
Revenue Maximization by Viral Marketing:
A Social Network Host’s Perspective

Arijit Khan1, Benjamin Zehnder2, Donald Kossmann2
1Nanyang Technological University, Singapore

2ETH Zurich, Switzerland

Abstract—We study the novel problem of revenue maximiza-
tion of a social network host that sells viral marketing campaigns
to multiple competing campaigners. Each client campaigner
informs the social network host about her target users in the
network, as well as how much money she is willing to pay to
the host if one of her target users buys her product. The social
network host, in turn, assigns a set of seed users to each of her
client campaigners. The seed set for a campaigner is a limited
number of users to whom the campaigner provides free samples,
discounted price etc. with the expectation that these seed users
will buy her product, and would also be able to influence many
of her target users in the network towards buying her product.
Because of various product-adoption costs, it is very unlikely that
an average user will purchase more than one of the competing
products. Therefore, from the host’s perspective, it is important
to assign seed users to client campaigners in such a way that the
seed assignment guarantees the maximum aggregated revenue for
the host considering all her client campaigners.

We formulate our problem by following two well-established
influence cascading models: the independent cascade model and
the linear threshold model. While our problem using both these
models is NP-hard, and neither monotonic, nor sub-modular; we
develop approximated algorithms with theoretical performance
guarantees. However, as our approximated algorithms often incur
higher running times, we also design efficient heuristic methods
that empirically perform as good as our approximated algorithms.
Our detailed experimental evaluation attests that the proposed
techniques are effective and scalable over real-world datasets.

I. INTRODUCTION

In viral marketing, whenever a social network user buys a
product, she is viewed as being influenced or activated. The
classical viral marketing problem [9], [13] identifies the top-k
seed users in a social network such that the expected number of
influenced users in the network, starting from those seed users
and following some influence cascading model, is maximized.
The budget k on the seed-set size usually depends on the
campaigner — in other words, it depends on how many initial
users the campaigner can directly influence to buy her product
by advertisements, giving free samples, and discounted prices.

The bulk of the research in the domain of viral marketing
assumes that the social network structure is available to the
campaigners. However, in real-world scenarios, the social
network platforms are owned by third-party hosts [19], such
as Facebook, Twitter, and LinkedIn; and the hosts keep their
social graphs secret for their own benefits and for privacy
reasons. Therefore, marketing companies themselves are not
able to select their best seed sets due to lack of access to the
social network graph.

In this study, we assume that the seed set selections are
done by the social network host on behalf of her clients, who
are the marketing campaigners. The campaigners, on the other

hand, spend their overall budget for viral marketing into two
parts. Particularly, each campaigner informs the host about: (a)
her budget on the seed-set size (i.e., the number of seed users,
k), and also (b) how much money she is willing to pay to the
host for each of her target users if that user adopts her product.
While the campaigner might not know the exact social network
structure, it is usually easier for her to define her target users,
either explicitly, or via some constraints, e.g., people in the
age group 20-30, all banking professionals, etc. We note that
the number of such target users for a campaigner can be very
large, and it is often not possible (or not economical) to give
each of them a free sample or discounted price. Therefore, the
campaigner still allocates a small k as the number of her seed
nodes. She uses rest of her budget to pay the social network
host according to the agreement, which can be a small amount
of money for each of her target users who adopts her product.

In real-world, multiple companies compete and they launch
comparable products around the same time 1 (e.g., Nintendo’s
Wii vs. Sony’s Playstation vs. Microsoft’s X-Box; Microsoft’s
Surface vs. Apple’s iPad vs. Samsung Note 3) [18], [19]. Thus,
the host often needs to run multiple competing viral marketing
campaigns together over the network. However, due to various
product-adoption costs, it is very unlikely that an average user
will purchase more than one of the competing products. Since
most of the users adopt only one of the competing products, it
implies that the seed sets of the competing campaigners require
to be mutually non-overlapping [18], [19]. Therefore, from the
host’s perspective, the challenge lies in how to select the seed
set for each of her client campaigners so that the host’s overall
expected revenue is maximized.

