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Abstract—We study the novel problem of revenue maximiza-
tion of a social network host that sells viral marketing campaigns
to multiple competing campaigners. Each client campaigner
informs the social network host about her target users in the
network, as well as how much money she is willing to pay to
the host if one of her target users buys her product. The social
network host, in turn, assigns a set of seed users to each of her
client campaigners. The seed set for a campaigner is a limited
number of users to whom the campaigner provides free samples,
discounted price etc. with the expectation that these seed users
will buy her product, and would also be able to influence many
of her target users in the network towards buying her product.
Because of various product-adoption costs, it is very unlikely that
an average user will purchase more than one of the competing
products. Therefore, from the host’s perspective, it is important
to assign seed users to client campaigners in such a way that the
seed assignment guarantees the maximum aggregated revenuefor
the host considering all her client campaigners.

We formulate our problem by following two well-established
influence cascading models: the independent cascade model and
the linear threshold model. While our problem using both these
models isNP-hard, and neither monotonic, nor sub-modular; we
develop approximated algorithms with theoretical performance
guarantees. However, as our approximated algorithms oftenincur
higher running times, we also design efficient heuristic methods
that empirically perform as good as our approximated algorithms.
Our detailed experimental evaluation attests that the proposed
techniques are effective and scalable over real-world datasets.

I. I NTRODUCTION

In viral marketing, whenever a social network user buys a
product, she is viewed as being influenced or activated. The
classical viral marketing problem [9], [13] identifies the top-k
seed users in a social network such that the expected number of
influenced users in the network, starting from those seed users
and following some influence cascading model, is maximized.
The budgetk on the seed-set size usually depends on the
campaigner — in other words, it depends on how many initial
users the campaigner can directly influence to buy her product
by advertisements, giving free samples, and discounted prices.

The bulk of the research in the domain of viral marketing
assumes that the social network structure is available to the
campaigners. However, in real-world scenarios, the social
network platforms are owned by third-party hosts [19], such
as Facebook, Twitter, and LinkedIn; and the hosts keep their
social graphs secret for their own benefits and for privacy
reasons. Therefore, marketing companies themselves are not
able to select their best seed sets due to lack of access to the
social network graph.

In this study, we assume that the seed set selections are
done by the social network host on behalf of her clients, who
are the marketing campaigners. The campaigners, on the other
hand, spend their overall budget for viral marketing into two

parts. Particularly, each campaigner informs the host about: (a)
her budget on the seed-set size (i.e., the number of seed users,
k), and also(b) how much money she is willing to pay to the
host for each of her target users if that user adopts her product.
While the campaigner might not know the exact social network
structure, it is usually easier for her to define her target users,
either explicitly, or via some constraints, e.g., people inthe
age group 20-30, all banking professionals, etc. We note that
the number of such target users for a campaigner can be very
large, and it is often not possible (or not economical) to give
each of them a free sample or discounted price. Therefore, the
campaigner still allocates a smallk as the number of her seed
nodes. She uses rest of her budget to pay the social network
host according to the agreement, which can be a small amount
of money for each of her target users who adopts her product.

In real-world, multiple companies compete and they launch
comparable products around the same time1 (e.g., Nintendo’s
Wii vs. Sony’s Playstation vs. Microsoft’s X-Box; Microsoft’s
Surface vs. Apple’s iPad vs. Samsung Note 3) [18], [19]. Thus,
the host often needs to run multiple competing viral marketing
campaigns together over the network. However, due to various
product-adoption costs, it is very unlikely that an averageuser
will purchase more than one of the competing products. Since
most of the users adopt only one of the competing products, it
implies that the seed sets of the competing campaigners require
to be mutually non-overlapping [18], [19]. Therefore, fromthe
host’s perspective, the challenge lies in how to select the seed
set for each of her client campaigners so that the host’s overall
expected revenue is maximized.

Running multiple viral marketing campaigns by a social
network host was studied earlier in [19] by Lu et. al. However,
[19] studied a different problem. The problem our paper
addresses is the problem of maximizing the revenue of the
host of the social network. In contrast, [19] studied how
to balance the expected spread of each campaign over the
network, which we believe is less relevant in practice. When
a social network host is selecting the seed sets on behalf of
her client campaigners, maximizing the host’s overall expected
revenue is the problem of interest for most practical scenarios.
Furthermore, [19] makes a number of additional assumptions.
For instance, [19] did not apply the notion of target users
for each client campaigner; they assume that all users in the
network are equally important to all campaigners. In reality, a
campaigner often promotes her product with a group of target
customers in mind [15], [17], and is willing to pay more money
to the host if her target users adopt her product. Indeed, as
shown experimentally in [1], a product adopted by customers
(or, a campaign reached to users) outside the target group could

1At the Consumer Electronic Show in January 2011, over 80
new tablets were announced by Motorola, Samsung, and Toshiba.
(http://mashable.com/2011/01/12/ces-2011-tablet-videos/)
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Fig. 1: Revenue Maximization: Limitations of Naïve Methods

generate negative impression towards the campaigner, which
will affect her image in the long run. In summary, for different
users, each campaigner would be willing to pay a different
amount of money to the host if those users buy her product.

We next demonstrate with an example why the method
in [19] and other naïve approaches are not suitable for our
problem.

Example 1:Assume that there are two campaigners —
C1 and C2, who are viral marketing clients to the social
network host as depicted in Figure 1. We also assume that each
directed edge has an influence probability 1, and we apply
the independent cascade (IC) model [13], described later in
Section III-B. The model assumes that the cascade of influence
happens in discrete time steps. Each node can be activated only
once and by only one of the campaigns; also the node stays
activated with that campaign until the end. LetAij denote the
money that campaignerCi is willing to pay to the host if node
Vj adopts her product. We setA11 = A12 = A13 = A14=US$
10, A15 = A16 = A17 = A18=US$ 1; whileA21 = A22 =
A23 = A24=US$ 1, andA25 = A26 = A27 = A28=US$
10. Assume that the budget on the seed set size for each
campaigner is1.

What is the optimal solution? The optimal solution is as
follows. If V3 and V6 are selected as the seed nodes forC1

and C2, respectively, thenV1, V2, V3 will be influenced by
C1, while V6, V7, andV8 will be influenced byC2. This will
ensure an aggregated revenue of US$ 60 to the host.

Why a naïve method will not work? A naïve approach
to solve the host’s revenue maximization problem would be
to first define some order among the campaigners, and then
identify the top-k seed nodes for each campaigner such that
the host’s revenue is maximized considering one campaigner
at a time. If some of the top-k seed nodes for the current cam-
paigner have already been assigned to previous campaigners,
we identify the next-best seed nodes for the current campaigner
until we exhaust the budgetk of the current campaigner’s seed-
set size. If we apply this naïve approach, we getV4 as the
best seed node forC1. This is becauseV4 could eventually
influenceV1, V2, V3, V6, V7, and V8, and the host will get
a revenue of US$ 43, assumingC1 is the only campaigner
in the network. Similarly, we find thatV5 is the best seed
node forC2, assuming there is no other campaigner. Now, in
reality, when the host runs the two viral marketing campaigns
simultaneously with campaign ofC1 starting fromV4 and that
of C2 starting fromV5, the host’s aggregate revenue will be
only US$ 44. This is because after simultaneous campaigning,
V3, V4, V7, and V8 will be influenced byC1, while the
remaining nodes will be influenced byC2.

Why the method in [19] will not work? Lu et. al.’s problem
formulation [19] identifies the seed sets for the campaigners in
a way such that the expected spread of each campaign is almost

equal (i.e., maintaining fairness), while also maximizingthe
overall spread of all campaigns in the network. As an example,
selection ofV4 as the seed node ofC1 andV5 as the seed node
of C2 would be an optimal solution according to [19], since
this will result in V3, V4, V7, andV8 to be influenced byC1,
while the remaining four nodes will be influenced byC2. Note
that the host’s revenue in this solution is only US$ 44.

The above example clearly illustrates that the aforemen-
tioned naïve approach as well as [19] may result in a sub-
optimal aggregated revenue for the host. In fact, as [19]
did not consider the notion of target users for each client
campaigner, it is non-trivial to extend their proposed algo-
rithm to solve our current problem. Specifically, theirNeedy-
Greedy algorithm heuristically partitions the initial seed set
to balance the expected influence spread of each campaigner,
assuming that all users in the network are equally important
to all campaigners. It is difficult to adapt such an algorithm
to maximize the host’s overall revenue from all campaigners
in a scenario when each user has a different importance to
every campaigner. Indeed, our dynamic programming based
seed partitioning strategy introduced in Section 5.2 is different
from their Needy-Greedy heuristics.

Our Contributions and Roadmap. Our contributions can be
summarized as follows:

• We define the fundamental problem of host’s revenue
maximization by viral marketing in the presence of
m ≥ 2 competitive campaigners (Sec. III).

• We formulate the problem using two widely-used in-
fluence cascading models — the independent cascade
(IC) model (Section IV) and the linear threshold (LT)
model (Sec. V).

• We show that our problem using both these models
is NP-hard, and neither monotonic, nor sub-modular.
We therefore develop approximated algorithms to
solve our problem. In addition, we also design more
efficient and scalable heuristic techniques that empiri-
cally perform as good as our approximated algorithms.

• We conduct a thorough experimental evaluation using
several real-world datasets and with various kinds of
revenue distributions (Sec. VII). Our empirical results
attest that the proposed methods efficiently generate
high-quality results.

