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Abstract—We study the novel problem of revenue maximiza-
tion of a social network host that sells viral marketing campigns
to multiple competing campaigners. Each client campaigner
informs the social network host about her target users in the
network, as well as how much money she is willing to pay to
the host if one of her target users buys her product. The socla
network host, in turn, assigns a set of seed users to each ofrhe
client campaigners. The seed set for a campaigner is a limitde
number of users to whom the campaigner provides free samples
discounted price etc. with the expectation that these seedsars
will buy her product, and would also be able to influence many
of her target users in the network towards buying her product
Because of various product-adoption costs, it is very unli&ly that
an average user will purchase more than one of the competing
products. Therefore, from the host’s perspective, it is imprtant
to assign seed users to client campaigners in such a way thdtet
seed assignment guarantees the maximum aggregated reverfae
the host considering all her client campaigners.

We formulate our problem by following two well-established
influence cascading models: the independent cascade modeida
the linear threshold model. While our problem using both these
models isSNP-hard, and neither monotonic, nor sub-modular; we
develop approximated algorithms with theoretical performance
guarantees. However, as our approximated algorithms oftemcur
higher running times, we also design efficient heuristic métods
that empirically perform as good as our approximated algorthms.
Our detailed experimental evaluation attests that the propsed
techniques are effective and scalable over real-world dasets.

I. INTRODUCTION

parts. Particularly, each campaigner informs the host alfau

her budget on the seed-set size (i.e., the number of sees| user
k), and also(b) how much money she is willing to pay to the
host for each of her target users if that user adopts her ptodu
While the campaigner might not know the exact social network
structure, it is usually easier for her to define her targetsys
either explicitly, or via some constraints, e.g., peoplehr

age group 20-30, all banking professionals, etc. We note tha
the number of such target users for a campaigner can be very
large, and it is often not possible (or not economical) teegiv
each of them a free sample or discounted price. Therefage, th
campaigner still allocates a smallas the number of her seed
nodes. She uses rest of her budget to pay the social network
host according to the agreement, which can be a small amount
of money for each of her target users who adopts her product.

In real-world, multiple companies compete and they launch
comparable products around the same tinfe.g., Nintendo’s
Wii vs. Sony’s Playstation vs. Microsoft's X-Box; Microgsf
Surface vs. Apple’s iPad vs. Samsung Note 3) [18], [19]. Thus
the host often needs to run multiple competing viral marigti
campaigns together over the network. However, due to variou
product-adoption costs, it is very unlikely that an averager
will purchase more than one of the competing products. Since
most of the users adopt only one of the competing products, it
implies that the seed sets of the competing campaignergeequ
to be mutually non-overlapping [18], [19]. Therefore, frone
host’s perspective, the challenge lies in how to select ¢eel s
set for each of her client campaigners so that the host'sativer

In viral marketing, whenever a social network user buys s&xpected revenue is maximized.

product, she is viewed as being influenced or activated. The

classical viral marketing problem [9], [13] identifies troptk

seed users in a social network such that the expected nurhber
influenced users in the network, starting from those seerbuse
and following some influence cascading model, is maximized
The budgetk on the seed-set size usually depends on th
campaigner — in other words, it depends on how many initial
users the campaigner can directly influence to buy her pltodu((;j1

by advertisements, giving free samples, and discountegri

Running multiple viral marketing campaigns by a social
network host was studied earlier in [19] by Lu et. al. However
9] studied a different problem. The problem our paper
addresses is the problem of maximizing the revenue of the
host of the social network. In contrast, [19] studied how

io balance the expected spread of each campaign over the

etwork, which we believe is less relevant in practice. When
social network host is selecting the seed sets on behalf of
her client campaigners, maximizing the host's overall expe

The bulk of the research in the domain of viral marketingrevenue is the problem of interest for most practical saesar

assumes that the social network structure is available @éo thFurthermore, [19] makes a number of additional assumptions
campaigners. However, in real-world scenarios, the socidfor instance, [19] did not apply the notion of target users
network platforms are owned by third-party hosts [19], suchfor each client campaigner; they assume that all users in the
as Facebook, Twitter, and LinkedIn; and the hosts keep theiretwork are equally important to all campaigners. In rgadit
social graphs secret for their own benefits and for privacycampaigner often promotes her product with a group of target
reasons. Therefore, marketing companies themselves are reustomers in mind [15], [17], and is willing to pay more money
able to select their best seed sets due to lack of access to thethe host if her target users adopt her product. Indeed, as
social network graph. shown experimentally in [1], a product adopted by customers

. ) (or, a campaign reached to users) outside the target graug co
In this study, we assume that the seed set selections are

done by the social network host on behalf of her clients, Who™1 1o corcimer Electronic Show in January 2011, over 80

are the marketing campaigners. The campaigners, on the oth@w tablets were announced by Motorola, Samsung, and Toshib
hand, spend their overall budget for viral marketing int@tw (http:/mashable.com/2011/01/12/ces-2011-tabletwsd)




~ . equal (i.e., maintaining fairness), while also maximizig
‘\,1‘\ P overall spread of all campaigns in the network. As an example

2.8 £.¢ selection ofl/; as the seed node 6f; andV; as the seed node
}" 72 “%‘ of Cy would be an optimal solution according to [19], since
-~ ’AéL; this will result in V3, V4, V7, and Vg to be influenced by,
V; Ve while the remaining four nodes will be influenced @Y. Note

Fig. 1: Revenue Maximization: Limitations of Naive Methods that the host's revenue in this solution is only US$ 44.

The above example clearly illustrates that the aforemen-
ned naive approach as well as [19] may result in a sub-
Pptimal aggregated revenue for the host. In fact, as [19]
did not consider the notion of target users for each client
campaigner, it is non-trivial to extend their proposed algo
We next demonstrate with an example why the methodithm to solve our current problem. Specifically, thBieedy-
in [19] and other naive approaches are not suitable for ouGreedy algorithm heuristically partitions the initial seed set
problem. to balance the expected influence spread of each campaigner,
) assuming that all users in the network are equally important
Example 1:Assume that there are two campaigners — gj| campaigners. It is difficult to adapt such an algorithm
Cy and C,, who are viral marketing clients to the social {5 maximize the host's overall revenue from all campaigners
n_etwork host as deplcte_d in Figure 1. We _qlso assume that eagh 5 scenario when each user has a different importance to
directed edge has an influence probability 1, and we app',)évery campaigner. Indeed, our dynamic programming based

the independent cascade (IC) model [13], described later ieeq partitioning strategy introduced in Section 5.2 ifediht
Section I1I-B. The model assumes that the cascade of infeieng,gm their Needy-Greedy heuristics.

happens in discrete time steps. Each node can be activdied on
once and by only one of the campaigns; also the node sta)@,ur Cor!tributions and Roadmap. Our contributions can be
activated with that campaign until the end. L&t; denote the ~summarized as follows:

money that campaignér; is willing to pay to the host if node
V; adopts her product. We sdltj; = A1z = A3 = A14=US$
10, A15 = A16 = A17 = A18:US$ 1; while Ay = Agy =

generate negative impression towards the campaignerhwhi%o
will affect her image in the long run. In summary, for diffate

users, each campaigner would be willing to pay a differen
amount of money to the host if those users buy her product.

We define the fundamental problem of host's revenue
maximization by viral marketing in the presence of

Ays — Apy=USS$ 1, andAgs — Apg — Agr — Arg=USS$ m > 2 competitive campaigners (Sec. IlI).

10. Assume that the budget on the seed set size for each e We formulate the problem using two widely-used in-
campaigner igl. fluence cascading models — the independent cascade
What is the optimal solution? The optimal solution is as ETI]C;)dQ(EgZIC(SVe)ctlon V) and the linear threshold'f
follows. If V5 and Vg are selected as the seed nodesdr e

and C,, respectively, therd/;, Vs, V3 will be influenced by e We show that our problem using both these models
C1, while Vi, V7, and Vg will be influenced byCs. This will is NP-hard, and neither monotonic, nor sub-modular.
ensure an aggregated revenue of US$ 60 to the host. We therefore develop approximated algorithms to

solve our problem. In addition, we also design more
efficient and scalable heuristic techniques that empiri-
cally perform as good as our approximated algorithms.

Why a naive method will not work? A naive approach

to solve the host’s revenue maximization problem would be
to first define some order among the campaigners, and then
identify the topk seed nodes for each campaigner such that e We conduct a thorough experimental evaluation using

the host's revenue is maximized considering one campaigner several real-world datasets and with various kinds of
at a time. If some of the top-seed nodes for the current cam- revenue distributions (Sec. VII). Our empirical results
paigner have already been assigned to previous campajgners attest that the proposed methods efficiently generate
we identify the next-best seed nodes for the current campaig high-quality results.

until we exhaust the budgétof the current campaigner’s seed- II. RELATED WORK

set size. If we apply this naive approach, we §gtas the
best seed node fof;. This is becausé/; could eventually
influenceVy, Vs, Vs, Vg, V7, and Vg, and the host will get

a revenue of US$ 43, assuming is the only campaigner
in the network. Similarly, we find that; is the best seed
node forCs, assuming there is no other campaigner. Now, in
reality, when the host runs the two viral marketing campsaign
simultaneously with campaign @f, starting fromV; and that
of C, starting fromVs, the host's aggregate revenue will be
only US$ 44. This is because after simultaneous campaignin
Vs, V4, V7, and Vi will be influenced byC;, while the
remaining nodes will be influenced Hys,.