Running multiple viral marketing campaigns by a social
network host was studied earlier in [19] by Lu et. al. However,
[19] studied a different problem. The problem our paper
addresses is the problem of maximizing the revenue of the
host of the social network. In contrast, [19] studied how
to balance the expected spread of each campaign over the
network, which we believe is less relevant in practice. When
a social network host is selecting the seed sets on behalf of
her client campaigners, maximizing the host’s overall expected
revenue is the problem of interest for most practical scenarios.
Furthermore, [19] makes a number of additional assumptions.
For instance, [19] did not apply the notion of target users
for each client campaigner; they assume that all users in the
network are equally important to all campaigners. In reality, a
campaigner often promotes her product with a group of target
customers in mind [16], [17], and is willing to pay more money
to the host if her target users adopt her product. Indeed, as

1At the Consumer Electronic Show in January 2011, over 80
new tablets were announced by Motorola, Samsung, and Toshiba.
(http://mashable.com/2011/01/12/ces-2011-tablet-videos/)

V1

V2

V3 V4 V5 V6

V7

V8
Fig. 1: Revenue maximization: limitations of naïve methods

shown experimentally in [1], a product adopted by customers
(or, a campaign reached to users) outside the target group could
generate negative impression towards the campaigner, which
will affect her image in the long run. In summary, for different
users, each campaigner would be willing to pay a different
amount of money to the host if those users buy her product.

We next demonstrate with an example why the method
in [19] and other naïve approaches are not suitable for our
problem.

Example 1: Assume that there are two campaigners —
C1 and C2, who are viral marketing clients to the social
network host as depicted in Figure 1. We also assume that each
directed edge has an influence probability 1, and we apply
the independent cascade (IC) model [13], described later in
Section III-B. The model assumes that the cascade of influence
happens in discrete time steps. Each node can be activated only
once and by only one of the campaigns; also the node stays
activated with that campaign until the end. Let Aij denote the
money that campaigner Ci is willing to pay to the host if node
Vj adopts her product. We set A11 = A12 = A13 = A14=US$
10, A15 = A16 = A17 = A18=US$ 1; while A21 = A22 =
A23 = A24=US$ 1, and A25 = A26 = A27 = A28=US$
10. Assume that the budget on the seed set size for each
campaigner is 1.

What is the optimal solution? The optimal solution is as
follows. If V3 and V6 are selected as the seed nodes for C1

and C2, respectively, then V1, V2, V3 will be influenced by
C1, while V6, V7, and V8 will be influenced by C2. This will
ensure an aggregated revenue of US$ 60 to the host.

Why a naïve method will not work? A naïve approach
to solve the host’s revenue maximization problem would be
to first define some order among the campaigners, and then
identify the top-k seed nodes for each campaigner such that
the host’s revenue is maximized considering one campaigner
at a time. If some of the top-k seed nodes for the current cam-
paigner have already been assigned to previous campaigners,
we identify the next-best seed nodes for the current campaigner
until we exhaust the budget k of the current campaigner’s seed-
set size. If we apply this naïve approach, we get V4 as the
best seed node for C1. This is because V4 could eventually
influence V1, V2, V3, V6, V7, and V8, and the host will get
a revenue of US$ 43, assuming C1 is the only campaigner
in the network. Similarly, we find that V5 is the best seed
node for C2, assuming there is no other campaigner. Now, in
reality, when the host runs the two viral marketing campaigns
simultaneously with campaign of C1 starting from V4 and that
of C2 starting from V5, the host’s aggregate revenue will be
only US$ 44. This is because after simultaneous campaigning,
V3, V4, V7, and V8 will be influenced by C1, while the
remaining nodes will be influenced by C2.

