning.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval
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1. INTRODUCTION
In a wide range of complex data analytic applications, the query

processing often requires computing an expression that involves
multiple columns in the relational database [21]. In this study, we
consider a broad category of queries which can be expressed as the
scalar product between a known expression (function) over multi-
ple database attributes and an unknown set of parameters. Werefer
to such queries as thescalar productqueries, and they can be ap-
plied in evaluating complexSQL functions [21], finding intersec-
tion between moving-object pairs [33], time-series prediction [5],
scientific simulations [25], half-space range searching [1], and also
in machine learning [18]. Below, we demonstrate two applications
of scalar product queries in processing complexSQL functions and
in finding intersection between moving objects.

EXAMPLE 1 (COMPLEX SQL QUERY PROCESSING).
Consider an electricity consumption dataset for individual house-
holds. Each data point (household) has 4 important attributes:
active power, reactive power, voltage, and current. Thepower factor over
this electricity consumption dataset can be measured as theratio
betweenactive power and (voltage × current). Thus, given a relation

Consumption(ID, Active Power, Reactive Power, Voltage, Current)

we are interested in the followingSQL function, Criti-
cal_Consume that identifies all households for which thepower

factor is less than an input threshold.

CREATE FUNCTION Critical_Consume (
INPUT double threshold
RETURN ID
FROM Consumption
WHERE Active Power - threshold * Voltage *
Current ≤ 0)

The aforementionedSQL function can be modeled as a scalar prod-
uct query:

〈(1 -threshold), (ActivePower Voltage × Current)〉 ≤ 0.

One may note that the above-mentioned scalar product con-
sists of two components — a function over the database attributes:
φ(Active Power Voltage Current) = (Active Power Voltage ×
Current) and a parameter set (1 -threshold). The functional part
of the query is known apriori; and hence, can be indexed — while
the parametric part is known only at the time of querying.Can
we answer such queries in sublinear time without performinga se-
quential scan over the entire dataset?It is worthwhile to mention
that Oracle 11.1 release has built-in support for indexing complex
SQL functions over multiple attributes [21]. However, their index
does not support queries that consist of both complex functions as
well as unknown parameters.



Figure 1: Application of scalar product query: finding intersection
between moving-object pairs

EXAMPLE 2 (MOVING-OBJECTINTERSECTION). Assume
two sets of objects are moving in a two dimensional plane as
depicted in Figure 1: objects from one set are moving in concentric
circles, while objects from the other set are moving in straight
lines. For simplicity, we assume that the objects are movingin
constant linear or angular velocities. Given an input time-instant
t in the future and an input distanceS, find the object pairs from
the two sets which will be withinS unit distance from each other
at timet.

The aforementioned intersection query is critical in scientific sim-
ulations, air traffic control, and in massively multi-player online
games (MMOGs). A naïve approach to solve such intersection
problem will be to compute the distance for each object pair at time
t. Let us denote the angular velocity and radius of an object from
the first set asr andω, and the initial position and velocity of an
object from the second set bypx, py, ux, anduy , respectively. In
order to find intersections, we have to verify for each objectpair
from the two sets whether Equation 1 holds true.

AX1 +BX2 + CX3 +DX4 + EX5 + FX6 +GX7 ≤ S2

(1)

Nevertheless, Equation 1 has the form of a scalar product query;
and therefore, one can apply our indexing method to evaluate
such queries more efficiently. It is easy to verify that the func-
tional part consists ofX1 = r2 + p2x + p2y + 2rpx + 2rpy,
X2 = 2[ux(r + px) + uy(r + py)], X3 = −2rpx, X4 = −2rpy,
X5 = −2rux, X6 = −2ruy, andX7 = u2

x + u2
y . The parametric

part, on the other hand, containsA = 1, B = t, C = 1 + sinωt,
D = 1 + cosωt, E = t(1 + sinωt), F = t(1 + cosωt), and
G = t2. We also note that there exist several spatio-temporal
indexes for moving-object databases (MOD) [8, 23, 32], but their
application is limited to objects moving in straight lines with uni-
form velocities. Therefore, scalar product queries and thesubse-
quent indexing method proposed in this study are more general and
widely-applicable in scenarios such as objects moving in circles or
with acceleration.

Scalar product queries naturally arise in a variety of machine
learning applications as well, e.g., pool-based active learning [26]:
given a classifier hyperplane, the query finds the class labels of all
unlabeled data points. More precisely, points in one side ofthe
query hyperplane are labeled positive and points in the other side
are considered negative; in addition, the query also requires the
identification of the top-k closest positive and negative points to
the classifier hyperplane [14, 18]. An important subclass ofscalar
product queries is the half-space range searching query, which has
been studied extensively in computational geometry [1, 2, 19]. In
spite of many critical applications, surprisingly no generalized in-
dexing scheme has been proposed to answer scalar product queries
in an online and accurate manner.

In this work, we study the problem of fast online computationof
scalar product queries in an accurate manner. To this aim, wedevise
a novel, lightweight, and generalized indexing scheme, called the
Planar index, which can answer our queries very efficiently. Our
offline technique relies on indexing functionsφ(x) for data points
x with multiple sets of parallel hyperplanes, and pre-computing

some information which is linear in the number of the data points.
Our online query evaluation consists of finding the optimal set
of index hyperplanes for a given query, and then using the pre-
computed information to efficiently answer our queries in anexact
manner. The key idea ofPlanar index is to allow very fast pruning
of the data points without actually computing the scalar product for
them. Our best case query time is logarithmic in the number of
data points, which is often the case for carefully designedPlanar
indices, and is also verified by performing empirical analysis over
multiple datasets and considering several real-world applications.

Our contribution and roadmap. Our contributions can be sum-
marized as follows:

• We define the fundamental problem of efficiently answering
scalar product queries (Section 3).

• We devise a lightweight, yet effective and generalized index-
ing scheme, called thePlanar index, for efficiently answering
scalar product queries in an online and exact manner. (Sec-
tion 4). The proposed technique is based on indexing func-
tion φ(x) with multiple sets of parallel hyperplanes and pre-
computing some information that is linear in the number of
data points.

• Based on thePlanar index, we develop a fastpruning-and-
verificationstrategy. Given a scalar product query, we first de-
termine the optimal set of index hyperplanes (Section 5), and
then use our indexed information to accurately accept or reject
several data points without even computing the scalar product
for them. In Section 6, we show how our proposedPlanar in-
dex, coupled with a lower-bound-based pruning method, effi-
ciently retrieves the top-k closest points to a query hyperplane.

• We conduct a thorough experimental evaluation using several
real-world and synthetic datasets. We also comparePlanar
index with a naïve sequential scan. Results attest efficiency
and accuracy of thePlanar index (Section 7).

• We analyze the performance ofPlanar index in the moving-
objects-intersection problem [33] with both uniform (constant
velocity) and non-uniform (moving with acceleration) work-
loads, as well as in active learning [14, 18], and thereby com-
pare our generalized framework with state-of-the-art methods
tailored for such specific applications. (Section 7.5).

2. RELATED WORK
We categorize related work as follows.

Half-space range searching.Given a fixed setS of data points in
R

d and a query hyperplaneq, the half-space range searching prob-
lem asks for the retrieval of all points ofS on a chosen side ofq.
In computational geometry, the half-space range searchingproblem
for d-dimension has been considered in [1,2,19]. We compare their
space and time complexity with that of ours in Table 1. Unfortu-
nately, all these previous works study the problem with respect to
the asymptoticcomputational complexity — it is very difficult to
implement their preprocessing steps, unlike the lightweight Pla-
nar index proposed in this work — and to the best of our knowl-
edge, no implementations of [1, 2, 19] exist in the literature. Be-
sides, ourPlanar index is more general and can be used in a va-
riety of applications beyond half-space range searching, such as
moving-objects-intersection computation [33] and hyperplane-to-
closest-point finding [18], which is critical in active learning [26].