In viral marketing, a social network user is considered
influenced or activated by a campaign if she buys a product
corresponding to the campaign. The classical viral market-
ing problem aims at finding a small number of seed nodes
that generates the largest expected influence cascade in a
social network. Domingos and Richardson [9] formulated
viral marketing as an optimization problem. Kempe et. al.
[13] proposed the linear threshold model and the independen

ascade model, and designed approximation algorithms with
%rovable performance guarantees. However, the compniaftio
influence cascade is st P-hard [7]. Several heuristics have
been proposed to improve the efficiency of viral marketirg [8
Why the method in [19] will not work? Lu et. al.'s problem [11]. Very recently, [22] developed almost linear-time atir
formulation [19] identifies the seed sets for the campaigimer marketing algorithms, yet providing the same approximmatio
a way such that the expected spread of each campaign is almagtarantee as Kempe et. al.'s original method. In [15], Lappa



et. al. introduced the concept of target marketing and € G
effectors — by identifyingk seed nodes such that a given o @)

activation pattern can be established. The notion of target 0.5 0.2
keting was also considered in [17] that maximizes influence O,

over a region of the network. Uncertain Graph

Viral marketing in the presence of a negative campaign €. C € C ¢ CGC C
was investigated in [2], [5]. These works assume that the L2 ’
later campaign has prior knowledge of rival side’s initiakd L OW® ® ® @ )
nodes. Bordin et. al. [3] analyzed the similar problem under ® D @ @

theLT model; while [4], [6] attempt at preventing the spread of
an existing negative campaign in the network. Recently] [23
studied the viral marketing problem between non-cooperati Possible Worlds and Their

campaigns who select seeds alternatively. However, as dis- Probability of Existence

cussed _in Section 1, competitive new products f_rom rivaIFig' 2: Example oMCIC model

companies are often launched around the same time. Thus,

[12], [18], [19] considered viral marketing in the preserufe Problem 1 (Revenue Maximizationiven a networly =
multiple competing campaigners, who promote their prasluct (V; £, P), m > 2 client campaigners, the revenue matrix

in a social network around the same time. We also considegnd a budget:;; on the seed set size for each campaigner

a similar scenario, i.e., multiple rival companies launctda Ci, i.e., |Si| = k; for 1 < i < m, find the seed set for
promote competing products at the same time. each campaigner such that the expected revenue of the host

. ) ) is maximized. Formally,
While the bulk of the research on viral marketing assumes

that the social network structure is available to the cagpai
ers; in reality, the social network platforms are owned hgdth
party hosts. Lu et al. [19] were the first to consider the viral
marketing problem from the social network host's perspecti
In their framework, the host selects the seed nodes on behalf ~ such that [S;| =k; Vi€ (1,m)

of her client campaigners so that the expected influencedpre _ L A

for each client campaigner becomes nearly the same. However and S; ﬂ Si=¢ ViFji dje(lm) @
when a social network host is selecting the seed sets olg :
behalf of her client campaigners, maximizing the host'sralle . Influence Cascad_mg Models. )

expected revenue would be the problem of interest for most We apply two widely-used influence cascading models:
practical scenarios. To the best of our knowledge, ours i#dependent cascadkC) and linear thresholdlT) [13].

the first work that studies the host’'s revenue maximization 1) Independent Cascade Modéh the single-campaigner
problem, while also considering the notion of target users f |c model, the campaign starts with an initially active (i.e.,
each campaigner. As [19] did not consider the notion of "argeadopted her product) set of seed nodes, and then unfolds in

users for each client campaigner, it is non-trivial to egtéreir  jiscrete steps. When some nodéirst becomes active at step

Pr=04 Pr=04 Pr=01 Pr=0.1

arg max Z Z[Azu 'PT(UJ"S)]

§1,52,:,5m i3 wTv

proposed algorithm to solve our current problem. t, it gets a single chance to activate each of its currently
I1l. PRELIMINARIES inactive out-neighbors; it succeeds with probability,, ,,. If
A. Problem Statement u succeeds, thenwill become active at step+ 1. Whether or

A social networkG is modeled as a tripléV, £/, P), where  notu succeeds at stepit cannot make any further attempts in
V is a set ofn nodes,EZ C V x V is a set ofe directed edges, the subsequent rounds. If a nodéhas incoming edges from
and P : E — (0,1) is a probability function that assigns multiple newly activated nodes, their attempts are secggtnc
a probability to each edge iv. The probabilityp,, on a in an arbitrary order. Also, each node can be activated only
directed edg€u,v) € F represents the probability that node once and it stays active until the end. The campaigning jsgce
v adopts a product due to the influence of nadebecause runs until no more activations are possible.
u adopted that product before. Whenadopts that product,
it automatically becomes eligible to influence its neigtsbor
who has not adopted that product already. We shall discass t
details of various influence cascading models in SectioBlll

Multi-Campaigner Independent Cascade Model.We shall
ow introduce the multi-campaigner Independent Cascade
MCIC) model [4], which models multiple campaigns that
are being run simultaneously in a netwoMCIC follows the
We considerm > 2 competing campaigners, denoted same process akC, except two major differences. First, if

by C,Cs,...,C,,, for whom the social network host runs some node; is activated with campaign af’;, it attempts to
simultaneous viral marketing campaigns. We denoteShy activate its out-neighbors with the campaign o’;. Second,
the seed set for campaignér;, and A;, the money that an activated node adopts one campaign uniform at random
campaignelC; is willing to pay to the host if node. adopts  from all its in-neighbors which were successfully actigate
C;'s product. We refer tod = (A;.)mxn» therevenue matrix  in the last round. Each node can be activated only once and
We denote byPr(u, i, S) the probability that node will adopt by only one of the campaigns; also the node stays activated
C;’s product due to the influence of her campaign by followingwith that campaign until the end. Therefore, tM€IC model
some influence cascading model, wh8re- {S1,52,...,Sm} assumes the following influence cascading scenario: people
represents the seed sets for thecampaigners. We are now adopt a product when they come in direct contact with their
ready to define our problem. friends who very recently adopted that product.



Example 2 MICIC Model): In Figure 2, we show a social Ci e-06 e-06 C:
network along with edge probabilities. We also assume that 08 ¥ 3 Vs
V1 and V, are seed nodes for campaigners and Cs, ’ 0.2 0.5
respectively, and we want to calculate the probability ttte ~ Fig. 3: Example oK-LT model
V3 will be influenced by each of these campaigners using the
MCIC model. The computation is carried out following the V3 selects campaign of’; with probability 1, becauséd/ is
possible worldsemantics [13]. We first identify all possible the only neighbor o¥; which was activated in the last round,
worlds of the uncertain input graph, where each possiblédvor and V; was activated with campaign of;.
is a certain instance of the uncertain graph, and obtained
by independent sampling of the edges. Each possible worlff: Hardness Results
is associated with a probability of existence. For example, e first prove that Problem 1 iNP-hard both with the
the second possible world in Figure 2 has probability ofyjc|c andK-LT influence cascading models. We consider the
existencel).4, which is due to the presence of the eddé’s  gecision version of our problem: Given a social netwgrk-
with probability 0.5 and the absence of the edgéd’; with V,E,P), m > 2 client campaigners, the revenue matrlx
probab|I|ty(1.—0.2). Hence, the probability of existence of the 5 budgetk; on the seed set size for each campaigfigrthat
second possible world &5 x (1—0.2) = 0.4. In our example, i |5, = k, for 1 < i < m, and a positive integeR, can
there can be total possible worlds. In each possible world, a e find a seed set for each campaigner such that the expected
node is activated by its closest seed nodes. TWuis activated  eyenue of the host is at leaB?
by C; in the second possible world, lgy, in the third possible
world, and by either ofC; and C, with equal probability in Theorem 1:Following theMCIC model of influence cas-
the fourth possible world. Therefore, the probability thigtis ~ cading, the decision version of Problem 1N&P-hard.

activated byC is 0.4 + 0.1 x 5 = 0.45, and V3 is activated Proof: We shall prove theNP-hardness by performing

by C2 with probability 0.1 + 0.1 x % = 0.15. a reduction from théNP-complete set-cover problem. Let us
2) Linear Threshold Model:in the single-campaigndrT ~ consider an instance of the set-cover problem, defined by a
model, each node has an activation thresholéj, < 1. In  collection of subsetsS = {S1,55,...,S,} of a ground set
addition, there is a constraint that the sum of the prottigsli U = {u1, u2, ... u,}; we wish to know whether there exikt
of all incoming edges for every node must be at mosthe  of the subsets whose union is equallfo Now, we consider
campaign starts with an initially active set of seed noded, a another identical instance of the previous set cover proble
then unfolds in discrete steps. If the sum of the probagditi given by a collection of subsets’ = {57, 55,..., S} of the
of the incoming edges from all active nodes is greater than oground setU’ = {uj,us, ... u;}. We construct our revenue
equal to the activation threshold of an inactive node, tien t maximization problem fom = 2 competing campaigners:
node gets activated in the next round. Each node can only k&hd C», as follows. For each; € U, u; € U’, S; € S, and
activated once and stays active until the end. S; € S’, we include a node in the network. The two nodes
) ] ] ) corresponding to element paits, v, are connected by a bi-
Multi-Campaigner Linear Threshold Model. The multi-  gjrected edge of probability. If a subsetS; covers an element
campaignLT model, also termed as theLT model in [19], . we add a directed edge of probabilityfrom nodes; to
follows two steps in each round. The f.|rst step QeC|des Wmethehodeuj in the network. Analogously, if some substcovers
a new node will get activated and it works in exactly thean element.’, we also add a directed edge of probability
same way as theT model (i.e., without distinguishing among rom nodes; to nodew, in the network. The revenue matrix
mu_lt|ple campalgns). However, in the secor]d step, it desmd_ehas the following formA; ,, = 1 for all u; € U, Ay = 1
which campaign each of those newly activated nodes WI”ror all ' € U’, all other entries in the revenue matrix are