II. RELATED WORK

In viral marketing, a social network user is considered
influenced or activated by a campaign if she buys a product
corresponding to the campaign. The classical viral market-
ing problem aims at finding a small number of seed nodes
that generates the largest expected influence cascade in a
social network. Domingos and Richardson [9] formulated
viral marketing as an optimization problem. Kempe et. al.
[13] proposed the linear threshold model and the independent
cascade model, and designed approximation algorithms with
provable performance guarantees. However, the computation of
influence cascade is still#P-hard [7]. Several heuristics have
been proposed to improve the efficiency of viral marketing [8],
[11]. Very recently, [22] developed almost linear-time viral
marketing algorithms, yet providing the same approximation
guarantee as Kempe et. al.’s original method. In [15], Lappas



et. al. introduced the concept of target marketing andk-
effectors — by identifyingk seed nodes such that a given
activation pattern can be established. The notion of targetmar-
keting was also considered in [17] that maximizes influence
over a region of the network.

Viral marketing in the presence of a negative campaign
was investigated in [2], [5]. These works assume that the
later campaign has prior knowledge of rival side’s initial seed
nodes. Bordin et. al. [3] analyzed the similar problem under
theLT model; while [4], [6] attempt at preventing the spread of
an existing negative campaign in the network. Recently, [23]
studied the viral marketing problem between non-cooperative
campaigns who select seeds alternatively. However, as dis-
cussed in Section 1, competitive new products from rival
companies are often launched around the same time. Thus,
[12], [18], [19] considered viral marketing in the presenceof
multiple competing campaigners, who promote their products
in a social network around the same time. We also consider
a similar scenario, i.e., multiple rival companies launch and
promote competing products at the same time.

While the bulk of the research on viral marketing assumes
that the social network structure is available to the campaign-
ers; in reality, the social network platforms are owned by third-
party hosts. Lu et al. [19] were the first to consider the viral
marketing problem from the social network host’s perspective.
In their framework, the host selects the seed nodes on behalf
of her client campaigners so that the expected influence spread
for each client campaigner becomes nearly the same. However,
when a social network host is selecting the seed sets on
behalf of her client campaigners, maximizing the host’s overall
expected revenue would be the problem of interest for most
practical scenarios. To the best of our knowledge, ours is
the first work that studies the host’s revenue maximization
problem, while also considering the notion of target users for
each campaigner. As [19] did not consider the notion of target
users for each client campaigner, it is non-trivial to extend their
proposed algorithm to solve our current problem.

III. PRELIMINARIES
A. Problem Statement

A social networkG is modeled as a triple(V,E, P ), where
V is a set ofn nodes,E ⊆ V ×V is a set ofe directed edges,
and P : E → (0, 1) is a probability function that assigns
a probability to each edge inE. The probabilitypuv on a
directed edge(u, v) ∈ E represents the probability that node
v adopts a product due to the influence of nodeu, because
u adopted that product before. Whenv adopts that product,
it automatically becomes eligible to influence its neighbors
who has not adopted that product already. We shall discuss the
details of various influence cascading models in Section III-B.

We considerm ≥ 2 competing campaigners, denoted
by C1, C2, . . . , Cm, for whom the social network host runs
simultaneous viral marketing campaigns. We denote bySi

the seed set for campaignerCi, and Aiu the money that
campaignerCi is willing to pay to the host if nodeu adopts
Ci’s product. We refer toA = (Aiu)m×n the revenue matrix.
We denote byPr(u, i, S) the probability that nodeu will adopt
Ci’s product due to the influence of her campaign by following
some influence cascading model, whereS = {S1, S2, . . . , Sm}
represents the seed sets for them campaigners. We are now
ready to define our problem.
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Fig. 2: Example ofMCIC model

Problem 1 (Revenue Maximization):Given a networkG =
(V,E, P ), m ≥ 2 client campaigners, the revenue matrixA,
and a budgetki on the seed set size for each campaigner
Ci, i.e., |Si| = ki for 1 ≤ i ≤ m, find the seed set for
each campaigner such that the expected revenue of the host
is maximized. Formally,

argmax
S1,S2,...,Sm

m
∑

i=1

∑

u∈V

[Aiu · Pr(u, i, S)]

such that |Si| = ki ∀i ∈ (1,m)

and Si

⋂

Sj = φ ∀i 6= j; i, j ∈ (1,m) (1)

B. Influence Cascading Models
We apply two widely-used influence cascading models:

independent cascade (IC) and linear threshold (LT) [13].

1) Independent Cascade Model:In the single-campaigner
IC model, the campaign starts with an initially active (i.e.,
adopted her product) set of seed nodes, and then unfolds in
discrete steps. When some nodeu first becomes active at step
t, it gets a single chance to activate each of its currently
inactive out-neighborsv; it succeeds with probabilitypu,v. If
u succeeds, thenv will become active at stept+1. Whether or
notu succeeds at stept, it cannot make any further attempts in
the subsequent rounds. If a nodev has incoming edges from
multiple newly activated nodes, their attempts are sequenced
in an arbitrary order. Also, each node can be activated only
once and it stays active until the end. The campaigning process
runs until no more activations are possible.

Multi-Campaigner Independent Cascade Model.We shall
now introduce the multi-campaigner Independent Cascade
(MCIC) model [4], which models multiple campaigns that
are being run simultaneously in a network.MCIC follows the
same process asIC, except two major differences. First, if
some nodeu is activated with campaign ofCi, it attempts to
activate its out-neighborsv with the campaign ofCi. Second,
an activated nodev adopts one campaign uniform at random
from all its in-neighbors which were successfully activated
in the last round. Each node can be activated only once and
by only one of the campaigns; also the node stays activated
with that campaign until the end. Therefore, theMCIC model
assumes the following influence cascading scenario: people
adopt a product when they come in direct contact with their
friends who very recently adopted that product.



Example 2 (MCIC Model): In Figure 2, we show a social
network along with edge probabilities. We also assume that
V1 and V2 are seed nodes for campaignersC1 and C2,
respectively, and we want to calculate the probability thatnode
V3 will be influenced by each of these campaigners using the
MCIC model. The computation is carried out following the
possible worldsemantics [13]. We first identify all possible
worlds of the uncertain input graph, where each possible world
is a certain instance of the uncertain graph, and obtained
by independent sampling of the edges. Each possible world
is associated with a probability of existence. For example,
the second possible world in Figure 2 has probability of
existence0.4, which is due to the presence of the edgeV1V3

with probability 0.5 and the absence of the edgeV2V3 with
probability(1−0.2). Hence, the probability of existence of the
second possible world is0.5×(1−0.2) = 0.4. In our example,
there can be total4 possible worlds. In each possible world, a
node is activated by its closest seed nodes. Thus,V3 is activated
by C1 in the second possible world, byC2 in the third possible
world, and by either ofC1 andC2 with equal probability in
the fourth possible world. Therefore, the probability thatV3 is
activated byC1 is 0.4 + 0.1 × 1

2 = 0.45, andV3 is activated
by C2 with probability 0.1 + 0.1× 1

2 = 0.15.

2) Linear Threshold Model:In the single-campaignerLT
model, each nodev has an activation thresholdθv ≤ 1. In
addition, there is a constraint that the sum of the probabilities
of all incoming edges for every node must be at most1. The
campaign starts with an initially active set of seed nodes, and
then unfolds in discrete steps. If the sum of the probabilities
of the incoming edges from all active nodes is greater than or
equal to the activation threshold of an inactive node, then the
node gets activated in the next round. Each node can only be
activated once and stays active until the end.

Multi-Campaigner Linear Threshold Model. The multi-
campaignLT model, also termed as theK-LT model in [19],
follows two steps in each round. The first step decides whether
a new node will get activated and it works in exactly the
same way as theLT model (i.e., without distinguishing among
multiple campaigns). However, in the second step, it decides
which campaign each of those newly activated nodes will
adopt. Let us consider all nodesu that were activated in
the last round and contributed to the activation of a nodev
in the current round. Then,v will adopt the same campaign
as that ofu with probability puv∑

u
puv

. With the K-LT model,
each node can be activated only once and by only one of the
campaigns; also the node stays activated with that campaign
until the end. One may note that theK-LT model simulates
the following scenario: a user adopts a technology only when
more than a threshold number of her neighbors adopted a
similar technology. However, once the user decides to adopt
the technology, she decides on the specific product only based
on her neighbors who most recently adopted that technology.

Example 3 (K-LT Model): We show an example of theK-
LT model in Figure 3. Here,V1 and V4 are seeds for cam-
paignersC1 andC2, respectively. At time step1, V2 becomes
active with campaign ofC1, sincepv1,v2 = 0.8 > θv2 = 0.6.
However,V3 remains inactive aspv4,v3 = 0.5 < θv3 = 0.6.
At time step2, V3 first gets activated as the total incoming
influence from its activated neighbors is:pv2,v3 +pv4,v3 = 0.7,
which is higher than its activation thresholdθv3 = 0.6. Finally,
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Fig. 3: Example ofK-LT model

V3 selects campaign ofC1 with probability 1, becauseV2 is
the only neighbor ofV3 which was activated in the last round,
andV2 was activated with campaign ofC1.

C. Hardness Results

We first prove that Problem 1 isNP-hard both with the
MCIC andK-LT influence cascading models. We consider the
decision version of our problem: Given a social networkG =
(V,E, P ), m ≥ 2 client campaigners, the revenue matrixA,
a budgetki on the seed set size for each campaignerCi, that
is, |Si| = ki for 1 ≤ i ≤ m, and a positive integerR, can
we find a seed set for each campaigner such that the expected
revenue of the host is at leastR?