Why the method in [19] will not work? Lu et. al.’s problem

formulation [19] identifies the seed sets for the campaigners in
a way such that the expected spread of each campaign is almost
equal (i.e., maintaining fairness), while also maximizing the
overall spread of all campaigns in the network. As an example,
selection of V4 as the seed node of C1 and V5 as the seed node
of C2 would be an optimal solution according to [19], since
this will result in V3, V4, V7, and V8 to be influenced by C1,
while the remaining four nodes will be influenced by C2. Note
that the host’s revenue in this solution is only US$ 44.

The above example clearly illustrates that the aforemen-
tioned naïve approach as well as [19] may result in a sub-
optimal aggregated revenue for the host. In fact, as [19]
did not consider the notion of target users for each client
campaigner, it is non-trivial to extend their proposed algo-
rithm to solve our current problem. Specifically, their Needy-
Greedy algorithm heuristically partitions the initial seed set
to balance the expected influence spread of each campaigner,
assuming that all users in the network are equally important
to all campaigners. It is difficult to adapt such an algorithm
to maximize the host’s overall revenue from all campaigners
in a scenario when each user has a different importance to
every campaigner. Indeed, our dynamic programming based
seed partitioning strategy introduced in Section 5.2 is different
from their Needy-Greedy heuristics.

Our Contributions and Roadmap. Our contributions can be
summarized as follows:

• We define the fundamental problem of host’s revenue
maximization by viral marketing in the presence of
m ≥ 2 competitive campaigners (Sec. III).

• We formulate the problem using two widely-used in-
fluence cascading models — the independent cascade
(IC) model (Section IV) and the linear threshold (LT)
model (Sec. V).

• We show that our problem using both these models
is NP-hard, and neither monotonic, nor sub-modular.
We therefore develop approximated algorithms to
solve our problem. In addition, we also design more
efficient and scalable heuristic techniques that empiri-
cally perform as good as our approximated algorithms.

• We conduct a thorough experimental evaluation using
several real-world datasets and with various kinds of
revenue distributions (Sec. VII). Our empirical results
attest that the proposed methods efficiently generate
high-quality results.

II. RELATED WORK

In viral marketing, a social network user is considered
influenced or activated by a campaign if she buys a product
corresponding to the campaign. The classical viral market-
ing problem aims at finding a small number of seed nodes
that generates the largest expected influence cascade in a
social network. Domingos and Richardson [9] formulated
viral marketing as an optimization problem. Kempe et. al.
[13] proposed the linear threshold model and the independent
cascade model, and designed approximation algorithms with
provable performance guarantees. However, the computation of
influence cascade is still #P-hard [7]. Several heuristics have
been proposed to improve the efficiency of viral marketing [8],
[11]. Very recently, [21] developed almost linear-time viral

marketing algorithms, yet providing the same approximation
guarantee as Kempe et. al.’s original method. In [16], Lappas
et. al. introduced the concept of target marketing and k-
effectors — by identifying k seed nodes such that a given
activation pattern can be established. The notion of target mar-
keting was also considered in [17] that maximizes influence
over a region of the network.

Viral marketing in the presence of a negative campaign
was investigated in [2], [5]. These works assume that the
later campaign has prior knowledge of rival side’s initial seed
nodes. Bordin et. al. [3] analyzed the similar problem under
the LT model; while [4], [6] attempt at preventing the spread of
an existing negative campaign in the network. Recently, [22]
studied the viral marketing problem between non-cooperative
campaigns who select seeds alternatively. However, as dis-
cussed in Section 1, competitive new products from rival
companies are often launched around the same time. Thus,
[12], [18], [19] considered viral marketing in the presence of
multiple competing campaigners, who promote their products
in a social network around the same time. We also consider
a similar scenario, i.e., multiple rival companies launch and
promote competing products at the same time.