Linear constraint queries. In linear constraint queries, the search
region is constrained to the intersection of half spaces specified by
a set of linear inequalities. The orthogonal range searching prob-
lem was discussed in [24], in which the query is ad-dimensional



Table 1:Time complexity of half-space range search algorithms:n number of data points,d dimensionality of the query space,t cardinality of the answer
set,ǫ > 0 any constant,c = c(d) another constant.

Query time Preprocessing storage Preprocessing time

Agarwal et. al. [1] O(n1− 1
d
+ǫ + t) O(n) O(n logn)

Matousek et. al. [19] O(n
1− 1

⌊d/2⌋ (logn)c + t) O(n log logn) O(n logn)

Arya et. al. [2] Ω̃(n
1− 1

d+1

m
1

d+1

+ t) Ω̃(m); n ≤ m ≤ nd O(n1+ǫ +m(log n)ǫ)

Planar index [this work] O(d logn+ t) ∼ O(dn) O(n) O(n logn)

axis parallel hyper rectangle; while non-orthogonal rangesearch-
ing queries are considered in [11]. Most studies in linear constraint
queries apply spatial data structures such asR-tree and K-D-B
tree. As an alternative, one could also apply multiplePlanar in-
dices in answering such linear constraint queries.

Nearest neighbor queries. Efficiently finding the top-k nearest
points to a given query point has been studied both in low di-
mension [29] and in high dimension [31]. The problem of find-
ing the nearest subspace from a query point is considered in [3].
Finally, [14, 18] proposed hashing-based approximate methods to
find the closest point to a query hyperplane, which has applica-
tion in active learning [26]. In contrast to theapproximatemethods
in [14,18],Planar index efficiently finds the top-k closest points in
anaccuratemanner for any input value ofk.

Top-k queries with ranking function. The top-k queries retrieve
the top-k tuples ordered according to a user-defined ranking func-
tion that combines the values from multiple attributes. Fagin et.
al. proposed the well-knownThreshold algorithm for efficiently
computing the top-k queries [10] with monotonic ranking func-
tion. The top-k retrieval problem with ad-hoc ranking functions has
been studied in [30]. Li et al. optimized the top-k query processing
which requires joining of multiple relations [17]. For a survey on
top-k query processing, see [13]. A subclass of top-k queries is
the linear optimization query, where the sum of linearly weighted
attribute values is calculated as the ranking criterion [6,12]. A very
relevant work to ours is [22], which maximizes a scalar product
search using a tree-structured index. Nevertheless, our scalar prod-
uct queries are different from the above-mentioned top-k queries
— while the top-k queries identify the top-k data points that max-
imize a ranking function, our objective is to retrieve all (or, top-k
closest) data points which satisfy a given inequality.

Index for moving objects. One of the earliest work in indexing
moving objects is thehistorical R-Tree [20], which indexes the
sampled locations of a moving object using anR-tree. Sistla et.
al. prototyped moving-object trajectories using a linear function of
time [27]. Kollios et. al. [16] applied the dual transform tomap a
one dimensional trajectory to a point and then used spatial indices
to answer window queries. TheTPR-tree [23] is an extension of
R*-tree to manage moving objects. TheBx-tree [15] indexes mov-
ing objects by aB+-tree using space-filling curves. For a survey on
indexing moving-object databases, see [7]. Time-parameterized-
join algorithms and moving-objects-intersection queriesare stud-
ied in [28] and [33], respectively. In all these studies, it has been
assumed that objects tend to move in a linear fashion with constant
velocities, and an index update is required when an object changes
its velocity or direction. Thus, it is difficult to apply state-of-the-
art indexing schemes for more complex and non-uniform motions,
such as objects moving with acceleration or in a circle.

3. PROBLEM STATEMENT
Given a set of data points inRd and an application specific func-

tion φ : Rd → R
d′ , we define two novel scalar product queries.

PROBLEM 1 (INEQUALITY QUERY). Find all data points
x ∈ R

d, which satisfy a scalar product inequality:〈a, φ(x)〉 ≤ b.

PROBLEM 2 (TOP-k NEARESTNEIGHBOR QUERY). Given
somek, find the top-k data pointsx satisfying〈a, φ(x)〉 ≤ b,
which also minimize|〈a,φ(x)〉−b|

|a|
.

Remarks. (1)Both the query parametersa ∈ R
d′ and the inequal-

ity parameterb ∈ R are known only at the time of querying.(2) In-
stead of “less than or equal” constraint, one may also have “greater
than or equal” constraint in the aforementioned queries. Neverthe-
less, our indexing scheme is general enough to address both types
of constraints. (3) When the functionφ is an identity function,
our inequality query (Problem 1) reduces to the half-space range
searching problem [1,2,19], while the top-k nearest neighbor prob-
lem (Problem 2) becomes identical with the hyperplane-to-nearest-
point query [14,18].

In this study, our objective is to propose a generalized indexing
scheme — which is easily maintainable and updatable — and which
enables faster processing of both the scalar product queries in an
accurate manner.

Since the query parametersa and inequality parameterb are not
known apriori, a naïve approach to solve these problems willbe to
perform a sequential scan over the entire dataset. Such a naïve scan
requiresO(nd′) time for the inequality query andO(nd′+k log k)
time for our top-k nearest neighbor problem, wheren is the to-
tal number of data points, andd′ is the dimensionality of the out-
put of functionφ. In Section 4, we introduce our indexing tech-
nique which helps in efficiently answering both the scalar product
queries. For the sake of clarity, we first consider the inequality
query (Problem 1) in Sections 4 and 5, then we describe how to
answer the top-k nearest neighbor query (Problem 2) in Section 6.

4. THE PLANAR INDEX: OVERVIEW
We shall provide a brief overview of ourPlanar index in this

section. Given an application specific functionφ : R
d → R

d′ ,
let us consider ad′-dimensional Euclidean co-ordinate system with
axes(Y1, Y2, . . . , Yd′). Recall that our scalar product query has the
form q : 〈a, φ(x)〉 ≤ b, and assumea = (a1, a2, . . . , ad′). We
consider a query hyperplaneH(q) in R

d′ as follows.

H(q) : a1Y1 + a2Y2 + . . .+ ad′Yd′ = b (2)

The normal to the query hyperplaneH(q) is given by the vector
a = (a1, a2, . . . , ad′).

4.1 Domain of Query Parameters
The exact query parameter values in a scalar product query are

unknown apriori. Nevertheless, over a period of time, it is often
easy to identify the domains of those parameters as follows.(1) one
may learn the domain∆ai for each query parameterai based on
the past queries, and dynamically update their domains withtime.
(2) Often, the parameter domains are application specific. For ex-
ample, in the moving-objects-intersection problem (Example 2), it
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Figure 2: Examples of smaller (SI), intermediate (II), and larger
(LI) intervals: the query hyperplane is shown as the dashed line.

is more interesting to find the intersecting pairs at a relatively near
time, say fromt = 10 to t = 15. Thus, one can still have an apri-
ori knowledge about the parameter domains for moving-objects-
intersection queries, and we update these domains with time. On
the other hand, for the complexSQL function over the electric-
ity consumption dataset (Example 1), thepower ratio by default lies
between 0 and 1. Intuitively, the larger the domains of the query
parameters are, the more random the query becomes.