Theorem 1:Following theMCIC model of influence cas-
cading, the decision version of Problem 1 isNP-hard.

Proof: We shall prove theNP-hardness by performing
a reduction from theNP-complete set-cover problem. Let us
consider an instance of the set-cover problem, defined by a
collection of subsetsS = {S1, S2, . . . , Sr} of a ground set
U = {u1, u2, . . . un}; we wish to know whether there existk
of the subsets whose union is equal toU . Now, we consider
another identical instance of the previous set cover problem,
given by a collection of subsetsS′ = {S′

1, S
′
2, . . . , S

′
r} of the

ground setU ′ = {u′
1, u

′
2, . . . u

′
n}. We construct our revenue

maximization problem form = 2 competing campaigners:C1

andC2, as follows. For eachui ∈ U , u′
i ∈ U ′, Si ∈ S, and

S′
i ∈ S′, we include a node in the network. The two nodes

corresponding to element pairsui, u
′
i are connected by a bi-

directed edge of probability1. If a subsetSi covers an element
uj , we add a directed edge of probability1 from nodeSi to
nodeuj in the network. Analogously, if some subsetS′

i covers
an elementu′

j, we also add a directed edge of probability1
from nodeS′

i to nodeu′
j in the network. The revenue matrix

has the following form:A1,ui
= 1 for all ui ∈ U , A2,u′

j
= 1

for all u′
j ∈ U ′, all other entries in the revenue matrix are0.

Finally, we also assume that there is a budgetk on seed-set
size for each campaigner. In this setting, there is a solution
to our revenue maximization problem with the host’s expected
revenue at least2n, if and only if there is a solution to the set
cover problem. Hence, the theorem.

Theorem 2:Following the K-LT model of influence cas-
cading, the decision version of Problem 1 isNP-hard.

Proof: We prove theNP-hardness by performing a re-
duction from theNP-complete set cover problem, defined by
a collection of subsetsS = {S1, S2, . . . , Sr} of a ground set
U = {u1, u2, . . . un}; and we want to know whether there
exist k of the subsets whose union is equal toU . Now, we
construct our revenue maximization problem with theK-LT
model and form = 2 competing campaigners:C1 and C2,
as follows. For each elementui ∈ U , there is a node in the
network with activation threshold1

r+1 . For each subsetSi ∈ S,
we add two nodesvi and v′i in the network, each having an
activation threshold1. Now, if a subsetSi covers an element
uj , we add a directed edge of probability12r from nodevi
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to nodeuj, and another directed edge of probability12r from
nodev′i to nodeuj. Note that the sum of the probabilities of
all incoming edges to any nodeuj is at most1. The revenue
matrix A has the following form:A1,ui

= 1 for all ui ∈ U ,
A2,ui

= 1 for all ui ∈ U , and all other entries inA are 0.
Finally, we also assume that there is a budgetk on seed-set
size for each campaigner. In this setting, there is a solution
to our revenue maximization problem with the host’s expected
revenue at leastn, if and only if there is a solution to the set
cover problem. Hence, the theorem.

Unlike the classical viral marketing problem [13], our
revenue maximization problem, under bothMCIC and K-LT
models, isneither monotonic, nor sub-modular. Therefore, an
iterative greedy algorithm [13] that maximally increases the
marginal gain at every iteration, and which has been widely-
used to derive a solution with theoretical approximation bounds
for the conventional viral marketing problem, can no longer
be employed in our case for deriving similar approximation
guarantees. Hence, we first design our novel approximated
solutions in Sections IV and V, where we provide theoretical
performance guarantees in the presence of some additional
constraints. Finally, in Section VI, we also provide more
efficient greedy solutions for our problem. However, prior to
introducing our solution techniques, we demonstrate below
the non-monotonicity and non-sub-modularity of the revenue
maximization problem using counter-examples.

Non-Monotonicity. In Figure 4, we assume that nodev is
already assigned toS2 (i.e., seed set of campaignerC2) and
that we still need to assign the seed set to campaignerC1.
Under both theMCIC and theK-LT model, nodeu will be
activated by nodev with probability 1. Therefore, the host’s
revenue is0.5 + 0.9 = 1.4 with only nodev assigned to the
seed setS2 of campaignerC2. If we now assign nodeu to the
seed setS1 of campaignerC1, the host’s revenue is reduced to
0.3 + 0.9 = 1.2. If we assign the seed sets in the other order
(i.e., firstS1 to C1 and thenS2 to C2), then the revenue would
have increased from0.3 + 0.8 = 0.11 to 0.3 + 0.9 = 1.2. In
general, the revenue maximization problem is non-monotonic
with respect to addition of seed sets.

Non-Sub-Modularity. Let us denote byF (S) =
m
∑

i=1

∑

u∈V

[Aiu ·

Pr(u, i, S)]. Here, S = {S1, S2, . . . , Sm} is the collection
of m seed sets corresponding tom different campaigners. In
order to illustrate non-sub-modularity, we need to show that the
following inequality does not always hold:F (S∪Si)−F (S) ≥
F (S′ ∪ Si)− F (S′), whereS′ ⊇ S, Si 6∈ S′. In Figure 5, we
assume thatS : {u1 assigned toC1}; andS′ : {u1 assigned
to C1, u2 assigned toC2}. Under theMCIC model, nodev is
always activated, if either nodeu1 or u2 is activated. Under the
K-LT model, assume we use an activation threshold of0.4 for
nodev. Therefore, nodev is always activated under theK-LT
model as well. Now, we assignv to S3 (i.e., seed set of cam-
paignerC3) and check the sub-modularity criteria forS and
S′. We getF (S∪S3)−F (S) = (0.7+0.1)−(0.7+0.5) = −0.4
andF (S′ ∪ S3) − F (S′) = (0.7 + 0.9 + 0.1)− (0.7 + 0.9 +
(0.5× 1

2 ) + (0.1× 1
2 )) = −0.2. Therefore, the sub-modularity

property is not satisfied.
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IV. SOLUTION WITH INDEPENDENTCASCADE MODEL

In this section, we consider the revenue maximization
problem under theMCIC influence cascading model. For
simplicity, we assume that each campaigner has a seed set
of the same sizek.

Overview. Although our revenue maximization problem is
NP-hard over graphs, we shall illustrate that the problem
is solvable in polynomial time in a tree dataset. Therefore,
we consider a two step heuristic approach: first, given a
graph dataset, we extract themost influential tree, which will
be formally defined in Section IV-C. Intuitively, the most
influential tree approximates a social network by preserving
themost influential pathbetween every pair of nodes as much
as possible [14]. A path between a source and a destination
node is called the most influential path if the probability of
influence cascading along that path is maximal in comparison
with all other paths between these two nodes. While most-
influential-path-based approaches were used in the past, e.g.
[7], to solve the classical viral marketing problem, our current
problem is a different one. We design a polynomial-time exact
algorithm to solve the host’s revenue maximization problem
over a tree dataset (Section IV-A). We describe our algorithm
with a simpler binary tree in the following section, and later in
Section IV-B, we show how to convert a tree to an equivalent
binary tree suitable for our method.

A. Exact Solution over Directed Binary Trees

On a directed tree, a nodev can only be activated by
its closest ancestoru, including the node itself, such thatu
belongs to one of the seed setsS1, S2, . . ., Sm. This is simply
becauseu blocks the path from any farther ancestoru′ to
v, whereu′ is also a seed node. Therefore,Pr(v, i, S), the
probability that nodev will be influenced byCi’s campaign,
has the following expression in case of a directed tree.

Pr(v, i, S) =







0 if u 6∈ Si;
∏

(u′,v′)∈Path(u,v)

pu′v′ otherwise.

Here,u denotes the closest ancestor ofv, such thatu is
a seed node. First, we compute for every nodev in the tree
dataset, the probability thatv gets activated by each of its
ancestorsu, which is simply

∏

(u′,v′)∈Path(u,v) pu′v′ . We store
these activation probabilities in a tableB of sizeO(nd), where
n is the total number nodes in the tree andd is the depth
of the tree. LetB(u, v) denote the activation probability that
nodev is activated by its ancestoru. Clearly,B(v, v) = 1. The
computation of tableB requiresO(nd) time, if we re-use the
activation probabilities from a parent node in order to compute
the activation probabilities for its children nodes.

Next, we apply a dynamic-programming-based algorithm
to find the optimal seed sets for all campaigners over a directed
binary tree. For this purpose, we introduce another tableOPT
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Fig. 6: Exact Solution over Binary Tree:MCIC model

of the form OPT(v, u, j, [k′1, k
′
2, . . . , k

′
m]T ), where: (a) v is

any node in the tree,(b) nodeu denotes the nearest ancestor
of nodev such thatu is a seed node,(c) j ∈ (1,m) denotes the
campaignerCj such thatu is a seed node of campaignerCj ,
and(d) eachk′i ≤ k denotes the number of seed nodes already
assigned to campaignerCi in the subtree rooted atv. An entry
in the OPT table, e.g.,OPT(v, u, j, [k′1, k

′
2, . . . , k

′
m]T ) repre-

sents the host’s expected revenue for the optimal assignment
of all seed setsSi, i ∈ (1,m), |Si| = k′i over the subtree
rooted at nodev: givenu, which isv’s nearest ancestor that is
a seed node, is rather assigned as a seed node to campaigner
Cj . It can be noted that the size ofOPT table isΘ(ndmkm).
The entries inOPT are computed by performing a post-order
traversal over the tree dataset as given in Equations 2, 3, 4.