While the bulk of the research on viral marketing assumes
that the social network structure is available to the campaign-
ers; in reality, the social network platforms are owned by third-
party hosts. Lu et al. [19] were the first to consider the viral
marketing problem from the social network host’s perspective.
In their framework, the host selects the seed nodes on behalf
of her client campaigners so that the expected influence spread
for each client campaigner becomes nearly the same. However,
when a social network host is selecting the seed sets on
behalf of her client campaigners, maximizing the host’s overall
expected revenue would be the problem of interest for most
practical scenarios. To the best of our knowledge, ours is
the first work that studies the host’s revenue maximization
problem, while also considering the notion of target users for
each campaigner. As [19] did not consider the notion of target
users for each client campaigner, it is non-trivial to extend their
proposed algorithm to solve our current problem.

III. PRELIMINARIES
A. Problem Statement

A social network G is modeled as a triple (V,E, P), where
V is a set of n nodes, E ⊆ V ×V is a set of e directed edges,
and P : E → (0, 1) is a probability function that assigns
a probability to each edge in E. The probability puv on a
directed edge (u, v) ∈ E represents the probability that node
v adopts a product due to the influence of node u, because
u adopted that product before. When v adopts that product,
it automatically becomes eligible to influence its neighbors
who has not adopted that product already. We shall discuss the
details of various influence cascading models in Section III-B.

We consider m ≥ 2 competing campaigners, denoted
by C1, C2, . . . , Cm, for whom the social network host runs
simultaneous viral marketing campaigns. We denote by Si

the seed set for campaigner Ci, and Aiu the money that
campaigner Ci is willing to pay to the host if node u adopts
Ci’s product. We refer to A = (Aiu)m×n the revenue matrix.
We denote by Pr(u, i, S) the probability that node u will adopt
Ci’s product due to the influence of her campaign by following
some influence cascading model, where S = {S1, S2, . . . , Sm}

V1

0.5 0.2

V2

V3

C1 C2

V1 V2

V3

C1 C2

V1 V2

V3

C1 C2

V1 V2

V3

C1 C2

V1 V2

V3

C1 C2

Uncertain graph

Possible worlds

Pr = 0.4 Pr = 0.4 Pr = 0.1 Pr = 0.1

Fig. 2: Example of MCIC model

represents the seed sets for the m campaigners. We are now
ready to define our problem.

Problem 1 (Revenue Maximization): Given a network G =
(V,E, P), m ≥ 2 client campaigners, the revenue matrix A,
and a budget ki on the seed set size for each campaigner
Ci, i.e., |Si| = ki for 1 ≤ i ≤ m, find the seed set for
each campaigner such that the expected revenue of the host
is maximized. Formally,

argmax
S1,S2,...,Sm

m∑
i=1

∑
u∈V

[Aiu · Pr(u, i, S)]

such that |Si| = ki ∀i ∈ (1,m)

and Si

⋂
Sj = φ ∀i �= j; i, j ∈ (1,m) (1)

B. Influence Cascading Models
We apply two widely-used influence cascading models:

independent cascade (IC) and linear threshold (LT) [13].

1) Independent Cascade Model: In the single-campaigner
IC model, the campaign starts with an initially active (i.e.,
adopted her product) set of seed nodes, and then unfolds in
discrete steps. When some node u first becomes active at step
t, it gets a single chance to activate each of its currently
inactive out-neighbors v; it succeeds with probability pu,v . If
u succeeds, then v will become active at step t+1. Whether or
not u succeeds at step t, it cannot make any further attempts in
the subsequent rounds. If a node v has incoming edges from
multiple newly activated nodes, their attempts are sequenced
in an arbitrary order. Also, each node can be activated only
once and it stays active until the end. The campaigning process
runs until no more activations are possible.