For simplicity, we herein make two assumptions:

• ai 6= 0 for all 1 ≤ i ≤ d′. Otherwise, one can simply ignore
the corresponding axis during index construction and query
processing.

• ai > 0 ∀i andb ≥ 0. Similarly, all of φ(x) are in the first
hyper octant ofRd′ . Otherwise, we perform a translation of
the co-ordinates as discussed in Section 4.5.

4.2 Index Construction
The core of ourPlanar index is a collection of parallel hyper-

planes inRd′ with a unique normal vectorc = (c1, c2, . . . , cd′),
where eachci is sampled uniformly from the domain∆ai of query
parameterai. We considern such parallel hyperplanes — one for
each data pointx, as defined in Equation 3.

H(x) : c1Y1 + c2Y2 + . . .+ cd′Yd′ = 〈c, φ(x)〉 (3)

Next, our indexing phase consists of sorting all data pointsx in
a list L in ascending order of〈c, φ(x)〉 values. Let us denote by
L(j), 1 ≤ j ≤ n, the data pointx with thej-th smallest value of
〈c, φ(x)〉. Clearly, ourPlanar index has loglinear indexing time
and linear space complexity in the number of data points. It is also
worthwhile to mention that as the queries change over time, we
update the parameter domain∆ai, which results in deletion of old
indices as well as inclusion of new indices.

4.3 Query Processing
Let us denote by I(q, i) the i-th co-ordinate of the intersection

point between the query hyperplaneH(q) and the axisYi. Simi-
larly, assume I(x, i) denotes thei-th co-ordinate of the intersection
point between the index hyperplaneH(x) and the axisYi. We
have, I(q, i) = b

ai
and I(x, i) = 〈c,φ(x)〉

ci
. Next, we define a parti-

tion of the data points into three non-overlapping intervals for effi-
ciently processing our inequality queries.

DEFINITION 1 (SMALLER INTERVAL ). Thesmaller interval,
denoted bySI, consists of all data pointsx for which the index hy-
perplaneH(x) intersects the axes at points closer to the origin as
compared to the intersection points between the query hyperplane
H(q) and the corresponding axes. Formally,

Algorithm 1 Online Algorithm for the Inequality Query

Require: sorted listL of x in asc. order of〈c, φ(x)〉,
query〈a, φ(x)〉 ≤ b.

Ensure: all x satisfying the query.
1: find intermediate (II) and smaller (SI) intervals. [Binary Search onL]
2: for all j ∈ SI do
3: x → L(j).
4: outputx.
5: end for
6: for all j ∈ II do
7: if x → L(j) satisfies the querythen
8: outputx.
9: end if

10: end for

SI = {x : (∀i)
(

|I(x, i)| ≤ |I(q, i)|
)

} (4)

DEFINITION 2 (LARGER INTERVAL). The larger interval,
denoted asLI , consists of data pointsx for which the index
hyperplaneH(x) intersects the axes at points farther from the
origin as compared to the intersection points between the query
hyperplaneH(q) and the corresponding axes. Formally,

LI = {x : (∀i)
(

|I(x, i)| > |I(q, i)|
)

} (5)

DEFINITION 3 (INTERMEDIATE INTERVAL ). The intermedi-
ate interval, referred to asII , consists of those data pointsx which
belong to neither the smaller interval nor the larger interval.

II = {x : (∃i, i′)
(

|I(x, i)| ≤ |I(q, i)|, |I(x, i′)| > |I(q, i′)|
)

}

(6)

EXAMPLE 3. Figure 2 illustrates an example of three non-
overlapping intervals inR

2. In Figure 2, SI={x1,x2},
II={x3,x4}, andLI={x5,x6,x7}.

One may notice that we consider an absolute value of the co-
ordinates of our intersection points. This is to make our query-
processing algorithm applicable for queries outside the first hyper
octant as well. However, for the sake of simplicity, we deferthe
discussion of processing queries outside the first hyper octant until
Section 4.5.

Two interesting observations arise from the definitions of our in-
tervals, which are given below.

OBSERVATION 1. All data points in the larger interval do not
satisfy the inequality query, and therefore, can be rejected.

OBSERVATION 2. All data points in the smaller interval satisfy
the inequality query, and hence, can be accepted.

PROOF. Omitted due to lack of space.

Observations 1 and 2 create the basis for accepting and rejecting
several data points without actually computing the scalar products
for them. We only need to evaluate the query for the data points
which are in the intermediate interval. Nevertheless, there are two
important questions at this stage:(1) how can we quickly identify
the smaller and larger intervals, and subsequently report all data
points that satisfy the given inequality query, and(2) can we re-
duce the cardinality of the intermediate interval? For the first ques-
tion, we propose a binary-search-based efficient query-processing
algorithm (Algorithm 1), which is discussed below. For our second
question, we propose the usage of multiplePlanar indices — the
details of which are given in Section 5.



Particularly, given an inequality query, we first identify the in-
tersection co-ordinates I(q, i) between the query hyperplaneH(q)
and the corresponding axes. Recall that we have already sorted the
data pointsx in a listL in ascending order of their〈c, φ(x)〉 val-
ues. Now, for each axisYi, we perform a binary search on listL
and find two locations inL — denoted asSmall(i) andLarge(i),
respectively, and formally defined in Equations 7.

Small(i) = max{j : L(j) = x, I(x, i) ≤ I(q, i)}

Large(i) = min{j : L(j) = x, I(x, i) > I(q, i)} (7)

The above-mentioned binary search operations requireO(d′ log n)
time. UsingSmall(i) andLarge(i) values for alli, we then com-
pute the boundaries of SI, LI, and II as follows.

jmin = min
i∈(1,d′)

{Small(i)}; jmax = max
i∈(1,d′)

{Large(i)}

SI → L[1 : jmin]

II → L[jmin + 1 : jmax − 1]

LI → L[jmax : n] (8)

Computing the interval boundaries requires anotherO(d′) time. Fi-
nally, we report two sets of data points in the answer set:(1) for all
data points in the intermediate interval, we evaluate the scalar prod-
uct, and then report those data points which satisfy the given scalar
product inequality, as well as(2) we also report all data points in
the smaller interval. Therefore, the time complexity of ouronline
query-processing algorithm isO(d′(log n + |II |) + t), where|II |
is the cardinality of the intermediate interval, andt is the cardi-
nality of our answer set. Here, we emphasize that the size of the
intermediate interval can be zero for carefully designedPlanar in-
dex. Therefore, our best case query-processing time complexity is
logarithmic in the number of data points.

4.4 Dynamic Updates of Planar Index
Our Planar index is lightweight, and hence, easily maintainable

and dynamically updatable. Let us consider a collection ofn data
points. Given an update inφ(x) associated with some data point
x, we can reflect such update in our index structure inO(d′ log n)
time. Alternatively, when we dynamically introduce a newPlanar
index, it requiresO(nd′ log n) time. Also, the storage complexity
of our index structure isO(n). These time and space complexity
results attest thatPlanar index is efficient, dynamic, and scalable.

4.5 Queries outside First Hyper Octant
In order to complete the overview of thePlanar index, we shall

discuss how to answer scalar product queries outside the first hyper
octant. Fortunately, ourPlanar index is very general, and it can
support both data points and queries outside the first hyper octant.