In our dynamic programming,OPT(v, u, j, [k′1, k
′
2, . . . ,

k′m]T ) is computed as the maximum over two cases.(a) Case1:
the first case considers the scenario whenv is not selected as
a seed node, and(b) Case2: the second case considers the
situation whenv is assigned to some campaigner as a seed
node. Here,l(v) and r(v) denote the left and right subtrees
of v, respectively, as illustrated in Figure 6. For simplicity of
description, we assumed that the budget of seed-set size for
each of them campaigners isk. Then, to fill one entry in
the OPT table, we needO(mkm) time. Therefore, the time
complexity of our dynamic programming isO(ndm2k2m).

It is important to note that the dynamic programming termi-
nates by computing theOPT entries for the root nodevr, that
is, OPT(vr,−1, i, [k, . . . , k]T ) for all i ∈ (1,m). The value
−1 at the second index indicates that the root nodevr does
not have an ancestor. Therefore,OPT(vr,−1, i, [k, . . . , k]T ) is
invariant of i. Once we terminate our dynamic programming,
we determine whether a node will be a seed node (and
if so, that node will be assigned to which campaigner) by
backtrackingusing the OPT entries of its children nodes.
The backtracking process requires anotherO(mnkm) time.
Therefore, the overall time complexity of finding the optimal
seed nodes over a directed binary tree isO(ndm2k2m). We
note that our dynamic-programming-based exact solution over
directed binary trees is polynomial-time in the number of
tree nodes; however, it has exponential time-complexity inthe
number of client campaigners.

Space and Time Complexity.In this section, we summarize
the space and time complexity of our dynamic-programming-
based solution. The space complexity isO(ndmkm): tableB
has sizeO(nd) and tableOPT has sizeΘ(ndmkm). The time
complexity of our dynamic programming isO(ndm2k2m).

B. Directed Trees to Binary Trees Conversion

Our dynamic-programming-based exact solution for the
revenue maximization problem (Problem 1) can be applied
over non-binary trees. In fact, given a directed tree, we first
convert it to an equivalent directed binary tree. We use the
conversion technique in [15]. For each non-leaf nodev with

children v1, v2, . . . , v∆, where∆ > 2 in the original tree,
we replacev with a binary tree of depth at mostlog∆ and
leavesv1, v2, . . . , v∆. For each newly introduced nodeu, we
assign the revenueAiu = 0, for all campaignersi ∈ (1,m).
While applying our dynamic programming (Section IV-A),
we also incur an additional constraint that no such newly
introduced node can be selected as a seed node. Finally, for
each newly introduced edge, the direction is always from the
root towards the leaves, and each of them has probability1.
The incoming edges to the leavesv1, v2, . . . , v∆ have the same
probability as that of the previous incoming edges to nodes
v1, v2, . . . , v∆, respectively. This conversion process ensures
that the newly introduced edges and nodes will not affect the
MCIC propagation model as in the original directed tree.

As shown in [15], for the aforementioned tree-to-binary-
tree conversion method, the number of nodes in the equivalent
binary tree is at most twice the number of nodes in the directed
input tree, and the depth of the binary tree is at most a factor
of log∆∗ larger than the depth of the original tree, where∆∗

is the maximum out-degree of any node in the input tree.
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C. Graphs to Most Influential Directed Tree Extraction

The revenue maximization problem isNP-hard in directed
graphs (Theorem 2). Therefore, given a directed and connected
graphG, we first extract themost influentialtreeT ∗, which
is a directed spanning tree ofG, and formally defined below.

Definition 1 (Most Influential Tree):Given a connected
graphG = (V,E, P ) with a root nodevr, the most influential
treeT ∗ = (V,ET∗ , P ) with ET∗ ⊆ E is a directed spanning
tree ofG, with the same root nodevr, such that the product
of the edge probabilities inT ∗ is maximized. Formally,

T ∗ = argmax
T∈SpanningTrees(G)

∏

(u,v)∈ET

pu,v (5)



SpanningTrees(G) denotes all directed spanning trees of
G. Intuitively, the most influential tree aims at preserving the
most influential path between every pair of nodes as much as
possible. These most influential paths play an important role
in influence cascade over real-world social networks [14].

The problem of finding the most influential tree can be
converted to the problem of finding the minimum-costdirected
spanning tree by minimizing the sum of negative logarithms
to the edge probabilities inT ∗ as given in Equation 6.

T ∗ = argmin
T∈SpanningTrees(G)

∑

(u,v)∈ET

− log(pu,v) (6)

Thus, one can find the most influential directed tree in time
O(e+n logn) due to Gabow et al. [10]. It is important to note
that [10] requires some root nodevr to be present in the input
graphG such that all other nodes inG are reachable fromvr.
Therefore, we first add a dummy root nodevr and then connect
all nodes inG to vr, with edges directed towards the nodes in
G. Each of these newly-introduced edges is assigned a very
low edge-probability. For the dummy root nodevr, we also
assign revenueAivr = 0 for all campaignersi ∈ (1,m); and
then, we further incur an additional constraint thatvr cannot
be selected as a seed node during our dynamic-programming-
based exact solution over the most influential treeT ∗.

V. SOLUTION WITH L INEAR THRESHOLDMODEL

In this section, we consider the revenue maximization
problem (Problem 1) under theK-LT influence cascade model.
We recall that our problem isNP-hard under theK-LT model
(Theorem 2). However, we shall later illustrate that given an
already-selectedset of seed nodes, one can optimally partition
these seed nodes amongm campaigners in polynomial time
such that the host’s expected revenue is maximized. Therefore,
we design a two-step heuristic technique to solve our original
revenue maximization problem with atheoretical performance
guaranteeof 1

m(1− 1
e ), wherem is the number of campaigners.

Overview. In the first phase (Section V-A), the hostoptimisti-
cally assumes that it is possible to influence each user by a
campaign that gives the maximum revenue to the host for that
user, considering all other campaigns. This is equivalent to
assigning, for each useru, a revenueAu which is the maximum
of Aiu values over all campaignersi. Thus, the host identifies
mk seed nodes assuming there is onlyone campaignerand
with the objective that her expected revenue is maximized
under this optimistic assumption. However, we recall that in
reality, there arem campaigners, each with a seed-set of sizek.
Therefore, in the second step (Section V-B), the host partitions
thesealready-selectedmk seeds amongm campaigners with
the objective that her expected revenue is maximized under the
actual multi-campaignersetting and considering the original
revenue matrix. Below, we describe both these steps in details.
For simplicity, we assume that the budget of seed-set size for
each of them campaigners isk.

A. Optimistic Seed Set Selection

In the first phase, the host optimistically assumes that each
user in the network can be influenced by a campaign such that
the corresponding campaigner gives the maximum amount of

money for that particular user. In other words, for each user
u in the network, the host optimistically assigns a revenueAu

which is the maximum ofAiu values over all campaignersi.
Formally,Au = max

i∈(1,m)
{Aiu}. Therefore, the host solves the

following problem in the first step.

Problem 2 (Optimistic Seed Set Selection):Assuming
there is only one campaigner and given a revenueAu for
each useru in the network, find the seed set of sizemk such
that the expected revenue of the host is maximized. Formally,

argmax
S

∑

u∈V

[Au · PrLT(u, S)]

such that |S| = mk (7)

Here,PrLT(u, S) denotes the expected spread of an influence
from the seed setS to nodeu following the classic Linear
threshold (LT) model with one campaigner. Unfortunately,
Problem 2 is alsoNP-hard following [13]; nevertheless, the
objective function is monotonic and sub-modular as shown in
Theorem 3.

Theorem 3:The objective function of Problem 2 is sub-
modular. Formally, letF (S) =

∑

u∈V [Au ·PrLT(u, S)]. Then,

F (S ∪ {v})− F (S) ≥ F (S1 ∪ {v})− F (S1) (8)

Here,S1 ⊇ S andv 6∈ S1.

Proof: The proof follows by considering thelive-edge
model, which is shown to be equivalent to theLT model in
[13]. In the live-edge model, each nodev picks at most one of
its incoming edges at random, that is, it selects the incoming
edge fromu with probability pu,v, and it does not select any
incoming edge with probability1−

∑

u∈in(v) pu,v. Let X be
one possible world with probabilityProb(X) under the live-
edge model, andRX(S) be the host’s revenue due to nodes
that are reachable from the seed setS in that possible world
X . One may verify thatRX(S) is sub-modular with respect
to S. Now, our objective functionF (S) is given by:

F (S) =
∑

all possible worldX

[Prob(X) ·RX(S)] (9)

As the non-negative linear combination of sub-modular func-
tions is also sub-modular,F (S) is sub-modular.

Thus, we apply an iterative hill-climbing algorithm (Algo-
rithm 1) that finds the seed set with an approximation guar-
antee(1 − 1

e ) of the optimal solution [20]. The hill-climbing
algorithm works inmk iterative steps. At each iteration, the
algorithm selects a non-seed nodeu as a seed node, such that
the expected revenue due tou and the previously selected
seed nodes is maximized. Our hill-climbing-based iterative
solution for the optimistic seed selection problem (Problem 2)
is similar to state-of-the-art viral marketing techniquesthat
identify the top-k seed nodes for a single campaigner such
that its expected influence spread in the network is maximized
[13]. Although we optimize the host’s expected revenue instead
of the expected influence spread, due to the single-campaigner
and sub-modular nature of Problem 2, one can easily apply an
existing viral marketing algorithm [7], [11], [13], [16] (with
some modification in the objective function) as the underlying
technique to solve Problem 2.