Multi-Campaigner Independent Cascade Model. We shall
now introduce the multi-campaigner Independent Cascade
(MCIC) model [4], which models multiple campaigns that
are being run simultaneously in a network. MCIC follows the
same process as IC, except two major differences. First, if
some node u is activated with campaign of Ci, it attempts to
activate its out-neighbors v with the campaign of Ci. Second,
an activated node v adopts one campaign uniform at random
from all its in-neighbors which were successfully activated
in the last round. Each node can be activated only once and
by only one of the campaigns; also the node stays activated
with that campaign until the end. Therefore, the MCIC model
assumes the following influence cascading scenario: people
adopt a product when they come in direct contact with their
friends who very recently adopted that product.

Example 2 (MCIC Model): In Figure 2, we show a social
network along with edge probabilities. We also assume that
V1 and V2 are seed nodes for campaigners C1 and C2,
respectively, and we want to calculate the probability that node
V3 will be influenced by each of these campaigners using the
MCIC model. The computation is carried out following the
possible world semantics [13]. We first identify all possible
worlds of the uncertain input graph, where each possible world
is a certain instance of the uncertain graph, and obtained
by independent sampling of the edges. Each possible world
is associated with a probability of existence. For example,
the second possible world in Figure 2 has probability of
existence 0.4, which is due to the presence of the edge V1V3

with probability 0.5 and the absence of the edge V2V3 with
probability (1−0.2). Hence, the probability of existence of the
second possible world is 0.5×(1−0.2) = 0.4. In our example,
there can be total 4 possible worlds. In each possible world, a
node is activated by its closest seed nodes. Thus, V3 is activated
by C1 in the second possible world, by C2 in the third possible
world, and by either of C1 and C2 with equal probability in
the fourth possible world. Therefore, the probability that V3 is
activated by C1 is 0.4 + 0.1 × 1

2 = 0.45, and V3 is activated
by C2 with probability 0.1 + 0.1× 1

2 = 0.15.

2) Linear Threshold Model: In the single-campaigner LT
model, each node v has an activation threshold θv ≤ 1. In
addition, there is a constraint that the sum of the probabilities
of all incoming edges for every node must be at most 1. The
campaign starts with an initially active set of seed nodes, and
then unfolds in discrete steps. If the sum of the probabilities
of the incoming edges from all active nodes is greater than or
equal to the activation threshold of an inactive node, then the
node gets activated in the next round. Each node can only be
activated once and stays active until the end.

Multi-Campaigner Linear Threshold Model. The multi-
campaign LT model, also termed as the K-LT model in [19],
follows two steps in each round. The first step decides whether
a new node will get activated and it works in exactly the
same way as the LT model (i.e., without distinguishing among
multiple campaigns). However, in the second step, it decides
which campaign each of those newly activated nodes will
adopt. Let us consider all nodes u that were activated in
the last round and contributed to the activation of a node v
in the current round. Then, v will adopt the same campaign
as that of u with probability puv∑

u puv
. With the K-LT model,

each node can be activated only once and by only one of the
campaigns; also the node stays activated with that campaign
until the end. One may note that the K-LT model simulates
the following scenario: a user adopts a technology only when
more than a threshold number of her neighbors adopted a
similar technology. However, once the user decides to adopt
the technology, she decides on the specific product only based
on her neighbors who most recently adopted that technology.

Example 3 (K-LT Model): We show an example of the K-
LT model in Figure 3. Here, V1 and V4 are seeds for cam-
paigners C1 and C2, respectively. At time step 1, V2 becomes
active with campaign of C1, since pv1,v2 = 0.8 > θv2 = 0.6.
However, V3 remains inactive as pv4,v3 = 0.5 < θv3 = 0.6.
At time step 2, V3 first gets activated as the total incoming
influence from its activated neighbors is: pv2,v3 +pv4,v3 = 0.7,
which is higher than its activation threshold θv3 = 0.6. Finally,

V1

0.5

ϴ = 0.6

V4

C1 C2

V2 V3
0.8 0.2

ϴ = 0.6

Fig. 3: Example of K-LT model

V3 selects campaign of C1 with probability 1, because V2 is
the only neighbor of V3 which was activated in the last round,
and V2 was activated with campaign of C1.