Without loss of generality, let us assume that the inequality pa-
rameterb is always non-negative in the query, while the query
parameters(a1, a2, . . . , ad′) can be both positive and negative.
Since, for eachai, we have an apriori knowledge about its domain
∆ai, it is possible to identify the hyper octant in which a query
hyperplane will intersect the co-ordinate axes. Let us denote this
hyper-octant asO, and the sign of an axisYi in this hyper octant
O is denoted assign(O, i). Clearly,sign(O, i) ∈ {+1,−1}. For
example, the sign of any axis in the first hyper octant is +1.

In order to build thePlanar index, we first perform atranslation
operation such that allφ(x) for data pointsx are in the hyper octant
O in the modified co-ordinate system. We claim that after such a
translation, the query hyperplane still intersects the modified axes
in the same hyper octantO.
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Figure 3: Examples of translation: the query hyperplane intersects
the co-ordinate axes in the same hyper octant after translation.

CLAIM 1. Consider a query hyperplaneH(q) that intersects
the co-ordinate axes in the hyper octantO. Perform a transla-
tion such that allφ(x) lie in the hyper octantO in the modified
co-ordinate system. After this translation,H(q) will intersect the
modified axes in the same hyper octantO.

PROOF. First, we shall define the translation operation which
places allφ(x) in the hyper octantO. For eachi ∈ (1, d′), find
the setXi of data pointsx for whichφi(x) has a sign opposite to
sign(O, i). Formally,

Xi = {x : sign(φi(x)) 6= sign(O, i)} (9)

From the setXi, we find the translation parameterδi, which is
defined as the largest absolute value ofφi(x) for anyx ∈ Xi.

δi = max
x∈Xi

|φi(x)| (10)

Finally, we define our translation operation for alli ∈ (1, d′) as
given in Equation 11, whereφ′

i(x) denotes thei-th co-ordinate of
φ(x) in the new co-ordinate system.

φ′
i(x) = φi(x) + sign(O, i)δi (11)

It is worthwhile to mention that the aforementioned translation will
place allφ(x) in the hyper octantO in the new co-ordinate sys-
tem. Now, we shall analyze the effect of this translation operation
on the query hyperplane. By using the principles of co-ordinate ge-
ometry, the query hyperplane in the new co-ordinate system can be
represented as follows:

H(q) : a1Y
′
1 + a2Y

′
2 + . . .+ ad′Y

′
d′ = b′,

whereb′ = b+
d′
∑

i=1

[sign(O, i)aiδi] (12)

We note thatsign(O, i)ai is positive, andδi is non-negative as
well, for all i ∈ (1, d′). Hence,b′ is a positive term in Equa-
tion 12. Therefore, the query hyperplaneH(q) still intersects the
co-ordinate axes in the same hyper octantO in the new co-ordinate
system. This completes the proof.

Figure 3 provides an illustration of our translation mechanism in
R

2. Once we perform the translation, the query processing can
follow our proposed technique as outlined in Algorithm 1. Nev-
ertheless, for the sake of simplicity, hereinafter we shallconsider
query processing only in the first hyper octant. In our experiments,
we applied the aforementioned translation technique to deal with
queries and data points outside the first hyper octant.

5. QUERY PROCESSING WITH
MULTIPLE PLANAR INDICES

In this section, we introduce multiplePlanar indices in order
to reduce the size of the intermediate interval during online query
processing. For a pre-defined budgetb, we index functionφ(x)



for each data pointx with b planar indices. Thus, given a scalar
product query, our objective is to use the bestPlanar index to an-
swer our query. We here emphasize that the query-processingtime
reduces with smaller cardinality of the intermediate interval. In-
deed, when ourPlanar index is parallel to the query hyperplane,
the cardinality of the intermediate interval is zero, and the query
processing requires only logarithmic time in the number of data
points. Since the exact query parameters are not known apriori,
by introducing multiplePlanar indices, it is more likely that one
can find an index hyperplane which is “close” to being parallel to
the query hyperplane. Below, we first introduce our techniques to
find the bestPlanar index at the time of querying (Section 5.1),
and then we discuss our method to select multiplePlanar indices
during pre-processing (Section 5.2).

5.1 Best Index Selection at Query Time
One naïve approach to find the bestPlanar index will be as fol-

lows. Given a query, count the number of points in the intermedi-
ate interval for eachPlanar index, and then select the index which
generates an intermediate interval with the minimum cardinality.
However, such a naïve approach, in the asymptotic sense, hastime
complexity equal to the largest cardinality of any intermediate in-
terval. This creates a well-known “chicken and egg” problem. In
other words,given a query, is it possible to find the best planar
index without actually counting the number of points in the inter-
mediate interval for each index?This is a difficult problem unless
one has apriori information about the distribution of data points. To
this aim, we propose two greedy heuristics for finding the best Pla-
nar index: (1) volume minimization of the intermediate interval,
and(2) angle minimization with the query hyperplane.

5.1.1 Volume Minimization of Intermediate Interval
Assuming that the data points are distributed uniformly, the best

Planar index is the one which minimizes the “volume” of the in-
termediate interval for a given query. Below we clarify the notion
of volume spanned by the intermediate interval inR

d′ .
Let us denote byqi the intersection point between the query hy-

perplaneH(q) and thei-th co-ordinate axisYi. We recall that the
i-th co-ordinate of the intersection pointqi is denoted as I(q, i).
Next, for aPlanar index with normal vectorc = (c1, c2, . . . , cd′),
we consider the set of hyperplanesH(qi) passing through these
intersection pointsqi, and parallel to index hyperplanes with nor-
mal vectorc. The equation of such a hyperplaneH(qi) is given in
Equation 13.

H(qi) : c1Y1 + c2Y2 + . . .+ cd′Yd′ = ciI(q, i) (13)

There will bed′ such hyperplanes for totald′ intersection points.
We find two hyperplanesHmax andHmin among them which has
maximum and minimum values ofciI(q, i), respectively.

Hmax = H(qi1
) : i1 = argmax

i∈(1,d′)

ciI(q, i)

Hmin = H(qi2
) : i2 = argmin

i∈(1,d′)

ciI(q, i) (14)

We are now ready to formally define the volume of the intermediate
interval.

DEFINITION 4 (VOLUME OF INTERMEDIATE INTERVAL).
Given a query hyperplane and aPlanar index, we define the
volume of the intermediate interval as the volume of the hyper
surface bounded by the two hyperplanesHmax, Hmin, and the
co-ordinate axes.

As an example, Figure 4 shows the volume of intermediate interval
in three dimension for a given query and a planar index. It is easy

Figure 4: Volume of intermediate interval in 3D: the query hyper-
plane is marked by dotted lines, and the volume of the intermediate
interval is shown as the shaded region.

to verify that any point which lies on the hyper surface bounded by
Hmax, Hmin, and the co-ordinate axes — except the points on the
boundary ofHmin — is in the intermediate interval. On the other
hand, points which are outside the aforementioned hyper surface
belong to either the smaller or the larger interval.

CLAIM 2. Given a query hyperplane and aPlanar index, con-
sider the hyper surface bounded by the two hyperplanesHmax,
Hmin, and the co-ordinate axes. If a data point (except the points
on the boundary ofHmin) lies on this hyper surface, then it is also
in the intermediate interval. On the other hand, if some point lies
outside this hyper surface, then it is either in the smaller or in the
larger interval.

PROOF. Omitted due to lack of space.