Algorithm 1 Hill-Climbing for Optimistic Seed Set Selection

Require: GraphG = (V,E, P ), Au = maxi{Aiu} ∀u ∈ V
Ensure: Seed setS of sizemk

1: S = φ
2: for i = 1 to mk do
3: v = argmaxv∈V \S F (S

⋃
{v}) / / F () is defined in Th. 3

4: S = S
⋃
{v}

5: end for
6: OutputS

We shall later show in Theorem 4 that the iterative hill-
climbing algorithm for the optimistic seed selection, coupled
with an optimal partition of those seed sets, generates a
solution to the original revenue maximization problem withthe
approximation guarantee1m (1 − 1

e ), wherem is the number
of campaigners.

Time Complexity. The time complexity of our iterative hill
climbing algorithm isO(mkn(n+ e)t), wheremk is the total
number of seed nodes identified, andt is the number ofMonte-
Carlo samples performed over the entire graph in order to find
one seed node.

B. Partition of Seed Set

In the second phase, the host optimally partitions the
previously selectedmk seed nodes amongm campaigners,
such that her expected revenue is maximized under the actual
multi-campaignerK-LT model and considering the original
revenue matrix. We formally define our problem statement for
the second step as follows.

Problem 3 (Optimal Seed-Set-Partition):Given already
selected seed setS of size mk and the revenue matrix
(Aiu)m×n, partition S into m subsetsS1, S2, . . . , Sm, such
that eachSi has sizek, and the expected revenue of the host
is maximized following the multi-campaignerK-LT model.

We show that Problem 3 can be solved optimally in polynomial
time using a dynamic-programming-based approach. For this
purpose, we introduce the notion ofindividual revenueof the
host from every seed node.

Definition 2 (Individual Revenue):The individual revenue
Ri(u) represents the expected revenue of the host from a seed
nodeu ∈ S whenu is assigned to thei-th campaignerCi.

Individual Revenue Computation. We now describe our
method to compute individual revenues. We start by randomly
assigning a distinct number from1 to mk to every seed node
in S. Let us denote byI(u) the number assigned to seed node
u. We also associate a listL of size mk with each nodev
in the network. Thej-th entry of listL(v), denoted asLj(v),
represents the spread that some seed nodeu ∈ S can achieve
at nodev following the K-LT model, whereI(u) = j. For a
seed nodeu ∈ S, we initialize:

Lj(u) =

{

1, if I(u) = j;
0, otherwise.

Next, we simulate theK-LT model starting from seed nodes
in S. At any discrete step of theK-LT model, if some node
v becomes active, we consider all its in-neighborsv′ ∈ in(v)

U1
U2 U3

V1

0.4
0.3

0.2

C1= 1

C2 = 0

C1= 0

C2 = 1

C1= 1

C2 = 1

C1= 0.5

C2 = 0.7

ϴ = 0.6

Fig. 7: Example of Individual Revenue Computation

that were activated in the previous step. We computeLj(v) as
follows:

Lj(v) =

∑

v′∈in(v)
v′activated in prev. step

[pv′v × Lj(v
′)]

∑

v′∈in(v)
v′activated in prev. step

pv′v

(10)

Finally, we compute the individual revenueRi(u) for every
seed nodeu ∈ S and for every campaignerCi as given in
Equation 11.

Ri(u) =
∑

v∈V

[Ai,v × LI(u)(v)] (11)

We refer toRi(u) as the individual revenue of the host
due to seed nodeu, whenu is assigned to campaignerCi. We
demonstrate the computation of individual revenues with an
example below.

Example 4: In Figure 7, we assume there are three seed
nodes:u1, u2, andu3, and also two campaigners:C1 andC2.
The seed nodes are not assigned to any specific campaigners
yet. We show the revenue vectors corresponding to each node
inside the rectangular boxes. In the beginning, all seed nodes
are activated, and in the next round,v1 gets activated, since its
activation thresholdθv1 = 0.6 < pu1,v1+pu2,v1+pu3,v1 = 0.9.
Following Equation 10, we get:LI(u1)(v1) =

0.4
0.4+0.3+0.2 = 4

9 .
Similarly, LI(u2)(v1) = 3

9 , andLI(u3)(v1) = 2
9 . Finally, we

compute the individual revenues by following Equation 11.
For example,R1(u1) =

∑

v=u1,u2,u3,v1
A1,v × LI(u1)(v) =

1× 1+0+0+0.5× 4
9 = 1.22. Similarly, we have:R1(u2) =

0 + 0 + 0 + 0.5× 3
9 = 0.17.

Properties of Individual Revenue. The individual revenue
Ri(u) satisfies several interesting properties which are critical
for our dynamic-programming-based exact solution.

Proposition 1: For a given seed nodeu and a given cam-
paignerCi, 1 ≤ i ≤ m, Ri(u) is invariant to how other seed
nodes are assigned to the various campaigners.

Proposition 2: If some seed nodesu1, u2, . . ., uj ∈ S are
all assigned to a given campaignerCi, 1 ≤ i ≤ m, then the
expected revenue of the host due tou1, u2, . . . , uj is simply
the aggregation ofRi(u1),Ri(u2), . . . ,Ri(uj); and this is
invariant to how the remaining seed nodes are assigned to other
campaigners.

We omit the proofs due to limitation of space. The first
proposition directly follows from the definition of theK-LT
model — given a pre-defined seed setS, the activation of



other nodes in the network is determined by the first phase
of the K-LT model, that is, the classicalLT model assuming
all the campaigners are cascading the same information. More
specifically, whether a node in the network will be activated
or not is independent of howS is partitioned among multiple
campaigners [19]. The partition ofS only influences the
following: among the active nodes in the network, which one
will adopt what campaign and with how much probability. The
second proposition follows from the linearity property ofLj(v)
in Equation 10, that is,L{u1,u2}(v) = Lu1

(v) + Lu2
(v), for

any two distinct seed nodesu1, u2 ∈ S and for any nodev in
the graph.

Example 5: In Figure 7,R1(u1) = 1.22 and R1(u2) =
0.17. Note that,R1(u1) +R1(u2) = 1.39, and this is exactly
same asR1({u1, u2}), that is, the expected revenue of the host
when bothu1 andu2 are assigned to the campaignerC1.

Dynamic Programming Based Exact Solution. We are
now ready to describe our dynamic-programming-based exact
algorithm to solve the optimal seed-set-partitioning problem
(Problem 3). Our algorithm processes the seed nodesu ∈ S in
the ascending order of their assignedI(u) numbers. We recall
that I(u) ∈ (1,mk). The dynamic programming maintains
a tableEXACT(j, [k′1, k

′
2, . . . , k

′
m]T ), that stores the optimal

expected revenue of the host when we have already partitioned
the seed nodes with number from1 to j into m subsets
{S1, S2, . . . , Sm}, such that|Si| = k′i ≤ k, and we have
also assigned them to the respective campaigners. Clearly,
1 ≤ j ≤ mk and j =

∑m
i=1 k

′
i. The dynamic programming

proceeds as given in Equation 12.

In Equation 12,u denotes the node withI(u) = j.
The optimal assignment of the last seed node is determined
by EXACT(mk, [k, k, . . . , k]T ). The optimal assignment of
previous seed nodes are determined bybacktrackingwith the
usage ofEXACT values. The correctness of our dynamic-
programming-based solution follows from Propositions 1, 2.
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Space and Time Complexity.Our algorithm has space com-
plexity O(km) due to theEXACT table. The time complexity
of our dynamic programming isO(mkm). This is because
we need to fill the table of sizekm; and in order to fill
each entry in the table, we compute the maximum ofm
values. The backtracking requires anotherO(m2k) time; since
there aremk seed nodes that we need to assign to different
campaigners; and for each seed node, we require to compare
m values to find the best assignment. In addition, one needs
to compute the expected revenue vectors for all seed nodes
by running a breadth-first-search from each of thesemk seed
nodes. Hence, the time required to compute the expected

revenue vectors for all seed nodes isO(mk(n + e)), where
n and e are the number of nodes and edges in the graph,
respectively. Therefore, the time complexity of our exact
solution isO(mkn+mke+m2k +mkm). We note that our
optimal seed-set-partitioning solution requires polynomial time
in the size of the graph.

Performance Guarantee. Theorem 4 provides the overall
approximation guaranteeof our method for the host’s revenue
maximization problem under theK-LT model.

Theorem 4:The iterative hill-climbing solution of the op-
timistic seed selection (Problem 2), coupled with theoptimal
partition of those seed sets (Problem 3), guarantees1

m (1− 1
e )

approximation to the original revenue maximization problem
(Problem 1) under theK-LT model, and with the assumption
that each campaigner has the same number of seed nodes.
Here,m is the number of campaigners.

Proof: See Appendix.

C. K-LT Model over Tree: An Exact Solution

In this section, we show that the revenue maximization
problem under theK-LT model can be solved optimally in
polynomial time over a tree dataset. Our proof is based on a
reduction of the current problem into an equivalent problem
of revenue maximization under theMCIC model over a tree
dataset, which can be solved optimally in polynomial time
as illustrated earlier in Section IV. Our reduction works as
follows. Since each node in a tree has at most one incom-
ing edge, we eliminate those incoming edges for which the
probability on the edge is less than the activation threshold
of the destination node. On the other hand, we retain those
incoming edges for which the edge-probability is higher than
or equal to the activation threshold of the destination node,
and we reassign a probability1 to all these retained edges.
One may note that all the retained edges are also independent
to each other even under theK-LT model, as each node has at
most one retained incoming edge in a tree. Therefore, we can
apply the dynamic-programming-based exact solution for the
MCIC model to find an exact solution in polynomial time in
the size of the tree dataset.