C. Hardness Results

We first prove that Problem 1 is NP-hard both with the
MCIC and K-LT influence cascading models. We consider the
decision version of our problem: Given a social network G =
(V,E, P), m ≥ 2 client campaigners, the revenue matrix A,
a budget ki on the seed set size for each campaigner Ci, that
is, |Si| = ki for 1 ≤ i ≤ m, and a positive integer R, can
we find a seed set for each campaigner such that the expected
revenue of the host is at least R?

Theorem 1: Following the MCIC model of influence cas-
cading, the decision version of Problem 1 is NP-hard.

Proof: We shall prove the NP-hardness by performing
a reduction from the NP-complete set-cover problem. Let us
consider an instance of the set-cover problem, defined by a
collection of subsets S = {S1, S2, . . . , Sr} of a ground set
U = {u1, u2, . . . un}; we wish to know whether there exist k
of the subsets whose union is equal to U . Now, we consider
another identical instance of the previous set cover problem,
given by a collection of subsets S′ = {S′

1, S
′
2, . . . , S

′
r} of the

ground set U ′ = {u′
1, u

′
2, . . . u

′
n}. We construct our revenue

maximization problem for m = 2 competing campaigners: C1

and C2, as follows. For each ui ∈ U , u′
i ∈ U ′, Si ∈ S, and

S′
i ∈ S′, we include a node in the network. The two nodes

corresponding to element pairs ui, u
′
i are connected by a bi-

directed edge of probability 1. If a subset Si covers an element
uj , we add a directed edge of probability 1 from node Si to
node uj in the network. Analogously, if some subset S′

i covers
an element u′

j , we also add a directed edge of probability 1
from node S′

i to node u′
j in the network. The revenue matrix

has the following form: A1,ui = 1 for all ui ∈ U , A2,u′
j
= 1

for all u′
j ∈ U ′, all other entries in the revenue matrix are 0.

Finally, we also assume that there is a budget k on seed-set
size for each campaigner. In this setting, there is a solution
to our revenue maximization problem with the host’s expected
revenue at least 2n, if and only if there is a solution to the set
cover problem. Hence, the theorem.

Theorem 2: Following the K-LT model of influence cas-
cading, the decision version of Problem 1 is NP-hard.

Proof: We prove the NP-hardness by performing a re-
duction from the NP-complete set cover problem, defined by
a collection of subsets S = {S1, S2, . . . , Sr} of a ground set
U = {u1, u2, . . . un}; and we want to know whether there
exist k of the subsets whose union is equal to U . Now, we
construct our revenue maximization problem with the K-LT
model and for m = 2 competing campaigners: C1 and C2,
as follows. For each element ui ∈ U , there is a node in the
network with activation threshold 1

r+1 . For each subset Si ∈ S,
we add two nodes vi and v′i in the network, each having an
activation threshold 1. Now, if a subset Si covers an element
uj , we add a directed edge of probability 1

2r from node vi
to node uj , and another directed edge of probability 1

2r from

vu A1v = 0.8
A2v = 0.9

A1u = 0.3
A2u = 0.5

1

Fig. 4: Counter-example of monotonicity

node v′i to node uj . Note that the sum of the probabilities of
all incoming edges to any node uj is at most 1. The revenue
matrix A has the following form: A1,ui = 1 for all ui ∈ U ,
A2,ui = 1 for all ui ∈ U , and all other entries in A are 0.
Finally, we also assume that there is a budget k on seed-set
size for each campaigner. In this setting, there is a solution
to our revenue maximization problem with the host’s expected
revenue at least n, if and only if there is a solution to the set
cover problem. Hence, the theorem.