adopt. Let us consider all nodes that were activated in Finally, we also assume that there is a budgein seed-set

the last round and contributed to the activation of a node g, o't "aach campaigner. In this setting, there is a saiutio
in the current round. Theny W;[!Uadom. the same campaign 4, o revenue maximization problem with the host’s expecte
as that ofu with probability >y Puv’ With the K-LT model, revenue at leastn, if and only if there is a solution to the set

each node can be activated only once and by only one of thgyyer problem. Hence, the theorem. -
campaigns; also the node stays activated with that campaign _ _
until the end. One may note that theLT model simulates Theorem 2:Following the K-LT model of influence cas-

the following scenario: a user adopts a technology only whegading, the decision version of Problem 1N&P-hard.
more than a threshold number of her neighbors adopted a
similar technology. However, once the user decides to adogé
the technology, she decides on the specific product onlydbas
on her neighbors who most recently adopted that technolog

Proof: We prove theNP-hardness by performing a re-
uction from theNP-complete set cover problem, defined by
collection of subsets = {51, 5,,...,S,} of a ground set
= {u1,us,...u,}; and we want to know whether there
Example 3 K-LT Model): We show an example of th¢-  exist k£ of the subsets whose union is equallio Now, we
LT model in Figure 3. Here}; andV, are seeds for cam- construct our revenue maximization problem with #ke.T
paignersC; andC,, respectively. At time step, V> becomes model and form = 2 competing campaignersX; and Cs,
active with campaign o€, sincep,, ,, = 0.8 > 6,, = 0.6. as follows. For each element € U, there is a node in the
However, V5 remains inactive ag,, ,, = 0.5 < 6,, = 0.6. network with activationthresholg%. For each subset; € S,
At time step2, V3 first gets activated as the total incoming we add two nodes; and v, in the network, each having an
influence from its activated neighbors js;, v, + pu,.»s = 0.7, activation threshold. Now, if a subsetS; covers an element
which is higher than its activation threshdalg, = 0.6. Finally,  u;, we add a directed edge of probabiligﬁ# from nodew;



A, =03 1 @ A, =08 Ay, = 0.7

A2u =0.5 @ sz =0.9 A2u] =0.6

Fig. 4: Counter-Example of Monotonicity 1.0 Azuy = 0.1
Ay, =05 0 Agy, = 0.8

to nodew;, and another directed edge of probabilify from Agy = 0.1 @4—@ Azy, = 0.9
J? AS’U =0.1 Aguz =0.1

nodewv; to nodew,;. Note that the sum of the probabilities of
all |ncom|ng edges to any nodeg is at mostl. The revenue
matrix A has the following form:4; ,, = 1 for all u;, € U,
Ay, = 1 for all u; € U, and all other entries im are 0.
Flnally, we also assume that there is a budieain seed-set In this section, we consider the revenue maximization
size for each campaigner. In this setting, there is a salutioproblem under theMCIC influence cascading model. For

to our revenue maximization problem with the host's expd:cte simplicity, we assume that each campaigner has a seed set
revenue at least, if and only if there is a solution to the set of the same sizé.

cover problem. Hence, the theorem. ]

Fig. 5: Counter-Example of Sub-Modularity

IV. SOLUTION WITH INDEPENDENTCASCADE MODEL

Overview. Although our revenue maximization problem is

Unlike the classical viral marketing problem [13], our NP-hard over graphs, we shall illustrate that the problem
revenue maximization problem, under batCIC and K-LT is solvable in polynomial time in a tree dataset. Therefore,
models, isneither monotonicnor sub-modularTherefore, an we consider a two step heuristic approach: first, given a
iterative greedy algorithm [13] that maximally increaske t graph dataset, we extract theost influential treewhich will
marginal gain at every iteration, and which has been widelybe formally defined in Section IV-C. Intuitively, the most
used to derive a solution with theoretical approximationds  influential tree approximates a social network by preseyvin
for the conventional viral marketing problem, can no longerthe most influential pattbetween every pair of nodes as much
be employed in our case for deriving similar approximationas possible [14]. A path between a source and a destination
guarantees. Hence, we first design our novel approximategode is called the most influential path if the probability of
solutions in Sections IV and V, where we provide theoreticalinfluence cascading along that path is maximal in comparison
performance guarantees in the presence of some additionaith all other paths between these two nodes. While most-
constraints. Finally, in Section VI, we also provide moreinfluential-path-based approaches were used in the past, e.
efficient greedy solutions for our problem. However, prior t [7], to solve the classical viral marketing problem, ourreai
introducing our solution techniques, we demonstrate belowproblem is a different one. We design a polynomial-time éxac
the non-monotonicity and non-sub-modularity of the reveenu algorithm to solve the host's revenue maximization problem
maximization problem using counter-examples. over a tree dataset (Section IV-A). We describe our algarith
with a simpler binary tree in the following section, and tate
Section 1V-B, we show how to convert a tree to an equivalent
binary tree suitable for our method.

Non-Monotonicity. In Figure 4, we assume that nodeis
already assigned t6§5 (i.e., seed set of campaignék) and
that we still need to assign the seed set to campaigher

Under both theMCIC and theK-LT model, nodeu will be
activated by node with probability 1. Therefore, the host’s
revenue is0.5 + 0.9 = 1.4 with only nodewv assigned to the
seed sef5; of campaigner’s. If we now assign node to the

seed sef; of campaigner’;, the host’s revenue is reduced to belongs to one of the seed séis Ss, . . .,

A. Exact Solution over Directed Binary Trees

On a directed tree, a node can only be activated by
its closest ancestaot, including the node itself, such that
Sm. This is simply

0.3+ 0.9 = 1.2. If we assign the seed sets in the other ordefecauseu blocks the path from any farther ancestar to

(i.e., firstS; to C; and thenS; to Cs), then the revenue would
have increased froM.3 +0.8 = 0.11 10 0.3+ 0.9 = 1.2. In

v, wherew’ is also a seed node. Therefo®y(v,3,.5), the
probability that nodev will be influenced byC;'s campaign,

general, the revenue maximization problem is non-monotonihas the following expression in case of a directed tree.

with respect to addition of seed sets.

Non-Sub-Modularity. Let us denote by (S

=3 Y

=1 ueV

Pr(u,i,S)]. Here, S = {51,52,...,Sn} is the collection
of m seed sets corresponding #o different campaigners. In
order to illustrate non-sub-modularity, we need to show tina
following mequallty does not always hol#:(SUS;)—F(S) >

F(S'uUS;)— F(S'), whereS’ 2 S, S; ¢ S’. In Figure 5, we
assume thab : {u; assigned taC;}; and S’ : {u; assigned
to C4, uy assigned ta@’s }. Under theMCIC model, nodev is
always activated, if either nodg or us is activated. Under the
K-LT model, assume we use an activation threshold.sfor
nodew. Therefore, node is always activated under the-LT
model as well. Now, we assignto Ss (i.e., seed set of cam-
paignerCs) and check the sub-modularity criteria f6r and
S’. We getF(SuUS;)—F(S) = (0.740.1)—(0.7+0.5) = —0.4
andF(S"US;) — F(S')=(0.7+09+0.1) — (0.7+ 0.9+
(0.5 x )+ (0.1 x 1)) = —0.2. Therefore, the sub-modularity
property is not satisfied.

H puw  Otherwise.
(u’,v")ePath(u,v)

Pr(v,i,S) =

Here, v denotes the closest ancestorwgfsuch thatu is
a seed node. First, we compute for every ned@ the tree
dataset, the probability that gets activated by each of its
ancestors, which is sSimply[ [, ./ e path(u,p) Puor- We store
these activation probabilities in a tatieof size O(nd), where
n is the total number nodes in the tree asids the depth
of the tree. LetB(u,v) denote the activation probability that
nodev is activated by its ancestar Clearly,B(v,v) = 1. The
computation of table3 requiresO(nd) time, if we re-use the
activation probabilities from a parent node in order to catep
the activation probabilities for its children nodes.