VI. GREEDY SOLUTIONS

Our proposed techniques in the previous sections are
polynomial-time with respect to the graph size, and they also
provide theoretical performance guarantees under additional
constraints, e.g., exact solution over tree datasets for both
MCIC andK-LT models, and1

m (1− 1
e )-optimal solution over

any graph underK-LT model. Nevertheless, the running time
of our algorithms increases exponentially with the number
of seed nodes. Therefore, in this section, we propose more
efficient greedy techniques for the host’s revenue maximization
problem. For ease of discussion, we refer to our earlier solu-
tion techniques in Sections IV and V as RevMax-Combined
(RevMax-C), while we call our greedy solutions as RevMax-
Separate (RevMax-S).

RevMax-Separate.This is a greedy method as given in
Algorithm 2. We first sort the campaigners in descending order
of
∑

u∈V Aiu, that is, the aggregated money that each cam-
paignerCi is willing to provide to the host if all the users in the



Algorithm 2 RevMax-Separate: Greedy Seed Set Selection

Require: GraphG = (V,E, P ), revenue matrix(Aiu), m campaign-
ers

Ensure: Seed setsS1, . . . , Sm, each of sizek
1: Sort and process campaigners in descending order of

∑
u∈V

Aiu

for each campaignerCi; 1 ≤ i ≤ m
2: for i = 1 to m do
3: Si = φ
4: for j = 1 to k do
5: v = argmaxv∈V \Si

Fi(Si

⋃
{v}) 2

6: Si = Si

⋃
{v}

7: end for
8: V = V \ Si

9: end for
10: OutputS1, . . . , Sm

network adopt her product. Next, we process the campaigners
in that sorted order. For each campaigner, we identify the
top-k seed nodes such that the host’s revenue is maximized
by considering only that campaigner (and disregarding the
existence of other campaigners). Nevertheless, in order to
eliminate the influence-cascading effect of already-selected
seed nodes of previous campaigners, we delete these already-
selected seed nodes from the graph before identifying the top-k
seed nodes for the next campaigner (Line 8, Algorithm 2).

Time Complexity. The time complexity of our greedy algo-
rithm is O(mkn(n + e)t), wherem is the number of cam-
paigners,k the number of seed nodes per campaigner,n ande
are the number of nodes and edges in the graph, respectively,
and t is the number ofMonte-Carlo samples performed to
find one seed node. We note that unlike our approximated
algorithms in Sections IV and V, our greedy approach is
very scalable — the running time increases linearly with the
number of campaigners, number of seeds per campaigner, and
polynomially with the size of the graph.

VII. E XPERIMENTAL RESULTS

We present experimental results which illustrate the effec-
tiveness, efficiency, and scalability of our revenue maximiza-
tion algorithms. The code is implemented in C++ and the
experiments were performed on a single core of a132GB,
2.26GHz Xeon server.

A. Experiment Setup

� Datasets:We summarize our data sets in Table I. Additional
results over tree datasets can be found in the Appendix.

TABLE I: Dataset Characteristics
Dataset # Nodes # Edges Edge Prob: Mean, SD, Quartiles

Flickr 78 322 20 343 018 0.09 ± 0.06, {0.06, 0.07, 0.09}
DBLP 684 911 4 569 982 0.08 ± 0.07, {0.05, 0.05, 0.10}
NetHEPT 15 229 62 752 0.28 ± 0.28, {0.0006, 0.27, 0.53}

Flickr (http://www.flickr.com). Flickr is an online community,
where users share photos, and participate in common-interest
groups. We borrowed the dataset from [21], where the proba-
bility of an edge between any two users is computed assuming
homophily; in particular, the Jaccard coefficient of the interest
groups that the two users belong to.

2Fi(Si) =
∑

u∈V
[Aiu ·Pr(u, Si)], i.e., host’s revenue considering only

campaignerCi, with seed setSi

DBLP (http://www.informatik.uni-trier.de/~ley/db/). The
dataset is a subset of the popular co-authorship network used
in [21]. Here, the edge probabilities express the strength of the
collaboration between the two incident authors. Particularly,
in [21], the probabilities derive from an exponential cdf
to the number of collaborations; hence, if two authors
collaboratedc times, we assign the corresponding probability
as1− exp−c/10.

NetHEPT (http://www.arXiv.org). This graph is created from
the “High Energy Physics - Theory” section of the arXiv
with papers from1991 to 2003 [7]. Since there is no edge
probabilities on this graph dataset, we synthetically assign
probabilities on edges that simulates the community struc-
ture in a social network. We identify60 non-overlapping
communities from this graph dataset, each with170 nodes.
If an edge is completely inside a community, we uniformly
assign a probability between0.2 to 0.8; all other edges are
assigned probabilities uniformly from0 to 0.001. Such an
edge probability assignment reflects the fact that users inside
the same community usually have higher influence on each
other than on someone else outside that community. The edge
probabilities are assigned differently in both directions, i.e.,
puv 6= pvu.

For theK-LT model, in all datasets, if the sum of proba-
bilities of all incoming edges to a node is more than1, we
normalize those edge probabilities by their aggregate value,
such that the sum of probabilities for in-edges to every node
is no more than1 [21]. We also limit the number ofMonte-
Carlo samples to1 000 in all our experiments [21].

� Number of Campaigners and Seed Nodes:We vary the
number of campaigners from2 to 10, while the number of seed
nodes per campaigner is varied from5 to 100. We also consider
the case when different campaigners allow a different number
of seed nodes. In Appendix, we show additional experiments
with m = 1 campaigner, and our results attest that both
RevMax-C andRevMax-S converge to a traditional influence
maximization solution with a single campaigner.

� Revenue Distribution: We consider five wide categories
of revenue distribution in order to simulate various real-world
scenarios.

Uniform (U). In this setting, each campaigner selects its
target users uniformly over the network and independent of
other campaigners. Therefore, in our framework, we assign
every revenue-matrix-elementAiu = 1 monetary unit, with
probability 1

m ; andAiu = 0.1 monetary unit, with probability
(1 − 1

m ). Here,m is the number of campaigners. One may
note that we have normalized the amount of money that a
campaigner gives to the host for one user on a scale from0.1
to 1 monetary units.

Not Equal (NE). In this setting, we consider only two
campaigners — one campaignerC1 assigns a fixed revenue
A1u = 1 for each useru, while the other campaignerC2

assigns a fixed revenueA2u = 0.5 for each user.

Clustering with Low Competition (CLC). In this setting,
we assume that each campaigner’s target users form certain
clusters in the network. In addition, we also assume that there
are some users who belong to target sets of all the campaigners.



We call this model “clustering with low competition” as we
limit the ratio of such mutually overlapping target users toa
relatively small percentage. We simulate this setting as follows.
We first partition the graph into15 non-overlapping and highly-
connected clusters, each cluster having equal number of nodes.
For the first5 clusters, allAiu values are set to1 monetary
unit, i.e., 33% of the nodes belong to the target users of
all campaigners. The remaining clusters are assigned to the
campaigners in a round-robin manner. If a cluster is assigned to
campaignerCj as its target set, we then assign eachAju = 0.5
monetary unit, and the remainingAiu = 0.1 monetary unit,
for all j 6= i, inside that cluster.

Clustering with High Competition (CHC). This setting is
similar to the previousCLC setting — the only difference is
that there is a relatively large number of users who belong to
the target sets of all campaigners. We simulate this settingas
before; however, we assign the first10 out of the15 clusters
as the target sets for all campaigners. This implies that66%
of the nodes belong to the target users of all campaigners.

Clustering with Not-Equal Competition (CNC). This setting
is also similar to theCLC setting, except we consider only two
campaignersC1 and C2; and while the three possibleA1u

values remain(1, 0.5, 0.1) as before, the three possibleA2u

values are reduced to(0.5, 0.25, 0.05).

While U, CLC, and CHC models ensure almost equal
host’s revenue from each of her client campaigners; forNE
and CNC models, the host’s aggregated revenue from cam-
paignerC1 is more than that from campaignerC2 considering
all the network users.

� Comparing Methods: We compare our approximated algo-
rithms RevMax-C (Sections IV and V) and heuristic method
RevMax-S (Section VI) with a randomized seed selection
approach.

Random.We randomly select a distinct seed set for each cam-
paigner. In our experiments, we did 10 runs of theRandom
method, and selected the best one that results in the maximum
revenue out of all these 10 runs.

We compare the three aforementioned techniques —
RevMax-C, RevMax-S, andRandom under bothIC andLT
models. As the underlying viral marketing method inRevMax-
S and RevMax-C, we use theCELF++ algorithm [11] due
to its efficiency. We use the publicly-available source codeof
CELF++ provided by the respective authors [11].

� Evaluation Metrics: We compare the host’s revenues
obtained fromRevMax-S and RevMax-C with that of the
Random.

Revenue Improvement Rate (RIR).This is defined as the
ratio of the host’s expected revenue obtained from the seed
sets identified byRevMax-C (or, RevMax-S) with respect to
the host’s revenue obtained from a random selection of seed
sets.