Therefore, assuming uniform distribution of the data points, one
will select thePlanar index which reduces the volume of the in-
termediate interval for a given query. Unfortunately, finding the
volume of a hyper surface in higher dimension itself is a verydiffi-
cult problem. Since the volume of a hyper surface is roughly pro-
portional to the “stretch” of the hyper surface along each axis, we
greedily decide the bestPlanar index as the one which minimizes
the maximum stretch of the intermediate interval along any axis.
We formally define our problem statement of selecting the best Pla-
nar index in Problem 3.

PROBLEM 3. Consider a set ofr Planar indices. Given a
scalar product queryq, the stretch of the intermediate interval due
to some planar index (with normal vectorc) along the axisYi is
computed as follows.

Stretch(c, i) =
1

ci

[

max
k∈{1,d′}

ckI(q, k)− min
k∈{1,d′}

ckI(q, k)
]

(15)

The bestPlanar index is selected as the one which minimizes the
maximum stretch of the intermediate interval along any axis, i.e.,

argmin
c

max
i∈{1,d′}

Stretch(c, i) (16)

EXAMPLE 4. Consider a query hyperplaneH(q) : Y1+2Y2+
5Y3 = 10, and aPlanar index with normal vector(1, 1, 2). The
query hyperplane intersects the axesY1, Y2, and Y3 at points
q1 = (10, 0, 0), q2 = (0, 5, 0), and q3 = (0, 0, 2), respec-
tively. Thus, we getI(q, 1) = 10, I(q, 2) = 5, and I(q, 3) = 2.
Now, let us consider the hyperplanes passing through the intersec-
tion pointsq1, q2, andq3, respectively, and with the same normal
vector(1, 1, 2) as thePlanar index.

H(q1) : Y1 + Y2 + 2Y3 = 10

H(q2) : Y1 + Y2 + 2Y3 = 5

H(q3) : Y1 + Y2 + 2Y3 = 4



H(q1), H(q2), andH(q3) intersect the axes at points(10, 0, 0),
(0, 10, 0),(0, 0, 5); (5, 0, 0), (0, 5, 0),(0, 0, 2.5); and (4, 0, 0),
(0, 4, 0),(0, 0, 2), respectively. Therefore, the stretch of the inter-
mediate interval due to thisPlanar index along axesY1, Y2, and
Y3 are (10 − 4), (10 − 4), and (5 − 2), respectively. Thus, the
maximum stretch due to thisPlanar index along any axis is6.

Corollary 1 shows that if there exist somePlanar index which is
parallel to the query hyperplane, our greedy method as proposed in
Problem 3 is capable to select the best index.

COROLLARY 1. If somePlanar index is parallel to the query
hyperplane, both the volume and the maximum stretch of the inter-
mediate interval is zero.

Finally, in terms of time complexity, our method finds the best
(heuristically)Planar index independent of the data set cardinal-
ity. More precisely, given a set ofr Planar indices and a scalar
product query inRd′ , we can find the bestPlanar index according
to problem 3 inO(rd′) time.

5.1.2 Angle Minimization with Query Hyperplane
Our second heuristic method to select the best planar index is

quite straightforward, and it works by minimizing the anglebe-
tween the query hyperplane and somePlanar index. Let us con-
sider a scalar product queryq : 〈a, φ(x)〉 ≥ b and aPlanar index
with normal vectorc. The angle between the query hyperplane and

the Planar index is given bycos−1 ( 〈a, c〉

|a||c|

)

. We greedily select

thePlanar index as the best index which minimizes the angle with
the given query hyperplane.

It is worthwhile to mention that if somePlanar index is parallel
to the query hyperplane, it makes an angle of zero degree withthe
query hyperplane. Thus, analogous to our volume minimization-
based heuristic, the angle minimization-based technique also se-
lects the bestPlanar index, when there exists somePlanar index
which is parallel to the query hyperplane.

Given a collection ofr Planar indices and a scalar product in-
equality query inRd′ , the angle minimization technique finds the
best (heuristically)Planar index inO(rd′) time.

In our empirical analysis, we found that the minimum-
volume-based best index selection method usually outperforms the
minimum-angle-based best index selection criterion.

5.2 Multiple Planar Index Selection
at Preprocessing Time

For a pre-defined budgetb, how do we select the initialb Planar
indices? We recall that each query parameterai is selected from
some domain∆ai. We pick our indices uniformly from the same
domains, and later we remove theredundantindices — aPlanar
index is redundant if there exists anotherPlanar index with normal
vectors parallel to each other. We note thatb planar indices incur
space complexityO(nb), wheren is the number of data points.

6. TOP-K NEAREST NEIGHBOR
QUERIES

In this section, we shall discuss our solution technique forthe
top-k nearest neighbor query (Problem 2). Specifically, given a
scalar product queryq : 〈a, φ(x)〉 ≤ b and an integerk, we are
interested in the top-k points which satisfy the scalar product in-
equality and also minimize|〈a, φ(x)〉 − b|/|a|. The top-k near-
est neighbor queries are useful in pool-based active learning [26],
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Figure 5: Lower-bound-distance: finding the top-k closest negative
points to query hyperplane in 2D.

where given a query hyperplane, one would like to identify the top-
k closest positive or negative data points from the query hyper-
plane [14,18]. We note that the distance of a pointx from a hyper-
plane〈a,x〉 = b is given by|〈a,x〉 − b|/|a|. Therefore, our top-k
nearest neighbor query reduces to the hyperplane-to-nearest-point
query when the functionφ is an identity function.

To answer the top-k nearest neighbor queries efficiently, we use
thePlanar indexing scheme as introduced earlier. Our online query
processing involves a novel pruning-based technique, coupled with
a top-k buffer that stores the top-k nearest neighbor points found
so far. Particularly, we first consider all data points in theinter-
mediate interval, and if any of them, sayx, satisfies the inequality
constraint, it is inserted in the top-k buffer based onφ(x)’s dis-
tance from the query hyperplane. Next, we consider the data points
x from the smaller interval in descending order of their〈c, φ(x)〉
values. We terminate our algorithm when the two following condi-
tions are satisfied.(1) The top-k buffer is full, and(2) for an index
hyperplaneH(x) corresponding to some data pointx in the smaller
interval, if the “lower-bound distance” ofH(x) to the query hyper-
planeH(q) — denoted asLBS

(

H(x),H(q)
)

, which is illustrated
in Figure 5 and formally defined in Equation 17 — is greater than
the maximum distance stored in the top-k buffer. An outline of our
top-k nearest-neighbor-finding method is given in Algorithm 2.

DEFINITION 5 (LOWER-BOUND DISTANCE). Consider a
queryq : 〈a, φ(x)〉 ≤ b and aPlanar index with normal vector
given byc = (c1, c2, . . . cd′). For some data pointx in the
smaller interval, we define the “lower-bound distance” of the
index hyperplaneH(x) to the query hyperplaneH(q) as the

smallest value of
|ai
ci
〈c, φ(x)〉 − b|

|a|
for all i ∈ (1, d′). Formally,

LBS
(

H(x),H(q)
)

= min
i∈(1,d′)

∣

∣

ai
ci
〈c, φ(x)〉 − b

∣

∣

|a|
(17)

Below, we state Claim 3 that forms the basis of our pruning tech-
nique employed in Algorithm 2 (see lines 10-11).

CLAIM 3. Consider two data pointsx1, x2 in the smaller in-
terval such that〈c, φ(x1)〉 is larger than〈c, φ(x2)〉. Then, it holds
that LBS

(

H(x1),H(q))
)

is smaller than|〈a,φ(x2)〉−b|
|a|

.