Next, we apply a dynamic-programming-based algorithm
to find the optimal seed sets for all campaigners over a @idect
binary tree. For this purpose, we introduce another t&i#d



children vy, vs,...,va, Where A > 2 in the original tree,

we replacev with a binary tree of depth at mostg A and
leavesvy, vq, . ..,va. For each newly introduced node we
assign the revenud;, = 0, for all campaigners € (1,m).
While applying our dynamic programming (Section IV-A),

. _ . we also incur an additional constraint that no such newl
Fig. 6: Exact Solution over Binary TreéCIC model introduced node can be selected as a seed node. Finally, )f/or
of the form OPT (v, u, j, [k}, kb, ..., k.,]T), where:(a) v is  each newly introduced edge, the direction is always from the
any node in the tregp) nodew denotes the nearest ancestorroot towards the leaves, and each of them has probability
of nodev such that. is a seed nodég) j € (1, m) denotes the The incoming edges to the leaves vz, . . ., va have the same
campaignelC; such thatu is a seed node of campaignét, probability as that of the previous incoming edges to nodes
and(d) eachk! < k denotes the number of seed nodes already1, vz, - - ., va, respectively. This conversion process ensures
assigned to campa|gné1; in the subtree rooted at An entry  that the neWIy introduced edges and nodes will not affect the
in the OPT table, e.g.OPT (v, u, j, [k}, kb, ..., k.,]T) repre- ~ MCIC propagation model as in the original directed tree.
sents the host’s expected revenue for tpe optimal assignmen aq shown in [15], for the aforementioned tree-to-binary-
of all seed setsS;, i € (1,m), |S;| = ki over the subtree qe conversion method, the number of nodes in the equivalen
rooted at node: givenu, which isv's nearest ancestor that is yyinary tree is at most twice the number of nodes in the dickcte
a seed node, is rather assigned as a seed node to campaigiglt tree, and the depth of the binary tree is at most a factor
C;. It can be noted that the size OPT table iSO (ndmk™). ~ ofj5q A larger than the depth of the original tree, whexe

The entries inOPT are computed by performing a post-order s the maximum out-degree of any node in the input tree.
traversal over the tree dataset as given in Equations 2, 3, 4. k)

In our dynamic programmingOPT (v, u, j, [k, kb, ..., OPT | v,u,j, | : = max{Case, Case} (2)
k!.1T) is computed as the maximum over two cagepCase: i
the first case considers the scenario when not selected as m
a seed node, aan) Caseg: the second case considers the B
situation whenv is assigned to some campaigner as a seed K, K S
node. Here/(v) andr(v) denote the left and right subtrees Case = Igﬂa)é max max § OPT | I(v), u, j,
of v, respectively, as illustrated in Figure 6. For simplicity o kI
description, we assumed that the budget of seed-set size for B k]
each of them campaigners ig. Then, to fill one entry in ! !
the OPT table, we need)(mk™) time. Therefore, the time +OPT | r(v), u, J, : + Ajo x B(u,v)
complexity of our dynamic programming ©&(ndm?k?™). kL, — kI
Itis important to note that the dynamic programming termi- (3)
nates by computing th@PT entries for the root node,, that kY
is, OPT (v, —1,i, [k,...,k]T) for all i € (1,m). The value PV -
—1 at the second index indicates that the root nodedoes Casg = max { max .. max.. mix { OPT 1(v),v,1, ki
not have an ancestor. Therefo@RT (v,, —1,4, [k, ..., k]T) is =1 | k=0 k=0 k=0 :
invariant of;. Once we terminate our dynamic programming, k!
we determine whether a node will be a seed node (and Wk m
if so, that node will be assigned to which campaigner) by 1 1
backtrackingusing the OPT entries of its children nodes. :
The backtracking process requires anotti¥mnk™) time. +OPT | r(v),v,4, |k — K/ —1| | + A,
Therefore, the overall time complexity of finding the optima '
seed nodes over a directed binary treegdigdm?k*™). We :
note that our dynamic-programming-based exact soluti@mn ov Ky — Ky,
directed binary trees is polynomial-time in the number of (4)

tree nodes; however, it has exponential time-complexityé ) . .
number of client campaigners. C. Graphs to Most Influential Directed Tree Extraction

Space and Time Complexity.In this section, we summarize The revenue maximization problemiéP-hard in directed

the space and time complexity of our dynamic-programminggraphs (Theorem 2). Therefore, given a directed and coedect

based solution. The space complexityQ¢ndmk™): table B graphG, we first extract thenost influentiatree 7, which
has size?(nd) and tableOPT has sized(ndmk™). The time is a directed spanning tree 6f, and formally defined below.
complexity of our dynamic programming 8 (ndm?k>™). Definition 1 (Most Influential Tree)Given a connected
B. Directed Trees to Binary Trees Conversion graphG = (V. E, P) with a root nodev,, the most influential
y tree T = (V, Er-, P) with E7- C E is a directed spanning
Our dynamic-programming-based exact solution for thetree of G, with the same root node,, such that the product
revenue maximization problem (Problem 1) can be appliedf the edge probabilities ifi”* is maximized. Formally,
over non-binary trees. In fact, given a directed tree, we firs
convert it to an equivalent directed binary tree. We use the
conversion technique in [15]. For each non-leaf nedeith

T+ — arg max H Pu,v (5)
T eSpanningTredss) (u,v)EET



SpanningTredss) denotes all directed spanning trees of money for that particular user. In other words, for each user
G. Intuitively, the most influential tree aims at preservihgt w in the network, the host optimistically assigns a reverye
most influential path between every pair of nodes as much ashich is the maximum of4;, values over all campaigneis
possible. These most influential paths play an importarg rol Formally, A, = Ir(lax){Aiu}. Therefore, the host solves the
HAR ~ : ie(l,m
in influence cascade over real-world social networks [14]. following problem in the first step.

The problem of finding the most influential tree can be oo . .
converted to the problem of finding the minimum-cdsected Pro_blem 2 (Optimistic _Seed Set SglectloAEsumlng
there is only one campaigner and given a revenyge for

tsc??rr‘]gIgggtéesrggag;{:iglzigg égeg;léw ingnqel?ﬁgﬁ éoQamhmseach uset in the network, find the seed set of size: such

that the expected revenue of the host is maximized. Formally

T = arg min —log(pu, v (6)
T eSpanningTregsy) (u U)ZEET ( ) argénax Z [Au - Prir (u7 S)]
’ ucV

Thus, one can find the most influential directed tree in time such that |S| = mk (7)

O(e+nlogn) due to Gabow et al. [10]. It is important to note

that [10] requires some root node to be present in the input

graphG such that all other nodes i@@ are reachable from,..

Therefore, we first add a dummy root nogeand then connect

"(";" nodes inG to v,, with edges directed towards the nodes N objective function is monotonic and sub-modular as shown in
. Each of these newly-introduced edges is assigned a Ve corem 3

low edge-probability. For the dummy root nodg, we also '

assign revenuel;,, = 0 for all campaigners € (1,m); and Theorem 3:The objective function of Problem 2 is sub-

then, we further incur an additional constraint thatcannot  modular. Formally, let'(S) = >, _.,[Aw - Prir(u, S)]. Then,

be selected as a seed node during our dynamic-programming-

based exact solution over the most influential trefe F(SU{v}) = F(S) = F(S1U{v}) = F(51)  (8)

Here,S; O S andv ¢ .

_ ) ) o Proof: The proof follows by considering théve-edge
In this section, we consider the revenue maximizationmodel, which is shown to be equivalent to th& model in
problem (Problem 1) under_tHeLT influence cascade model. [13]. In the live-edge model, each nodepicks at most one of
We recall that our problem iIBP-hard under th&-LT model  jts incoming edges at random, that is, it selects the incgmin
(Theorem 2). However, we shall later |Ilustrate_ that given a edge fromu with probability p, ., and it does not select any
already-selectedet of seed nodes, one can optimally partitionincoming edge with probability — Zuein(v) Puov. Let X be

these seed nodes among campaigners in polynomial time 56 hossible world with probabilityrob(X ) under the live-
such that the host’s expected revenue is maximized. Thexefo edge model, andix (S) be the host's revenue due to nodes

we design a two-step heuristic technique to solve our aalgin 1t are reachable from the seed Sein that possible world
revenue maximization problem withtaeoretical performance  y ope may verify thatRx (S) is sub-modular with respect
guaranteeof #(1—%), wherem is the number of campaigners. 4 g Now, our objective functiorF'(S) is given by:

Overview. In the first phase (Section V-A), the hagptimisti-

Here, Pri7(u, S) denotes the expected spread of an influence
from the seed sef to nodew following the classic Linear
threshold [T) model with one campaigner. Unfortunately,
Problem 2 is alsdNP-hard following [13]; nevertheless, the

ueV

V. SOLUTION WITH LINEAR THRESHOLD MODEL

cally assumes that it is possible to influence each user by a F(S) = Z [Prob(X) - Rx(5)] ©)
campaign that gives the maximum revenue to the host for that all possible worldX

user, considering all other campaigns. This is equivalent t os the non-negative linear combination of sub-modular func
assigning, for each user a revenuel,, which is the maximum  jons is also sub-modulaf(S) is sub-modular. ]

of A;, values over all campaigneisThus, the host identifies

mk seed nodes assuming there is onlye campaigneand  Thus, we apply an iterative hill-climbing algorithm (Algo-
with the objective that her expected revenue is maximizedithm 1) that finds the seed set with an approximation guar-
under this optimistic assumption. However, we recall timat i antee(1 — 1) of the optimal solution [20]. The hill-climbing
reality, there aren campaigners, each with a seed-set of size algorithm works inmk iterative steps. At each iteration, the
Therefore, in the second step (Section V-B), the host amsit  algorithm selects a non-seed nad@s a seed node, such that
thesealready-selectednk seeds amongn campaigners with the expected revenue due toand the previously selected
the objective that her expected revenue is maximized uhger t seed nodes is maximized. Our hill-climbing-based iteeativ
actual multi-campaignersetting and considering the original solution for the optimistic seed selection problem (Probl)
revenue matrix. Below, we describe both these steps inlgletai is similar to state-of-the-art viral marketing techniquéest

For simplicity, we assume that the budget of seed-set size fddentify the topk seed nodes for a single campaigner such
each of them campaigners is. that its expected influence spread in the network is maxidize

[13]. Although we optimize the host's expected revenuesiadt

of the expected influence spread, due to the single-camgaign

and sub-modular nature of Problem 2, one can easily apply an
In the first phase, the host optimistically assumes that eacéxisting viral marketing algorithm [7], [11], [13], [16] (ith

user in the network can be influenced by a campaign such thabme modification in the objective function) as the undedyi

the corresponding campaigner gives the maximum amount déchnique to solve Problem 2.