B. Performance: Effectiveness & Efficiency

We first demonstrate our results over theMCIC model
(Section VII-B1), and theK-LT model (Section VII-B2). We
also show our results with uneven revenue distribution (i.e.,
NE andCNC) in Section VII-B3. SinceRevMax-C does not

TABLE II: Revenue Improvement Rate (RIR),MCIC Influence
Cascading Model with2 Campaigners,NetHEPTDataset

Revenue #Seed Nodes RIR RIR
Distribution per Camp. RevMax-S RevMax-C

5 2.52 3.14
CRH 10 2.92 3.28

15 2.68 3.07
20 1.94 2.23

5 3.30 3.33
CRL 10 2.91 3.20

15 2.48 2.94
20 2.09 2.37

5 3.23 3.52
U 10 2.12 2.04

15 2.72 2.80
20 2.34 2.52

TABLE III: Revenue Improvement Rate (RIR),MCIC In-
fluence Cascading Model with2 Campaigners, and5
Seeds/Campaigner

Dataset Revenue RIR RIR
Distribution RevMax-S RevMax-C

CRH 2.52 3.14
NetHEPT CHL 3.30 3.33

U 3.23 3.52

CRH 1.04 1.04
DBLP CRL 1.02 1.03

U 1.03 1.03

CRH 1.43 1.66
Flickr CHL 1.20 1.15

U 1.01 1.11
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Fig. 8: Seed Sets Finding Time,MCIC Influence Cascading
Model with 2 Campaigners

scale well with many campaigners and with a large number
of seed nodes, we consider at most 5 campaigners and up to
20 seeds per campaigner in these experiments. The scalability
of RevMax-S with more campaigners and seed nodes is
illustrated later in Section VII-C.

1) Performance withMCIC Model: We present the revenue
improvement rates with theMCIC model in Tables II and
III. We find that the host’s revenue by followingRevMax-C
technique almost always outperforms that from theRevMax-S
approach by a margin of 5%∼10%. We show the correspond-
ing efficiency results for theMCIC model in Figures 8(a)
and 8(b). We find thatRevMax-C requires less amount of
time to identify the top-k seed nodes as compared to that of
RevMax-S, over the smallerNetHEPTdataset and for5 seeds
per campaigner. However, as we consider larger datasets and
more seeds per campaigner,RevMax-C requires more time.
This is becauseRevMax-C identifies the seed sets over the
most influential tree of the corresponding graph dataset in an
exact manner, and this process requires timeO(ndm2k2m).
Clearly, the running time ofRevMax-C increases at a higher
rate as one increases the number of nodesn, and the number
of seedsk per campaigner.



TABLE IV: Revenue Improvement Rate (RIR),K-LT Influence
Cascading Model,CRH Revenue Distribution,NetHEPT

# Camp. #Seed Nodes RIR RIR
per Camp. RevMax-S RevMax-C

5 8.99 9.20
2 10 7.73 7.97

15 6.89 6.82

5 5.86 5.94
3 10 7.01 7.29

15 6.10 5.73

5 5.70 5.85
5 10 5.00 4.83

15 5.04 4.77

TABLE V: Revenue Improvement Rate (RIR),K-LT Influence
Cascading Model with2 Campaigners,NetHEPTDataset

Revenue #Seed Nodes RIR RIR
Distribution per Camp. RevMax-S RevMax-C

5 8.99 9.20
CRH 10 7.73 7.97

15 6.89 6.82

5 8.62 8.67
CRL 10 9.52 9.53

15 7.06 6.98

5 5.06 5.29
U 10 7.93 8.38

15 5.12 5.17
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Fig. 9: Seed Sets Finding Time,K-LT Influence Cascading
Model, NetHEPTDataset

2) Performance withK-LT Model: We first illustrate in
Tables IV and V the performance over theNetHEPTdataset
by varying the number of campaigners from2 to 5, number
of seed nodes per campaigner from5 to 15, and with three
different revenue distributions: uniform, clustering with low
competition, and clustering with high competition. We observe
the following for theK-LT model. With more campaigners as
well with more seed nodes, our heuristic methodRevMax-
S often outperforms our approximated techniqueRevMax-
C. This is because the performance guarantee provided by
RevMax-C is 1

m (1 − 1
e ), which decreases withm, i.e., the

number of campaigners.

We show the efficiency results over theNetHeptdataset
and with theK-LT model in Figure 9. We find that up to
5 seed nodes per campaigner, along with2, 3, or even5
campaigners,RevMax-C requires smaller running time as
compared to that ofRevMax-S. This is due to how the
underlying viral marketing algorithm (i.e,CELF++ [11]) is
applied differently in both these methods. ForRevMax-C,
CELF++ is applied only once to identify all themk seed
nodes; while forRevMax-S, CELF++ is appliedm times —
each time it identifiesk seed nodes for one campaigner. How-
ever,CELF++ itself is an iterative algorithm; more specifically,
it requiresk iterations to identify the top-k seed nodes. In one
run of theCELF++ algorithm, the first iteration is the most
expensive, and the subsequent iterations are significantlyfaster.
In RevMax-S, the first iteration ofCELF++ runs form times;

TABLE VI: Revenue Improvement Rate (RIR),K-LT Influence
Cascading Model,CRL Revenue Distribution,DBLP Dataset

# Camp.=2 # Camp.=3
#Seed Nodes RIR RIR RIR RIR

per Camp. RevMax-S RevMax-C RevMax-S RevMax-C

5 77.27 77.73 27.41 27.42
10 42.27 46.78 40.80 41.28
15 39.19 37.04 36.74 37.05
20 42.03 42.01 40.14 34.25
25 31.01 31.62 39.78 34.90
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Fig. 10: Seed Sets Finding Time,K-LT Model, DBLP Dataset

while in RevMax-C, the first iteration ofCELF++ runs only
once. This explains why our proposed methodRevMax-C is
faster compared to theRevMax-S. Nevertheless,RevMax-C
requires more time as one increases the number of seed nodes
per campaigner. This is because the pruning technique in the
CELF++ algorithm starts deteriorating with increasing number
of seed nodes. SinceRevMax-C directly identifiesmk seed
nodes, whereasRevMax-S iterates fork times and in each
iteration, it identifiesm seed nodes;RevMax-C takes more
time for higher values ofm or k.

We show the performance ofRevMax-C andRevMax-S
under theK-LT model overDBLP andFlickr in Tables VI and
VII, respectively. We find very similar characteristics as before.
When the campaigners are constrained by a small number of
seed nodes,RevMax-C almost always outperformsRevMax-
S both in terms of revenue improvement rate as well as in
terms of the running time to identify the seed sets. However,
RevMax-S starts performing well with more campaigners and
more seed nodes.

3) Uneven Revenue and Unequal Seed Set Sizes:In these
experiments, we consider two uneven revenue distributions,
namely NE (Table VIII) and CNC (Table IX); as well as
the scenario when the campaigners allow for different number
of seed nodes (Table X). While our approximated technique
RevMax-C outperforms our heuristic methodRevMax-S, one
may found thatRevMax-S still very competitive with respect
to RevMax-C.

C. Scalability

In Figure 12, we analyze the variation of running times
of RevMax-C and RevMax-S with different graph sizes. In
particular, we consider varying sizes of theFlickr dataset,
while keeping the number of campaigners and number of
seeds per campaigner fixed at2 and 5, respectively. We find
that the running time ofRevMax-C increases log-linearly
with increasing graph sizes under theMCIC model, while it
increases almost linearly with increasing graph sizes under the
K-LT model.

In Figure 13, we illustrate the scalability of our heuristic
methodRevMax-S with the number of seed nodes per cam-
paigner (up to100) and also with the number of campaigners



TABLE VII: Revenue Improvement Rate (RIR),K-LT Influ-
ence Cascading Model, 5 Seeds/Campaigner,Flickr Dataset

# Camp.=2 # Camp.=3
Revenue RIR RIR RIR RIR

Distribution RevMax-S RevMax-C RevMax-S RevMax-C

CRH 6.08 6.27 6.67 6.79

CRL 6.00 6.31 6.70 6.59

U 20.14 19.99 13.75 13.21
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Fig. 11: Seed Sets Finding Time,K-LT Influence Cascading
Model, 5 Seeds/Campaigners,Flickr Dataset

TABLE VIII: Revenue Improvement Rate (RIR) with Uneven
NE Revenue Distribution,2 Campaigners,NetHEPTDataset

MCIC K-LT
#Seed Nodes RIR RIR RIR RIR

per Camp. RevMax-S RevMax-C RevMax-S RevMax-C

5 6.92 8.99 5.28 5.55
10 3.01 3.48 7.50 7.63
15 1.73 1.85 5.26 5.53
20 2.37 2.51 5.80 5.89

TABLE IX: Revenue Improvement Rate (RIR) with Uneven
CNC Revenue Distribution,2 Campaigners,NetHEPTDataset

MCIC K-LT
#Seed Nodes RIR RIR RIR RIR

per Camp. RevMax-S RevMax-C RevMax-S RevMax-C

5 3.58 3.83 8.19 8.13
10 2.67 2.93 9.76 9.80
15 1.78 2.22 7.45 7.54
20 2.35 2.64 6.91 6.98

TABLE X: Revenue Improvement Rate (RIR) with Unequal
Seed Set Sizes,CHC Revenue,2 Campaigners,NetHEPT

MCIC K-LT
#Seed Nodes RIR RIR RIR RIR

C1 | C2 RevMax-S RevMax-C RevMax-S RevMax-C

5 | 10 2.30 2.58 5.13 5.27
10 | 20 1.74 1.90 5.23 5.54
15 | 30 1.42 1.60 5.26 5.39
20 | 40 1.48 1.70 4.99 5.10

(up to 10). Our results show thatRevMax-S scales linearly
with the number of campaigners and also with the number of
seed nodes per campaigner.