PROOF. Omitted due to lack of space.

Claim 3 provides the theoretical justification of our pruning criteria,
which says that if, for some data pointx1 in the smaller interval,
LBS

(

H(x1,H(q))
)

is greater than the largest distance stored in
our top-k buffer, then we can safely prune all other data pointsx2

from the smaller interval that satisfy〈c, φ(x2)〉 < 〈c, φ(x1)〉.

Finally, we analyze the complexity of our top-k nearest neighbor
algorithm. In order to find the boundaries of intermediate and larger



Algorithm 2 Online Algorithm for Top-k Nearest Neighbor Query

Require: sorted listL of x in asc. order of〈c, φ(x)〉,
query〈a, φ(x)〉 ≤ b, and an integerk.

Ensure: Top-k nearest neighbor points which satisfy the query.
1: Top-k bufferB → φ

2: find intermediate (II) and smaller(SI) intervals. [Binary Search onL]
/* Process Intermediate Interval */

3: for all j ∈ II do
4: if x → L(j) satisfies the querythen
5: insertx into B.
6: end if
7: end for/* Process Smaller Interval */
8: for all j ∈ SI in dsc. orderdo
9: x → L(j)

10: if B full and LBS
(

H(x), H(q)
)

> largest dist. inB then
11: terminate.
12: end if
13: insertx into B.
14: end for
15: report data points inB.

intervals, we requireO(d′ log n) time. Since we need to verify all
the data points in the intermediate interval before inserting them
in the top-k buffer, it requires anotherO(d′|II |) time, where|II | is
the cardinality of the intermediate interval. Next, assumethat total
k1 data points from the smaller interval are verified before we can
terminate our algorithm. Then, the overall time complexityof our
nearest-neighbor-finding algorithm isO

(

d′ log n+(|II |+k1)(d
′+

log k)
)

. In the best case, that is, when thePlanar index is parallel
to the query hyperplane, |II|=0, andk1 = k + 1, wherek is the
top-k value given as the input. Thus, our best case time complexity
is O

(

d′ log n+ d′k + k log k
)

.

7. EXPERIMENTAL RESULTS
We present experiments to assess the performance of ourPlanar

index for answering scalar product queries. We evaluate: query-
processing efficiency (Section 7.2), index time, memory, and dy-
namic updates (Section 7.3), and scalability (Section 7.4). Further-
more, we analyze the performance ofPlanar index in two real-
world applications:(1) finding intersection between moving ob-
jects with both uniform and non-uniform workloads (Section7.5.1)
and (2) reporting the top-k nearest points to a query hyperplane
(Section 7.5.2), which is critical in pool-based active learning [26].
The code is implemented in C++ and the experiments were per-
formed on a single core of a 100GB, 2.50GHz Xeon server.

7.1 Environmental Setup
Datasets.We involve three synthetic and three real-world datasets,
each containing a collection of multi-dimensional data points.

Synthetic. We generate three synthetic datasets by using the
generator obtained from [4]. In theIndependentdataset, all at-
tribute values are generated independently from a pre-defined range
with a uniform distribution. TheCorrelateddatabase represents
an environment in which points that have higher values in onedi-
mension also have higher values in the other dimensions. In the
anti-correlateddataset, points which have higher values in one di-
mension have lower value(s) in one or all of the other dimensions.
The cardinality of each of our synthetic datasets is 1M and wevary
the dimensionality of data points from 2 to 14. The range of each
attribute lies between (1,100).

Image. The real-worldImage database contains image fea-
tures extracted from a Corel image collection (http://corel.
digitalriver.com) with 68,040 photos. We consider two sets
of features for our experiments: color moments and co-occurrence

Table 2:Dataset characteristics.
Dataset # Data Points # Dimension Attribute Range

Indp 1,000,000 2 - 14 (1, 100)
Corr 1,000,000 2 - 14 (1, 100)
Anti 1,000,000 2 - 14 (1, 100)
CMoment 68,040 9 (-4.15, 4.59)
CTexture 68,040 16 (-5.25, 50.21)
Consumption 2,075,259 4 (0, 254)

texture, and the corresponding datasets areCMomentand CTex-
ture, respectively. The first dataset is9 dimensional with attribute
values between (-4.15, 4.59), whereas the second dataset is16 di-
mensional and its attribute values are in (-5.25, 50.21). Both the
datasets are publicly available fromhttp://archive.ics.
uci.edu/ml/datasets.html.

Electric Power Consumption. TheConsumptiondataset con-
sists of electric power consumption measurements for 2,075,259
individual households. Each data point has 4 dimensions:active

power (range: 0-11 KWatt),reactive power (range: 0-1 KWatt),volt-

age (range: 223-254 Volt), andcurrent (range: 0-48 Ampere). This
dataset is downloadable fromhttp://archive.ics.uci.
edu/ml/datasets.html.

Query selection and parameter setting.For the real-worldCon-
sumptiondataset, we consider a complex non-linearSQL query:
find all households for which thepower factor is less than an input
threshold.Note thatpower factor is defined as the ratio betweenac-

tive power and (voltage × current). For details, see Example 1. We
select the query parameter “threshold” uniformly from the range
(0.100,1.000); i.e., we allow900 possible query normal vectors.

For the real-world image datasets and for all synthetic datasets,
we consider a more generalized form of the scalar-product query:

d
∑

i=1

aixi ≤ 0.25
(

d
∑

i=1

ai max(i)
)

(18)

Here, we assume that our data pointsx = (x1, x2, . . . , xd) ared-
dimensional, andmax(i) denotes the maximum value of thei-th
dimension in the data set. We multiply the right hand side of our
query by aninequality parameter0.25 — this results in a small
fraction of data points satisfying our queries. We further vary this
inequality parameter in Figure 11, and thereby analyze our query-
processing performance with differentquery selectivity. It is worth-
while to mention that if too many data points satisfy the query, the
time complexity in the asymptotic sense gets close toΘ(n), since
we need to report all the data points in the result set. Hence,we
design our queries in a way such that a small percentage of thedata
points satisfy these queries.

In Equation 18, we assume that each query parameterai is uni-
formly selected from a pre-defined domain∆i. We denote the size
of ∆i, that is|∆i|, as therandomness of the query(RQ). Partic-
ularly, if our data points ared-dimensional, then there are|∆i|

d

possible query normal vectors. Since we do not know the exact
query parameters, our objective is to employ only a few number
of Planar indices for quickly answering any such query from the
potential query set. We vary the randomness of query (RQ) from 2
to 12, while the number ofPlanar indices is varied from 1 to 200.

All experimental results are averaged over 100 runs. In all our
experiments, we found that the minimum-volume-based best index
selection method (Section 5) results in improved query efficiency as
compared to its counter part: minimum-angle-based best index se-
lection criterion. Thus, we employed the minimum-volume-based
best index selection method in all our experiments.

Competing Method. We compare the performance of ourPlanar
index with a baseline method that performs a naïve sequential scan
over the entire dataset.
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Figure 6:Index and query-processing times using real-world datasets (Consumption, CMoment, andCTexture)
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Figure 7:Query-processing time using synthetic datasets (Indp, Corr, andAnti): # dimensions = 2∼ 14, and randomness of query (RQ) varied from 2∼ 12,
# index = 100. Baseline running times are for any of the three synthetic datasets.
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Figure 8:Query-processing time using synthetic datasets (Indp, Corr, andAnti): # dimensions = 2∼ 14 and # index = 1∼ 100, randomness of query (RQ)
= 4. Baseline running times are for any of the three syntheticdatasets.