A. Optimistic Seed Set Selection



Algorithm 1 Hill-Climbing for Optimistic Seed Set Selection

Require: GraphG = (V, E, P), Ay, = max;{Aww} Yu eV
Ensure: Seed sefS of sizemk
1: S=¢

2: for i =1 to mk do

3 v =argmax,cy\s F(SU{v})
4. S =SUJ{v}
5
6

/ / F() is defined in Th. 3

- end for
: Output S

Ci=1
C.=0)

C=0
C,= 1

Ci=1
C,=1

C=0.5
C,=0.7

Fig. 7: Example of Individual Revenue Computation

We shall later show in Theorem 4 that the iterative hill- that were activated in the previous step. We comgljte) as

climbing algorithm for the optimistic seed selection, claab
with an optimal partition of those seed sets, generates
solution to the original revenue maximization problem wfik
approximation guarante¢ (1 — 1), wherem is the number

. e
of campaigners.

Time Complexity. The time complexity of our iterative hill
climbing algorithm isO(mkn(n + e)t), wheremk is the total
number of seed nodes identified, arid the number oMonte-

follows:
a
Z [pv’v X ‘Cj (vl)]
"acti v/teéﬁ(v) It
v'activated in prev. step
L;j(v) = (10)

>

=
v'€in(v)
v’activated in prev. step

Pv'v

Carlo samples performed over the entire graph in order to find  Finally, we compute the individual reven@ (u) for every

one seed node.

B. Partition of Seed Set

In the second phase, the host optimally partitions the

previously selectednk seed nodes among. campaigners,

seed nodew € S and for every campaigner; as given in
Equation 11.

> [Aiw X Ly ()] (11)

veV

such that her expected revenue is maximized under the actual We refer toR;(u) as the individual revenue of the host

multi-campaignerK-LT model and considering the original

due to seed node, whenu is assigned to campaignéf;. We

revenue matrix. We formally define our problem statement fodemonstrate the computation of individual revenues with an

the second step as follows.

Problem 3 (Optimal Seed-Set-Partition(given  already
selected seed sef of size mk and the revenue matrix
(Aj)mxn, partition S into m subsetsSy, So, ..., Sy, such

example below.

Example 4:In Figure 7, we assume there are three seed
nodes:uy, us, andus, and also two campaigners; andCs.
The seed nodes are not assigned to any specific campaigners

that eachS; has sizek, and the expected revenue of the hostyet. We show the revenue vectors corresponding to each node

is maximized following the multi-campaign&-LT model.

We show that Problem 3 can be solved optimally in polynomial_ ... ,_.. _ _
time using a dynamic-programming-based approach. For thi"mt'vatlon thresholdy, = 0.6 < pu, v, +Pus o1 +Pug 00 = 0.

purpose, we introduce the notion imfdividual revenueof the
host from every seed node.

Definition 2 (Individual Revenue)Theindividual revenue

inside the rectangular boxes. In the beginning, all seedsod

|are activated, and in the next round,gets activated, since its

0.4 4

Egllgwing Equation 10, we geL;(,,)(v1) = OTF03T02 — 9
Similarly, £;(y,)(v1) = 2, and Ly, (v1) = 2. Finally, we
compute the individual revenues by following Equation 11.
For example,R(u1) = ZU:%W,UMI A X Ly (v) =

Ri(u) represents the expected revenue of the host from a seqdx 1 +0+0+40.5 x % = 1.22. Similarly, we haveR; (uy) =

nodeu € S whenw is assigned to thé-th campaigner’;.

Individual Revenue Computation. We now describe our

04+0+0+05x%x3=0.17.

Properties of Individual Revenue. The individual revenue

method to compute individual revenues. We start by randomlyz, (1) satisfies several interesting properties which are ctitica

assigning a distinct number frointo mk to every seed node

in S. Let us denote by (u) the number assigned to seed node

u. We also associate a ligl of size mk with each nodev
in the network. Thej-th entry of list£(v), denoted a<; (v),
represents the spread that some seed mode5 can achieve
at nodev following the K-LT model, wherel(u) = j. For a
seed node: € S, we initialize:

£ ={y

Next, we simulate th&-LT model starting from seed nodes
in S. At any discrete step of thK-LT model, if some node
v becomes active, we consider all its in-neighbars in(v)

if I(u)=7;
otherwise.

for our dynamic-programming-based exact solution.

Proposition 1: For a given seed node and a given cam-
paignerC;, 1 <i < m, R;(u) is invariant to how other seed
nodes are assigned to the various campaigners.

Proposition 2: If some seed nodes;, us, ..., u; € S are
all assigned to a given campaign@y, 1 < i < m, then the
expected revenue of the host dueup us, ..., u; is simply
the aggregation ofR;(u1), Ri(u2), ..., Ri(u;); and this is
invariant to how the remaining seed nodes are assigned ¢o oth
campaigners.

We omit the proofs due to limitation of space. The first
proposition directly follows from the definition of thkK-LT
model — given a pre-defined seed sgt the activation of



other nodes in the network is determined by the first phaseevenue vectors for all seed nodes@$mk(n + e)), where

of the K-LT model, that is, the classicall model assuming n ande are the number of nodes and edges in the graph,
all the campaigners are cascading the same informatione Morespectively. Therefore, the time complexity of our exact
specifically, whether a node in the network will be activatedsolution isO(mkn + mke + m?k + mk™). We note that our

or not is independent of how is partitioned among multiple optimal seed-set-partitioning solution requires polymnarime
campaigners [19]. The partition of only influences the in the size of the graph.

following: among the active nodes in the network, which one
will adopt what campaign and with how much probability. The
second proposition follows from the linearity property®f(v)

in Equation 10, that isLy,, u,}(v) = Ly, (v) 4+ Ly, (v), for

Performance Guarantee. Theorem 4 provides the overall
approximation guaranteef our method for the host’s revenue
maximization problem under th€-LT model.

any two distinct seed nodes, us € S and for any node in Theorem 4:The iterative hill-climbing solution of the op-
the graph. timistic seed selection (Problem 2), coupled with tgimal
oL !
Example 5:In Figure 7,R,(u1) = 1.22 and Ry (us) = partition of those seed sets (Problem 3), guaranfegs— 1)

0.17. Note that, R, (u1) + R (us) = 1.39, and this is exactly approximation to the original revenue maximization praofle

same afR, ({u1, us)), that is, the expected revenue of the host(Problem 1) under th&-LT model, and with the assumption
when bothu; andus are assigned to the campaigre@y. that eac_h campaigner has the same number of seed nodes.
Here,m is the number of campaigners.

Dynamic Programming Based Exact Solution.We are
now ready to describe our dynamic-programming-based exact
algorithm to solve the optimal seed-set-partitioning peab )
(Problem 3). Our algorithm processes the seed nadess in ~ C. K-LT Model over Tree: An Exact Solution
the ascending order of their assigngd) numbers. We recall
that I(u) € (1,mk). The dynamic programming maintains
a tableEXACT (5, [k1, kS, ..., k.,]T), that stores the optimal
expected revenue of the host when we have already partition

the seed nodes with number fromto j into m SubSets ¢ reyenue maximization under thdCIC model over a tree

{51,92,...,5m}, such that|Si| = ki < k, and we have gaiaget which can be solved optimally in polynomial time
also a55|gned them to ;[,Pe tespectlve campaigners. Clearlyq jj,srated earlier in Section IV. Our reduction works as
1 <j <mkandj =3 ", kj. The dynamic programming fo|ios. Since each node in a tree has at most one incom-
proceeds as given in Equation 12. ing edge, we eliminate those incoming edges for which the

In Equation 12,u denotes the node with(u) = j. probability on the edge is less than the activation thrashol

The optimal assignment of the last seed node is determine®f the destination node. On the other hand, we retain those
by EXACT(mk, [k, k,...,k]”). The optimal assignment of incoming edges for which the edge-probability is highemtha
previous seed nodes are determinedblgktrackingwith the  or equal to the activation threshold of the destination node
usage ofEXACT values. The correctness of our dynamic-and we reassign a probability to all these retained edges.

programming-based solution follows from Propositions 1, 2 One may note that all the retained edges are also independent
to each other even under theLT model, as each node has at

most one retained incoming edge in a tree. Therefore, we can

Proof: See Appendix. [ ]

In this section, we show that the revenue maximization
problem under theK-LT model can be solved optimally in
olynomial time over a tree dataset. Our proof is based on a
eduction of the current problem into an equivalent problem

) K, apply the dynamic-programming-based exact solution fer th
k/l . MCIC model to find an exact solution in polynomial time in
ks ' the size of the tree dataset.

i€(1,m)

EXACT | 4, | . = max {EXACT |j-1, |ki—1
: VI. GREEDY SOLUTIONS

.