D. Summary

We summarize our experimental results below:(1) Our
approximated techniquesRevMax-C often outperforms our
heuristic method RevMax-S, usually by a margin of
5%∼10%. Nevertheless,RevMax-S is very competitive with
respect toRevMax-C. (2) Both RevMax-S and RevMax-C
are scalable with respect to the input graph size.(3) While
RevMax-C suffers from scalability issues with increasing
number of seed nodes and with many campaigners,RevMax-
S is scalable even with a large number of campaigners and
many seed nodes.
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Fig. 12: Scalability: Seed Sets Finding Time vs. Varying Graph
Sizes,Flickr Dataset, 2 Campaigners with 5 Seeds/Campaigner
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VIII. C ONCLUSIONS

In this paper, we formulate and investigate the novel
problem of revenue maximization of a social network host
that sells viral marketing campaigns to multiple client cam-
paigners. While our problem under bothIC andLT models of
influence cascading isNP-hard, and neither monotonic, nor
sub-modular; we develop effective algorithms with theoretical
performance guarantees. In addition, our proposed techniques
can solve the revenue maximization problem exactly in poly-
nomial time over a tree dataset using both these models. For
scalability reasons, we also design efficient heuristics. Our
experimental evaluation conducted on various real-world graph
datasets and with diverse settings of revenue distributions attest
high-quality and efficiency of our proposed techniques.
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APPENDIX

Proof of Theorem 4: Let us denote bySopt the optimal
seed sets for the revenue maximization problem (Problem 1)
under theK-LT model. Then, the host’s maximum revenue can
be written as:

∑

u∈V

∑m
i=1[Ai,u × PrK−LT(u, i, Sopt)]. Here,

PrK−LT(u, i, Sopt) denotes the expected spread of campaign
Ci from the seed setsSopt to a nodeu following the K-LT
model.

Next, let us denote byS∗ the best seed sets for the
optimistic seed selection problem (Problem 2). It is easy to
verify that

∑

u∈V

m
∑

i=1

[Ai,u × PrK−LT(u, i, Sopt)] ≤
∑

u∈V

[Au × PrLT(u, S
∗)]

(13)

This is becauseAu = maxi∈(1,m) Ai,u. Hence,
the left hand side must be at most

∑

u∈V [Au ×
∑m

i=1 PrK−LT(u, i, Sopt)], which is equal to
∑

u∈V [Au ×
PrLT(u, Sopt)]. The equality in the last step follows from the
definition of theK-LT model, that is, the activation probability
of a node under theK-LT model is independent of how the seed
setSopt is partitioned among multiple campaigners. Hence, if
Inequality 13 were not true, thenS∗ is not the optimal solution
to Problem 2, as clearly a better solutionSopt for Problem 2
exists, which is a contradiction.

Let us defineVi ⊆ V such that for each nodeu ∈ Vi :
Au = Ai,u and ∀i 6= j : Vi ∩ Vj = ∅ and

⋃m
i=1 Vi = V .

The following holds, because the summation still goes over
all nodes inV .

∑

u∈V

[Au × PrLT(u, S
∗)]

=

m
∑

i=1

∑

u∈Vi

[Au × PrLT(u, S
∗)]

=

m
∑

i=1

∑

u∈Vi

[Ai,u × PrLT(u, S
∗)]

≤
m
∑

i=1

(

∑

u∈V

[Ai,u × PrLT(u, S
∗)]

)

=

m
∑

i=1

(

∑

w∈S∗

Ri(w)

)

(14)

The equality in the last line follows from the definition of
Ri(w), as the right side of the equality, i.e.,

∑

w∈S∗ Ri(w)
means that we assign the whole seed setS∗ to campaigner
Ci.

Next, let us denote byRK−LT the host’s expected revenue
corresponding to the optimal partition ofS∗. Since we assume
that each campaigner has the same number of seed nodes, one
may verify thatRK−LT ≥ 1

m

∑m
i=1

∑

w∈S∗ Ri(w), with the
equality holds if and only if the individual revenue vectorsare
equal, that is,∀w ∈ S∗ and∀i, j ∈ (1,m), it holdsRi(w) =
Rj(w). Here,m is the number of campaigners.

By combining Inequalities 13 and 14, we get:

RK−LT ≥
1

m

∑

u∈V

m
∑

i=1

[Ai,u × PrK−LT(u, i, Sopt)] (15)

Finally, considering the fact that the optimal selection prob-
lem (Problem 2) isNP-hard and our iterative hill-climbing
method produces a solution which is at least(1 − 1

e ) of the
solution corresponding to the optimal seed setS∗, the overall
approximation ratio of our method is given by1m (1 − 1

e ).
Hence, the theorem.

Non-overlapping Seed Sets:We recall that in our model of
viral marketing, each node can be activated only once and
by one of the many competitive campaigns; and also the
node stays activated with that campaign until the end. This
reflects the real-world scenario that due to various product
adoption costs, an average user often adopts only one of the
multiple competing products [18], [19]. Since the seed nodes
for a campaigner are the early adopters of the corresponding
campaign, one node cannot act as the seed node for multiple
competing campaigners. Thus, although some node might be
one of the top-k seed nodes for more than one campaigners
individually, we allow the seed sets to be non-overlapping
in case there are multiple competitive campaigns running
simultaneously in the network [18], [19]. We illustrate this
scenario with an example below.

Example 6: In Figure 14, we assume that nodesv1 and
v2 belong to the target set of campaignersC1; and V4 and
V5 in the target set of campaignerC2. We also assume that



V1

V3

V2

V4
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Fig. 14: Non-overlapping Seed Sets for Multiple Competitive
Campaigns

TABLE XI: Revenue Improvement Rate (RIR),Uniform Rev-
enue Distribution,NetHEPTDataset, One Campaigner

MCIC Model K-LT Model
#Seed Nodes RIR RIR RIR RIR

RevMax-S RevMax-C RevMax-S RevMax-C

5 2.13 2.13 4.84 4.84
10 2.79 2.48 5.24 5.24
15 1.85 1.69 5.29 5.29
20 2.08 1.99 5.33 5.33

each campaigner has a budget of seed set size1, while the
probabilities on the edges are all1. By following the IC
model, one may note thatV3 is the best seed node for both
campaigners individually. However, in case of simultaneous
campaigning, ifV3 is already assigned toC1, it would be
more beneficial fromC2’s perspective if either ofV4 or V5

is assigned as the seed node for her campaign.

Here, we must mention that due to the non-monotonicity
property of the host’s influence maximization problem (see
Figure 4), it is not always advantageous to add a new client
campaigner from the host’s point of view, e.g., consider
an extreme case when one campaigner provides very high
revenues for all users in the network, and the other campaigner
provides very low revenues for all users in the network.
Nevertheless, in this work, we study the host’s revenue max-
imization problem under the constraint that if the host has
multiple client campaigners, she needs to serve all her client
campaigners simultaneously by allocating them the specified
number of distinct seed nodes. In real-world setting, this would
be beneficial to the host for maintaining future relationships
with all her clients.

Experiments with m=1 Campaigner: In this section, we pro-
vide additional experimental results withm = 1 campaigners.
Note that if there is only one campaigner, the problem can be
solved with the traditional viral marketing solution [11].Thus,
our objective here is to compare our proposed solutions with
respect to the original methods in the presence of only one
campaigner.

We note that ourRevMax-S technique becomes identi-
cal to the traditional viral marketing solution withm = 1
campaigner for both theMCIC and K-LT models. Now, our
RevMax-C approach also becomes identical to the the tradi-
tional viral marketing solution for theK-LT model. Therefore,
our techniques for theK-LT model converges to the classical
solution of influence maximization in the presence ofm = 1
campaigner (see Table XI).

For theMCIC model, one may recall that ourRevMax-
C solution is based on approximating the network by its
most influential tree (Section IV). Therefore, withm = 1
campaigner, we find that the traditional approach outperforms
the RevMax-C technique often by a slight margin (see in
Table XI thatRevMax-S is better thatRevMax-C often by a

TABLE XII: Tree Dataset Characteristics

Dataset # Nodes # Edges Edge Prob: Mean, SD, Quartiles

NetHEPT-Tree 15 229 13 452 0.25 ± 0.28, {0.0005, 0.21, 0.51}

TABLE XIII: Revenue Improvement Rate (RIR),MCIC Infor-
mation Diffusion Model with2 Campaigners,NetHEPT-Tree
Dataset

Revenue #Seed Nodes RIR RIR
Distribution per Camp. RevMax-S RevMax-C

5 15.89 16.51
CRL 10 9.65 10.11

15 8.65 9.37
20 6.08 6.48

5 9.48 10.12
U 10 10.47 11.09

15 11.09 11.89
20 9.46 10.06
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Fig. 15: Seed Sets Finding Time,MCIC Information Diffusion
Model with 2 Campaigners,NetHEPT-TreeDataset

small margin for theMCIC model). Thus, our results illustrate
that while we certainly lose information by approximating a
network with its most influential tree, our techniques are still
very competitive with respect to the classical viral marketing
solution in the presence ofm = 1 campaigner.

Experiments with Tree Dataset:

NetHEPT-Tree Dataset. In order to verify the performance of
our methods over a tree dataset, we also consider a spanning-
tree (Table XII) of the originalNetHEPTgraph. The spanning
tree is built by first randomly selecting a node and then
identifying its breadth-first-search tree.

We now illustrate the performance of our techniques over
tree datasets, since our algorithms can maximize the host’s
revenue over a tree dataset in anexact manner. We find in
Table XIII that our methodRevMax-C always outperforms
the heuristicRevMax-S in terms of the host’s revenue im-
provement rate. We also find very similar revenue improvement
results over spanning trees of the two other datasets, i.e.,Flickr
and DBLP. Finally, figure 15 shows the corresponding seeds
finding times over theNetHEPT-Treedataset.