7.2 Query-Processing Efficiency

7.2.1 Efficiency on Real-World Dataset
We show the performance of our query-processing technique on

real-world datasets in Figure 6. Note that we execute the general-
ized scalar product query as given in Equation 18 overCMoment
andCTexturedatasets, while we evaluate the performance of a non-
linearSQL function using theConsumptiondata.

For the evaluation of theSQL function with theConsumption
dataset, the baseline method requires 62 ms, while our technique
with 200Planar indices takes only 9 ms — thereby, improving the
query-processing efficiency by 7 times (see Figure 6(a)).

Figure 6(b) shows that with 100 indices, RQ=4, and using the
CMomentdataset, our query-processing time is 2 times faster than
the baseline method — the baseline requires 9 ms, while our query-
processing finishes in 4 ms. With the same set of parameters and
using theCTexturedataset, our method is about 150 times faster:
the baseline needs 15 ms, while our query-processing takes only
0.1 ms (Figure 6(c)).

7.2.2 Efficiency on Synthetic Datasets
We present in Figures 7 and 8 the query-processing times using

three synthetic datasets:indp, corr, andanti, by varying the number
of dimensions, number of indexes, and randomness of query (RQ).
We observed that with 100Planar indices and dimensionality up to
6, our query-processing times are 4 orders of magnitude faster than
the baseline when RQ=2: 0.01 ms for our method vs. 88 ms using
baseline; and it is 14 times faster when RQ=4: 6 ms for our method
vs. 88 ms using baseline (see Figure 7(b)). However, as the dimen-
sionality increases, our query-processing time also increases. Nev-
ertheless, with lower query randomness (up to RQ=4), ourPlanar

index-based query-processing times are at least 2 to 3 timesfaster
as compared to the baseline method: 99 ms for our method vs. 203
ms using baseline in Figures 8(c). When both the dimensionality
and randomness of query are higher, our query-processing time gets
closer to the baseline running time (see Figure 7(d)). This is due
to the fact that as RQ increases, the number of possible querynor-
mals increases exponentially, and it is difficult to obtain asimilar
improvement in query times by linearly increasing the number of
Planar indices. Rather, it is more beneficial to dynamically update
our indices based on the recent queries, as we shall demonstrate in
Section 7.3 that our index construction times are very affordable.

We recall that the key idea ofPlanar index is to allow very fast
pruning of the data points without actually computing the scalar
product for them. In Figures 9 and 10, we show the pruning per-
centage, that is, the percentage of data points that can be accepted
or rejected without actually computing the scalar product for them.
With 100 indices, dimensions up to 6 and RQ up to 4, we found that
almost 90∼100% of the data points can be pruned directly (Fig-
ure 10(b)). These results attest high quality of ourPlanar indexing
scheme. It is worthwhile to mention that with high dimensionality
and high query randomness (e.g., dimensionality=14 and RQ=12),
100 Planar indices still achieve about 40∼50% pruning of data
points (Figure 9(d)), but the corresponding query-processing times
get very close to the baseline time (Figure 7(d)). This is because
in our query-processing method, the points in the intermediate in-
terval require a random access — which takes more time; as com-
pared to the fact that all data points are accessed sequentially in
the baseline method.

We note that in higher dimensions (≥ 6), our query-processing
requires more time for theanticorrelateddata, as compared to the
other two synthetic datasets. This is because in theanti-correlated
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(c) Dimension=10
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(d) Dimension=14
Figure 9:Pruning percentage for synthetic datasets: # dimensions = 2∼ 14, and randomness of query (RQ) = 2∼ 12, # index = 100.
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(c) Dimension=10

 30

 40

 50

 60

 70

 80

 90

 100

1 10 50 100

P
ru

n
in

g
 P

e
rc

e
n
ta

g
e

# Index

indp
corr
anti

(d) Dimension=14
Figure 10:Pruning percentage for synthetic datasets: # dimensions = 2∼ 14 and # index = 1∼ 100, randomness of query (RQ) = 4.
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(c) Dimension=10
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Figure 11:Query selectivity and query-processing time with varying inequality parameter: synthetic datasets, # index = 100, randomness of query (RQ) = 4.
Baseline running times are for any of the three synthetic datasets.

dataset, points which have higher values in one dimension have
lower value(s) in one or all of the other dimensions — thus, itgen-
erates more data points in the intermediate interval.

7.2.3 Efficiency with Varying Query Selectivity
We varied the inequality parameter of our query in Equation 18

from 0.10 to 1.00, and thereby analyze the effect of query selec-
tivity over query-processing time using three synthetic datasets. In
Figure 11, we consider RQ=4, number of indices=100, and vary
the dimension from 6 to 10. We observe that the query selectiv-
ity increases as we increase the inequality parameter (Figure 11(a),
11(c)), while the query-processing time first increases andthen de-
creases, which is more prominent in Figure 11(b). This is because if
the inequality parameter is too high or too low, a high percentage of
data points could be directly accepted or rejected using ourquery-
processing technique. As expected, our query-processing time is
maximum when the inequality parameter is between 0.50∼0.75.

7.3 Index Building Time and Memory Usage
Figure 13(a) shows index construction times with varying di-

mensionality and varying number ofPlanar indices using three
synthetic datasets. Note that the indexing time is independent of
the particular type of synthetic data. The time to constructone in-
dex for 1M data points varies from only 2.54 sec to 2.92 sec, for
dimensionality of the data points from 2 to 14. These smallerin-
dexing times justify that our indices are dynamically updatable with
changes in the query, andit is more beneficial to update ourPlanar
indices over time as opposed to maintain a large number of indices.

Figure 6(d) affirms modest index-building times (0.12∼3.11 sec)
to construct onePlanar index) over three real-world datasets.

Memory Usage.We show the memory consumption by our index
structure in Figure 13(b) using three synthetic datasets. Our mem-
ory consumption is quite modest: even for 100 indices with 1M

data points and dimensionality of each point up to 14, our index
structure uses less than 5GB memory. In addition, the memorycon-
sumption of ourPlanar indices is almost independent with respect
to the dimensionality of the data points, and it increases linearly
with the number of data points and also with the number of indices.

Dynamic Updates in Data Points. In these experiments, we an-
alyze our index-structure-modification time based on dynamic up-
dates in the data points. Figure 13(c) shows that if we have already
indexed 1M data points of dimensionality 10, and later 5% of the
data points, that is 50K data points, change their values, wecan dy-
namically update our index structure in 170 ms perPlanar index
— which is equivalent to only 3.4 ms per data point perPlanar in-
dex. Hence,it is more beneficial to update our indices dynamically
if there is a change in small percentage of data points.

7.4 Scalability
We analyze scalability of our query-processing technique using

three synthetic datasets. For this experiment, we considerfrag-
ments of the original datasets with number of data points 0.1M,
0.3M, 0.5M, 0.7M, and 1M, respectively. The corresponding index-
building and query-processing times are presented in Figure 12.

We observe that the indexing time increases loglinearly with the
number of data points, while the query time increases sublinearly.
Such results assess high scalability ofPlanar index construction
and the subsequent processing of scalar product queries.