/
ki Our proposed techniques in the previous sections are
polynomial-time with respect to the graph size, and theyp als

+ Ri(u) (12) provide. theoretical performar)ce guarantees under additio
constraints, e.g., exact solution over tree datasets foh bo
MCIC andK-LT models, and! (1 — 1)-optimal solution over
_ ) ) any graph undeK-LT model. Nevertheless, the running time
Space and Time Complexity.Our algorithm has space com- of our algorithms increases exponentially with the number
plexity O(k™) due to theEXACT table. The time complexity of seed nodes. Therefore, in this section, we propose more
of our dynamic programming i€)(mk™). This is because efficient greedy techniques for the host's revenue maxiticiaa
we need to fill the table of siz&™; and in order to fill  problem. For ease of discussion, we refer to our earlier-solu
each entry in the table, we compute the maximumnef tion techniques in Sections IV and V as RevMax-Combined

values. The backtracking requires anott¥rn’k) time; since  (RevMax-C), while we call our greedy solutions as RevMax-
there aremk seed nodes that we need to assign to differengeparate RevMax-S).

campaigners; and for each seed node, we require to compare

m values to find the best assignment. In addition, one needs RevMax-Separate.This is a greedy method as given in
to compute the expected revenue vectors for all seed nodédgorithm 2. We first sort the campaigners in descendingorde
by running a breadth-first-search from each of theseseed of > ., A;,, thatis, the aggregated money that each cam-
nodes. Hence, the time required to compute the expectguhignerC; is willing to provide to the host if all the users in the



Algorithm 2 RevMax-Separate: Greedy Seed Set Selection DBLP  (http://www.informatik.uni-trier.de/~ley/db/).  The
Require: GraphG = (V, E, P), revenue matriXA,, ), m campaign- ~ dataset is a subset of the popular co-authorship networ use

ers in [21]. Here, the edge probabilities express the strenfjthe
Ensure: Seed setsSy, ..., S, each of sizek collaboration between the two incident authors. Partityla
1: Sort and process campaigners in descending ord®r of . Ai., in [21], the probabilities derive from an exponential cdf
for each campaignef;; 1 <i <m to the number of collaborations; hence, if two authors
2: for i =1to m do collaborated: times, we assign the corresponding probability
3 Si=9 asl — exp_c/lo.
4. for j=1to k do
5: v =argmax,cy\s, Fi(S; U{v}) 2 NetHEPT (http://www.arXiv.org). This graph is created from
6: Si = S; U{v} the “High Energy Physics - Theory” section of the arXiv
7. end for with papers from1991 to 2003 [7]. Since there is no edge
gf en(‘j/ fzrv\si probabilities on this graph dataset, we synthetically gassi

probabilities on edges that simulates the community struc-
ture in a social network. We identif$0 non-overlapping
communities from this graph dataset, each wiff) nodes.

network adopt her product. Next, we process the campaignefs @1 €dge is completely inside a community, we uniformly

in that sorted order. For each campaigner, we identify thé@SSign ‘3 prol%at%i_lli.ty betw?ce(letofO.S; all other edgehs are
top-k seed nodes such that the host's revenue is maximize@SSigned probabilities uniformly from to 0.001. Such an

by considering only that campaigner (and disregarding th&€d9€ probability assignment reflects the fact that userdeins
existence of other campaigners). Nevertheless, in order t§1€ Same community usually have higher influence on each
eliminate the influence-cascading effect of already-setec other than on someone else outside that community. The edge

seed nodes of previous campaigners, we delete these ahea&yobabilities are assigned differently in both directions.,
selected seed nodes from the graph before identifying fhé to  Puv # Dou-

seed nodes for the next campaigner (Line 8, Algorithm 2). For theK-LT model, in all datasets, if the sum of proba-
bilities of all incoming edges to a node is more thanwe
normalize those edge probabilities by their aggregateevalu
such that the sum of probabilities for in-edges to every node
'@ no more thanl [21]. We also limit the number ofonte-

arlo samples tol 000 in all our experiments [21].

10: OutputS1, ..., Sm

Time Complexity. The time complexity of our greedy algo-
rithm is O(mkn(n + e)t), wherem is the number of cam-
paignersk the number of seed nodes per campaignemde

are the number of nodes and edges in the graph, respective
andt is the number ofMonte-Carlo samples performed to

find one seed node. We note that unlike our approximategh Number of Campaigners and Seed Nodesie vary the
algorithms in Sections IV and V, our greedy approach is,,mper of campaigners fronto 10, while the number of seed
very scalable — the running time increases linearly with the,nqeg per campaigner is varied fréno 100. We also consider
number of campaigners, number of seeds per campaigner, agitk case when different campaigners allow a different numbe

polynomially with the size of the graph. of seed nodes. In Appendix, we show additional experiments
with m = 1 campaigner, and our results attest that both
VIl.  EXPERIMENTAL RESULTS RevMax-C andRevMax-S converge to a traditional influence

We present experimental results which illustrate the effecMaximization solution with a single campaigner.

tiveness, efficiency, and scalability of our revenue maxzani o . , . .
tion algorithms T>;1€ code is imglemented in C++ and the— Revenue Distribution: We consider five wide categories

experiments were performed on a single core of3aGB of revenue distribution in order to simulate various reala
2.26GHz Xeon server. scenarios.

A E . S Uniform (U). In this setting, each campaigner selects its
- Experiment Setup target users uniformly over the network and independent of

[ Datasets:We summarize our data sets in Table I. Additional ©tNer campaigners. Therefore, in our framework, we assign

results over tree datasets can be found in the Appendix. ~ €VEry revenue-matrix-element;, = 1 monetary unit, with
probability --; and A;,, = 0.1 monetary unit, with probability

TABLE |: Dataset Characteristics (1 — L1). Here,m is the number of campaigners. One may
Dataset _ #Nodes _ #Edges Edge Prob: Mean, SD, Quartiles note that we have normalized the amount of money that a
Flickr 78322 20343018 | 0.09 £0.06, {0.06,0.07,0.09} campaigner gives to the host for one user on a scale fram
DBLP 684911 4569982 0.08 + 0.07, {0.05,0.05,0.10} .

NetHEPT | 15220 62752 0.28 + 0.28, {0.0006, 0.27, 0.53} to 1 monetary units.

Flickr (http://www.flickr.com). Flickr is an online community, Not Equal (NE). In this setting, we consider only two
where users share photos, and participate in common-@iiterecampaigners — one campaign€i assigns a fixed revenue
groups. We borrowed the dataset from [21], where the probad;, = 1 for each user, while the other campaignef',
bility of an edge between any two users is computed assumingssigns a fixed revenu#,,, = 0.5 for each user.

homophily in particular, the Jaccard coefficient of the interest

groups that the two users belong to Clustering with Low Competition (CLC). In this setting,

we assume that each campaigner’s target users form certain
21,(8:) = S ey [Aiu-Pr(u, Si)), i.e., hosts revenue considering only clusters in the network. In addition, we also assume therethe
campaignerC;, with seed sefS; are some users who belong to target sets of all the campaigner




We call this model “clustering with low competition” as we TABLE II: Revenue Improvement Rate (RIRYICIC Influence
limit the ratio of such mutually overlapping target usersato Cascading Model witl2 CampaignersNetHEPTDataset

relatively small percentage. We simulate this setting devis. Revenue | #Seed Nodes ‘ RIR RIR
We first partition the graph intb5 non-overlapping and highly- Distribution | _per Camp. | RevMax-S RevMax-C
connected clusters, each cluster having equal number @fsnod CRH o 2o S
For the first5 clusters, allA4;, values are set td monetary 15 2.68 3.07
unit, i.e., 33% of the nodes belong to the target users of 20 1.94 2.23
all campaigners. The remaining clusters are assigned to the AL 150 23‘1’ ggg
campaigners in a round-robin manner. If a cluster is asditme 15 2.48 2.04
campaigner’; as its target set, we then assign ealgh = 0.5 20 2.09 2.37
monetary unit, and the remaining;, = 0.1 monetary unit, 5 3.23 352
for all j # 4, inside that cluster. v 0 212 e
20 2.34 2.52

Clustering with High Competition (CHC). This setting is
similar to the previou€LC setting — the only difference is
that there is a relatively large number of users who belong t
the target sets of all campaigners. We simulate this se#ing

TABLE lll: Revenue Improvement Rate (RIRMCIC In-
uence Cascading Model witl2 Campaigners, and5

before; however, we assign the firdl out of the 15 clusters Seeds/Car[r:pa|gner

. L. . ataset Revenue RIR RIR

as the target sets for all campaigners. This implies 66&t ‘ Distribution ‘ RevMax-S  RevMax-C
of the nodes belong to the target users of all campaigners. CRH 252 3.14
. . " , , NetHEPT CHL 3.30 3.33
Clustering with Not-Equal Competition (CNC). This setting U 3.23 3.52
is also similar to the&CLC setting, except we consider only two CRH 1.04 1.04
campaigners’; and Cy; and while the three possibld,, DBLP CSL 1-85 igg
values remain(1,0.5,0.1) as before, the three possibl, == 1:43 ot
values are reduced 1@.5, 0.25,0.05). Flickr CHL 1.20 1.15
U 1.01 111

While U, CLC, and CHC models ensure almost equal
host's revenue from each of her client campaigners; N&t
and CNC models, the host's aggregated revenue from cam-
paignerC is more than that from campaignéf, considering
all the network users.