7.5 Applications of Planar Index

7.5.1 Moving-Objects Intersection
We show an application ofPlanar index in finding intersections

between two sets of moving objects. Every object set has cardinal-
ity 5K, that is, each query verifies for the intersection of 25M dis-
tinct object pairs. We consider three different scenarios with both
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Figure 12:Scalability with varying number of data points using synthetic datasets: # index= 1∼100, randomness of query (RQ) = 4, and # dimensions =6.
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Figure 13:Index construction time, memory usage, and dynamic index updates using synthetic datasets
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Figure 14:Planar index in finding moving object intersection: uniformand non-uniform workloads

uniform (e.g., objects moving with constant linear and angular ve-
locity) and non-uniform (e.g., accelerating objects) workloads.

Objects moving with uniform velocity. We consider a simulat-
ing scenario [23, 33] with two sets of objects generated uniformly
within a 2D space of 1000× 1000 mile2. Every object is mov-
ing linearly with a uniform velocity between 0.1∼1 mile/min in
both (positive or negative) X and Y-directions. Given a future
time-instantt at the time of querying, we want to find all ob-
ject pairs which will be within 10 miles from each other at time
t. The above-mentioned intersection query can be expressed as
a scalar product query:AX1 + BX2 + CX3 ≤ 100, where
the functional part consists ofX1 = (px − qx)

2 + (py − qy)
2,

X2 = 2[(px − qx)(ux − vx) + (py − qy)(uy − vy)], X3 =
(ux − vx)

2 + (uy − vy)
2; and the parametric part is given by

A = 1, B = t, andC = t2. Here,px, py, ux, anduy denote the
initial X- and Y-coordinates, velocity along X- and Y-directions,
respectively, for an object from the first set. We defineqx, qy , vx,
andvy analogously.

Since, our index for a future time-instant is good for answering
queries over a certain period of time surrounding that time-instant,
we apply the “MOVIES” technique [9] — for a short period of time,
we use an index to answer the incoming queries. After that, we
throw that index away and use a new index. Note that we can apply
the “MOVIES” technique due to two reasons. (1) We keep multiple
Planar indices corresponding to several time-instants, and select
the best index at the time of querying. As an example, we demon-
strate below that by keeping indexes for only 6 time-instants, we
can efficiently answer queries for a duration of 5 minutes. (2) Our
index building requires only 10.8 sec for every time-instant, while
an update in one moving object requires only 0.5 ms to update the
existing index structure (corresponding to one time-instant). There-
fore, it is quite efficient to build a new index as well as dynamically
update the existing index structure.

In our simulation, we keep 6Planar indices at a time, corre-
sponding to the future time-instants:t = 10, 11, 12, 13, 14, and

15 min. We vary the future time-instants in our queries between
10∼15 min, and it can be an intermediate time-instant, e.g., 11.5
min, for which no index exists. We compare our query-processing
times with state-of-the-artMBR-tree-based method [33] (which is
an improvement over the widely-usedTPR-tree [23]), and also
with a baseline method which verifies all 5K×5K object pairs. The
authors of [33] kindly provided us a C++ implementation.

Figure 14(a) shows that the performance ofPlanar index is com-
parable to that of [33] when an index is available for the future time-
instant. Otherwise,Planar index-based method is at most 4 times
slower than [33]; and therefore, it is beneficial to apply state-of-the-
art method [33] for objects moving in straight lines with uniform
velocity. However, it is difficult to apply such spatio-temporal in-
dexes for complex and non-uniform motions, such as objects mov-
ing in circles or with acceleration. Below, we show two examples
whenPlanar index is quite effective in complex and non-uniform
motions, and these results show the generality ofPlanar index.

Circular moving objects. We consider two sets of objects gen-
erated uniformly within a 2D space of 100× 100 mile2. One
set of objects are moving with a uniform velocity between 0.1∼1
mile/min in both (positive or negative) X and Y-directions.The
other set of objects are moving in concentric circles with radius uni-
formly selected from 1∼100 mile, and angular velocity uniformly
selected from 1∼5 degree/min. We usePlanar index to find inter-
secting object pairs at a future time. For details, see example 2. We
show the intersection-finding times in Figure 14(b), with the usage
of 6 Planar indices corresponding to future time-instantst = 10,
11, 12, 13, 14, and 15 min. Our index building requires only 10.7
sec for every time-instant. We observe thatPlanar index outper-
forms the baseline technique by 2.5∼75 times.

Objects moving with acceleration. We simulate anon-uniform
workloadby assuming that objects in one set are moving with ac-
celeration, while the objects in the other set are still moving with
constant velocity. The objects are generated uniformly within a
3D space of 1000× 1000× 1000 mile3. Objects from the first



Table 3:Top-k nearest-neighbor-finding time usingIndpdataset; # dimen-
sions = 6, RQ=4, # index = 100

# Top-k Checked Points/Total Points Query Time (ms) Baseline Time
(%) [Planar index] [Planar index] (ms)

50 10.97 33 89
1000 11.29 36 89
10000 12.62 42 89

set are moving with an initial velocity between 0.1∼1 mile/min
and acceleration between 0.01∼0.05 mile/min2 in (positive or neg-
ative) X, Y, and Z-directions. Objects from the second set are
moving with uniform velocity between 0.1∼1 mile/min in (posi-
tive or negative) X, Y, and Z-directions. The correspondinginter-
section query can be formulated as a scalar product query with di-
mensionality 5:AX1 + BX2 + CX3 + DX5 + EX5 ≤ 100,
whereX1 = (px − qx)

2 + (py − qy)
2 + (pz − qz)

2, X2 =
2[(px−qx)(ux−vx)+(py−qy)(uy−vy)+(pz−qz)(uz−vz)],
X3 = (ux−vx)

2+(uy−vy)
2+(uz−vz)

2+ax(px−qx)+ay(py−
py)+az(pz−pz),X4 = ax(ux−vx)+ay(uy−vy)+az(uz−vz),
X5 = 1

4
(a2

x + a2
y + a2

z); andA = 1, B = t, C = t2, D = t3,
E = t4. Here,ax, ay, andaz denote the acceleration of an object
from the first set along theX, Y , andZ directions, respectively.
The other notations are used as before. We show the intersection-
finding times in Figure 14(c), with the usage of 6Planar indices
corresponding to future time-instantst = 10, 11, 12, 13, 14, and
15 min. Our index building requires only 11.3 sec for every time-
instant. We observe thatPlanar index outperforms the baseline
technique by 25∼50 times. These results show that thePlanar in-
dices are very effective even for non-uniform workloads.

7.5.2 Finding Top-k Nearest Points
We show another application ofPlanar index in finding the top-

k closest positive or negative points to a query hyperplane, which
has application in active learning [26]. We present our results in
Table 3 with theIndpdataset and query in the form of Equation 18.
We observe that 100Planar indices achieve about 2.5 times speed-
up over a sequential scan. It is also worthwhile to mention that
our method finds the top-k closest points in anaccuratemanner, as
opposed to theapproximatemethods proposed in [14,18].

8. CONCLUSIONS
In this paper, we studied scalar product queries — a widely-

applicable set of analytic queries whose parameters are known only
at the time of querying. We definedPlanar index, a geometric ap-
proach that allows for online processing of scalar product queries
in an efficient and accurate manner, as confirmed by an extensive
experimental evaluation conducted on various synthetic and real-
world datasets. We further show the applications ofPlanar index
in the moving-objects-intersection problem and in active learning.

Future work can be in two directions: sincePlanar index has
high pruning capacity for low-dimensional datasets, it would be in-
teresting to apply various dimensionality reduction techniques as a
preprocessing method. One may also use machine learning tech-
niques to dynamically update the indices based on past queries.
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