RevMax-S s
RevMax-C mm

Seeds Finding Time (Sec)

Seeds Finding Time (Sec)
=
o
o
o
o

(0 Comparing Methods: We compare our approximated algo- 5 10 5 20 400 - 0 B

rithms RevMax-C (Sections IV and V) and heuristic method # Seeds / Campaigner N.HEP.DBLP Flickr
RevMax-S (Section VI) with a randomized seed selection (2) NetHEPTDataset (b) 5 Seeds/Campaigner
approach. Fig. 8: Seed Sets Finding Tim®JCIC Influence Cascading

Random. We randomly select a distinct seed set for each camModel with 2 Campaigners

paigner. In our experiments, we did 10 runs of Random

method, and selected the best one that results in the maximum

revenue out of all these 10 runs. scale well with many campaigners and with a large number
of seed nodes, we consider at most 5 campaigners and up to

We compare the three aforementioned techniques —q seeds per campaigner in these experiments. The sdglabili
RevMax-C, RevMax-S, andRandom under bothiC andLT ot ReyMax-S with more campaigners and seed nodes is

models. As the underlying viral marketing methodRavMax- illustrated later in Section VII-C.

S and RevMax-C, we use theCELF++ algorithm [11] due

to its efficiency. We use the publicly-available source cotle 1) Performance wittMCIC Model: We present the revenue
CELF++ provided by the respective authors [11]. improvement rates with th&ICIC model in Tables Il and

lll. We find that the host’s revenue by followingevMax-C
technique almost always outperforms that fromReyMax-S
approach by a margin of 5910%. We show the correspond-
ing efficiency results for theMCIC model in Figures 8(a)
Revenue Improvement Rate (RIR).This is defined as the and 8(b). We find thaRevMax-C requires less amount of
ratio of the host's expected revenue obtained from the seetiime to identify the topk seed nodes as compared to that of
sets identified byRevMax-C (or, RevMax-S) with respect to RevMax-S, over the smalleNetHEPTdataset and fob seeds

the host’s revenue obtained from a random selection of segoer campaigner. However, as we consider larger datasets and

0 Evaluation Metrics: We compare the host's revenues
obtained fromRevMax-S and RevMax-C with that of the
Random.

sets. more seeds per campaign&evMax-C requires more time.
_ ) o This is becausd&revMax-C identifies the seed sets over the
B. Performance: Effectiveness & Efficiency most influential tree of the corresponding graph datasenin a

We first demonstrate our results over tMCIC model — €xactmanner, and this process requires tifd¢ndm?k>™).

(Section VII-B1), and thek-LT model (Section VII-B2). We Clearly, the running time oRevMax-C increases at a higher
also show our results with uneven revenue distribution, (i.e 'até as one increases the number of nodeand the number

NE andCNC) in Section VII-B3. SinceRevMax-C does not  ©f seedsk per campaigner.



TABLE IV: Revenue Improvement Rate (RIRY;LT Influence
Cascading ModelCRH Revenue DistributionNetHEPT

# Camp. | #Seed Nodes RIR RIR
per Camp. RevMax-S  RevMax-C

5 8.99 9.20

2 10 7.73 7.97
15 6.89 6.82

5 5.86 5.94

3 10 7.01 7.29
15 6.10 5.73

5 5.70 5.85

5 10 5.00 4.83
15 5.04 4.77

TABLE V: Revenue Improvement Rate (RIRY;LT Influence
Cascading Model witl2 CampaignersNetHEPTDataset

Revenue #Seed Nodes RIR RIR
Distribution per Camp. RevMax-S  RevMax-C
5 8.99 9.20
CRH 10 7.73 7.97
15 6.89 6.82
5 8.62 8.67
CRL 10 9.52 9.53
15 7.06 6.98
5 5.06 5.29
U 10 7.93 8.38
15 5.12 5.17
R
@ 15000 FReyMax-S e
g 6000 | RevMax-C mmmmm
= [ ]
2 2000 |
T
=
800
o
3 400
[2]
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Fig. 9: Seed Sets Finding Tim&-LT Influence Cascading
Model, NetHEPTDataset

2) Performance withK-LT Model: We first illustrate in
Tables IV and V the performance over thNetHEPTdataset
by varying the number of campaigners frdno 5, number
of seed nodes per campaigner franto 15, and with three
different revenue distributions: uniform, clustering hvitow
competition, and clustering with high competition. We atvse
the following for theK-LT model. With more campaigners as
well with more seed nodes, our heuristic methRevMax-

S often outperforms our approximated technigeevMax-

TABLE VI: Revenue Improvement Rate (RIRY;LT Influence
Cascading ModelCRL Revenue DistributionDBLP Dataset

# Camp.=2 # Camp.=3

#Seed Nodes RIR RIR RIR RIR
per Camp. RevMax-S  RevMax-C | RevMax-S  RevMax-C

5 77.27 77.73 27.41 27.42

10 42.27 46.78 40.80 41.28

15 39.19 37.04 36.74 37.05

20 42.03 42.01 40.14 34.25

25 31.01 31.62 39.78 34.90
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Fig. 10: Seed Sets Finding Timk;LT Model, DBLP Dataset

while in RevMax-C, the first iteration ofCELF++ runs only
once. This explains why our proposed metteevMax-C is

faster compared to thRevMax-S. NeverthelessRevMax-C
requires more time as one increases the number of seed nodes
per campaigner. This is because the pruning technique in the
CELF++ algorithm starts deteriorating with increasing number

of seed nodes. SinceevMax-C directly identifiesmk seed
nodes, whereaRevMax-S iterates fork times and in each
iteration, it identifiesm seed nodesRevMax-C takes more

time for higher values ofn or k.

We show the performance &evMax-C and RevMax-S
under theK-LT model overDBLP andFlickr in Tables VI and
VI, respectively. We find very similar characteristics afdre.
When the campaigners are constrained by a small number of
seed nodesRevMax-C almost always outperformRevMax-
S both in terms of revenue improvement rate as well as in
terms of the running time to identify the seed sets. However,
RevMax-S starts performing well with more campaigners and
more seed nodes.

3) Uneven Revenue and Unequal Seed Set Sinettiese
experiments, we consider two uneven revenue distributions
namely NE (Table VIII) and CNC (Table IX); as well as
the scenario when the campaigners allow for different numbe

C. This is because the performance guarantee provided hyf seed nodes (Table X). While our approximated technique

1), which decreases withn, i.e., the

RevMax-C is L (
number of campaigners.

We show the efficiency results over tiNetHeptdataset
and with theK-LT model in Figure 9. We find that up to
5 seed nodes per campaigner, along with3, or evenbs
campaignersRevMax-C requires smaller running time as
compared to that oRevMax-S. This is due to how the
underlying viral marketing algorithm (i.eCELF++ [11]) is
applied differently in both these methods. HeevMax-C,
CELF++ is applied only once to identify all thenk seed
nodes; while forRevMax-S, CELF++ is appliedm times —
each time it identifie¢ seed nodes for one campaigner. How-
ever,CELF++ itself is an iterative algorithm; more specifically,
it requiresk iterations to identify the tof- seed nodes. In one
run of the CELF++ algorithm, the first iteration is the most
expensive, and the subsequent iterations are significtastigr.
In RevMax-S, the first iteration ofCELF++ runs form times;

RevMax-C outperforms our heuristic methdtevMax-S, one
may found thaRevMax-S still very competitive with respect
to RevMax-C.

C. Scalability

In Figure 12, we analyze the variation of running times
of RevMax-C and RevMax-S with different graph sizes. In
particular, we consider varying sizes of thdickr dataset,
while keeping the number of campaigners and number of
seeds per campaigner fixed aatand 5, respectively. We find
that the running time ofRevMax-C increases log-linearly
with increasing graph sizes under tMCIC model, while it
increases almost linearly with increasing graph sizes uthae
K-LT model.

In Figure 13, we illustrate the scalability of our heuristic
methodRevMax-S with the number of seed nodes per cam-
paigner (up tol00) and also with the number of campaigners



TABLE VII: Revenue Improvement Rate (RIRK-LT Influ- & 15000 pam— 8 zm000[ Fewars
. - . o o evMax-C ---s--
ence Cascading Model, 5 Seeds/Campaigrlskr Dataset £ £
# Camp.=2 # Camp.=3 g 2o S 13000 4
Revenue RIR RIR RIR RIR L A
Distribution RevMax-S RevMax-C RevMax-S RevMax-C 3 200 ;gmg;;g . B SS00p
%] %2} 1400
CRH [ 6.08 6.27 [ 6.67 6.79 20000 40000 60000 78322 20000 40000 60000 78322
CRL | 6.00 6.31 | 5.70 6.50 # Nodes in Graph # Nodes in Graph
U [ 2014 1999 | 13.75 13.21 (a) MCIC Model (b) K-LT Model

Fig. 12: Scalability: Seed Sets Finding Time vs. Varyingira
Sizes Flickr Dataset, 2 Campaigners with 5 Seeds/Campaigner
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Fig. 13: Scalability olRevMax-S: Seed Sets Finding Time vs.

TABLE VIII: Reyer_lue _Improvemer_lt Rate (RlR) with Uneven Varying Seed Set Size and CampaignNetHeptDataset
NE Revenue Distribution? CampaignersNetHEPTDataset

Mcic K-LT
#Seed Nodes RIR RIR RIR RIR VIII. CONCLUSIONS
per Camp. RevMax-S RevMax-C RevMax-S RevMax-C . ) .
= 552 599 =8 = In this paper, we formulate and investigate the novel
10 3.01 3.48 7.50 7.63 problem of revenue maximization of a social network host
15 173 1.85 5.26 5.53 i i i i i o
>0 557 5e) 250 259 that sells viral marketing campaigns to multiple client eam

paigners. While our problem under bdth andLT models of
influence cascading izNP-hard, and neither monotonic, nor
sub-modular; we develop effective algorithms with theioedt
performance guarantees. In addition, our proposed teabsiq

TABLE IX: Revenue Improvement Rate (RIR) with Uneven
CNC Revenue Distributior CampaignerdNetHEPTDataset

#Seed Nodes RIR mele RIR RIR o RIR can solve the revenue maximization problem exactly in poly-
per Camp. | RevMax-S RevMax-C ‘ RevMax-S _ RevMax-C nomial time over a tree dataset using both these models. For
150 323 g-gg g-%g g-ég scalability reasons, we also design efficient heuristicsr O
15 178 292 745 754 experimental evaluation conducted on various real-wardghh
20 2.35 2.64 6.91 6.98 datasets and with diverse settings of revenue distribsitédiest

high-quality and efficiency of our proposed techniques.

TABLE X: Revenue Improvement Rate (RIR) with Unequal

Seed Set Size€HC Revenue2 CampaignersNetHEPT REFERENCES
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APPENDIX

Proof of Theorem 4: Let us denote byS,,: the optimal

seed sets for the revenue maximization problem (Problem 1)
under theK-LT model. Then, the host's maximum revenue can

be written as:y", .\, > [Asu X Pre—ur(u, i, Sopt ). Here,

Pre_i7(u,1, Sopt) denotes the expected spread of campaign

C; from the seed setS,,; to a nodeu following the K-LT
model.

Next, let us denote byS* the best seed sets for the
optimistic seed selection problem (Problem 2).
verify that

Z Z[Alu X PTKfLT('UJ; i; Sopt)] S

Z[Au X P’I’LT(U, S*)]

The following holds, because the summation still goes over
all nodes inV.

Z [Au X P’I’LT(U, S*)]

ueV

M-

Z [Au X PTLT(U, S*)]

i=1 ueV;

i
k

A1u X P’I’LT(U S* )]

> 4

1 \ueV

(3 mm)

The equality in the last line follows from the definition of
R;(w), as the right side of the equality, i.€,, . Ri(w)
means that we assign the whole seed $etto campaigner
C;.

M-

-
Il

1 ue

=L

iu X P’I’LT(U, S*)]>

3

qu

(14)

3

Next, let us denote bRkt the host's expected revenue
corresponding to the optimal partition §%. Since we assume
that each campaigner has the same number of seed nodes, one
may verify thatRyx_ 1 > ZZ 1 D wes Ri(w), with the
equality holds if and only if the |nd|V|duaI revenue vectare
equal, that isvw € S* andVi,j € (1,m), it holds R;(w) =
R;(w). Here,m is the number of campaigners.

By combining Inequalities 13 and 14, we get:

1 " )
Rkt > p— Z Z[Ai,u X Pre—it(u, i, Sopt)]  (15)

ueV i=1

Finally, considering the fact that the optimal selectiookpr
lem (Problem 2) isSNP-hard and our iterative hill-climbing
method produces a solution which is at legst- 1) of the
solution corresponding to the optimal seed Sé&t the overall

L ; g |
It is easy tﬂ pproximation ratio of our method is given bﬁ(l - =)

ence, the theorem.

Non-overlapping Seed SetsWe recall that in our model of
viral marketing, each node can be activated only once and
by one of the many competitive campaigns; and also the

V=1 14 . . . . .
e e (13) node stays activated with that campaign until the end. This
reflects the real-world scenario that due to various product
This is becauseA, = max(m A Hence, adoption costs, an average user often adopts only one of the

the left hand side must be at mos} . [A, X
>ty Pre—ir(u, i, Sope)], Which is equal to}" i [A, X

multiple competing products [18], [19]. Since the seed 1sode
for a campaigner are the early adopters of the corresponding
campaign, one node cannot act as the seed node for multiple

Prit(u, Sop)]. The equality in the last step follows from the
definition of theK-LT model, that is, the activation probability
of a node under thK-LT model is independent of how the seed
setS,,: is partitioned among mult|ple campaigners. Hence, if;
Inequality 13 were not true, the$t* is not the optimal solution
to Problem 2, as clearly a better solutidp,. for Problem 2
exists, which is a contradiction.

competing campaigners. Thus, although some node might be
one of the topt seed nodes for more than one campaigners
individually, we allow the seed sets to be non- overlappmg
in case there are multiple competitive campaigns running
simultaneously in the network [18], [19]. We illustrate ghi
scenario with an example below.

Example 6:In Figure 14, we assume that nodes and
vo belong to the target set of campaignérs; and V; and
V5 in the target set of campaignér,. We also assume that

Let us defineV; C V such that for each node € V; :
Ay = Ay andVi # j - V;nV; =0andJ2, V; = V.



Fig. 14: Non-overlapping Seed Sets for Multiple Competitiv
Campaigns

TABLE XI: Revenue Improvement Rate (RIRYniform Rev-
enue DistributionNetHEPTDataset, One Campaigner

MCIC Model K-LT Model
#Seed Nodes RIR RIR RIR RIR
RevMax-S RevMax-C ‘ RevMax-S RevMax-C
5 2.13 2.13 4.84 4.84
10 2.79 2.48 5.24 5.24
15 1.85 1.69 5.29 5.29
20 2.08 1.99 5.33 5.33

each campaigner has a budget of seed set kizghile the
probabilities on the edges are all By following the IC
model, one may note thadf; is the best seed node for both
campaigners individually. However, in case of simultareeou
campaigning, ifV3 is already assigned t¢’;, it would be
more beneficial fromCy's perspective if either o, or V5

is assigned as the seed node for her campaign.

TABLE XlI: Tree Dataset Characteristics

Dataset # Nodes
NetHEPT-Tree[ 15229

# Edges
13452

Edge Prob: Mean, SD, Quartiles
| 0.25 + 0.28, {0.0005,0.21,0.51}

TABLE XIll: Revenue Improvement Rate (RIRMCIC Infor-
mation Diffusion Model with2 CampaignersNetHEPT-Tree
Dataset

Revenue #Seed Nodes RIR RIR
Distribution per Camp. RevMax-S  RevMax-C
5 15.89 16.51
CRL 10 9.65 10.11
15 8.65 9.37
20 6.08 6.48
5 9.48 10.12
U 10 10.47 11.09
15 11.09 11.89
20 9.46 10.06
8
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Here, we must mention that due to the non-monotonicity o . . -
property of the host's influence maximization problem (seeFig. 15: Seed Sets Finding TimEICIC Information Diffusion
Figure 4), it is not always advantageous to add a new clienModel with 2 CampaignersNetHEPT-TreeDataset

campaigner from the host's point of view, e.g., consider

an extreme case when one campaigner provides very high

revenues for all users in the network, and the other campaignsmall margin for theMCIC model). Thus, our results illustrate
provides very low revenues for all users in the network.that while we certainly lose information by approximating a

Nevertheless, in this work, we study the host’s revenue maxdetwork with its most influential tree, our techniques aitt st
imization problem under the constraint that if the host hagrery competitive with respect to the classical viral mairkgt

multiple client campaigners, she needs to serve all hentclie

campaigners simultaneously by allocating them the spdcifie

number of distinct seed nodes. In real-world setting, trosih
be beneficial to the host for maintaining future relatiopshi
with all her clients.

Experiments with m=1 Campaigner: In this section, we pro-
vide additional experimental results with = 1 campaigners.
Note that if there is only one campaigner, the problem can b
solved with the traditional viral marketing solution [1T]hus,

solution in the presence of = 1 campaigner.
Experiments with Tree Dataset:

NetHEPT-Tree Dataset In order to verify the performance of

our methods over a tree dataset, we also consider a spanning-
tree (Table XII) of the originaNetHEPTgraph. The spanning
tree is built by first randomly selecting a node and then
iedentifying its breadth-first-search tree.

We now illustrate the performance of our techniques over

our objective here is to compare our proposed solutions witlree datasets, since our algorithms can maximize the host’s

respect to the original methods in the presence of only on
campaigner.

We note that ouRevMax-S technique becomes identi-
cal to the traditional viral marketing solution witm = 1
campaigner for both th&1CIC and K-LT models. Now, our
RevMax-C approach also becomes identical to the the tradi
tional viral marketing solution for th&-LT model. Therefore,
our techniques for th&-LT model converges to the classical
solution of influence maximization in the presencenof= 1
campaigner (see Table XI).

For the MCIC model, one may recall that olRevMax-

eevenue over a tree dataset in exactmanner. We find in
Table XIlI that our methodRevMax-C always outperforms
the heuristicRevMax-S in terms of the host’s revenue im-
provement rate. We also find very similar revenue improvemen
results over spanning trees of the two other datasets-liekr

and DBLP. Finally, figure 15 shows the corresponding seeds
finding times over thé&NetHEPT-Treadataset.

C solution is based on approximating the network by its

most influential tree (Section V). Therefore, with = 1
campaigner, we find that the traditional approach outpersor
the RevMax-C technique often by a slight margin (see in
Table XI thatRevMax-S is better thaRevMax-C often by a