Unlike the classical viral marketing problem [13], our
revenue maximization problem, under both MCIC and K-LT
models, is neither monotonic, nor sub-modular. Therefore, an
iterative greedy algorithm [13] that maximally increases the
marginal gain at every iteration, and which has been widely-
used to derive a solution with theoretical approximation bounds
for the conventional viral marketing problem, can no longer
be employed in our case for deriving similar approximation
guarantees. Hence, we first design our novel approximated
solutions in Sections IV and V, where we provide theoretical
performance guarantees in the presence of some additional
constraints. Finally, in Section VI, we also provide more
efficient greedy solutions for our problem. However, prior to
introducing our solution techniques, we demonstrate below
the non-monotonicity and non-sub-modularity of the revenue
maximization problem using counter-examples.

Non-Monotonicity. In Figure 4, we assume that node v is
already assigned to S2 (i.e., seed set of campaigner C2) and
that we still need to assign the seed set to campaigner C1.
Under both the MCIC and the K-LT model, node u will be
activated by node v with probability 1. Therefore, the host’s
revenue is 0.5 + 0.9 = 1.4 with only node v assigned to the
seed set S2 of campaigner C2. If we now assign node u to the
seed set S1 of campaigner C1, the host’s revenue is reduced to
0.3 + 0.9 = 1.2. If we assign the seed sets in the other order
(i.e., first S1 to C1 and then S2 to C2), then the revenue would
have increased from 0.3 + 0.8 = 0.11 to 0.3 + 0.9 = 1.2. In
general, the revenue maximization problem is non-monotonic
with respect to addition of seed sets.

Non-Sub-Modularity. Let us denote by F (S) =
m∑
i=1

∑
u∈V

[Aiu ·
Pr(u, i, S)]. Here, S = {S1, S2, . . . , Sm} is the collection
of m seed sets corresponding to m different campaigners. In
order to illustrate non-sub-modularity, we need to show that the
following inequality does not always hold: F (S∪Si)−F (S) ≥
F (S′ ∪ Si)− F (S′), where S′ ⊇ S, Si �∈ S′. In Figure 5, we
assume that S : {u1 assigned to C1}; and S′ : {u1 assigned
to C1, u2 assigned to C2}. Under the MCIC model, node v is
always activated, if either node u1 or u2 is activated. Under the
K-LT model, assume we use an activation threshold of 0.4 for
node v. Therefore, node v is always activated under the K-LT
model as well. Now, we assign v to S3 (i.e., seed set of cam-
paigner C3) and check the sub-modularity criteria for S and
S′. We get F (S∪S3)−F (S) = (0.7+0.1)−(0.7+0.5) = −0.4
and F (S′ ∪ S3) − F (S′) = (0.7 + 0.9 + 0.1)− (0.7 + 0.9 +
(0.5× 1

2) + (0.1× 1
2)) = −0.2. Therefore, the sub-modularity

property is not satisfied.

u2v

u1

A1u2 = 0.8
A2u2 = 0.9
A3u2 = 0.1

A1v = 0.5
A2v = 0.1
A3v = 0.1

A1u1 = 0.7
A2u1 = 0.6
A3u1 = 0.1

1.0

1.0

Fig. 5: Counter-example of sub-modularity

IV. SOLUTION WITH INDEPENDENT CASCADE MODEL

In this section, we consider the revenue maximization
problem under the MCIC influence cascading model. For
simplicity, we assume that each campaigner has a seed set
of the same size k.

Overview. Although our revenue maximization problem is
NP-hard over graphs, we shall illustrate that the problem
is solvable in polynomial time in a tree dataset. Therefore,
we consider a two step heuristic approach: first, given a
graph dataset, we extract the most influential tree, which will
be formally defined in Section IV-C. Intuitively, the most
influential tree approximates a social network by preserving
the most influential path between every pair of nodes as much
as possible [15]. A path between a source and a destination
node is called the most influential path if the probability of
influence cascading along that path is maximal in comparison
with all other paths between these two nodes. While most-
influential-path-based approaches were used in the past, e.g.
[7], to solve the classical viral marketing problem, our current
problem is a different one. We design a polynomial-time exact
algorithm to solve the host’s revenue maximization problem
over a tree dataset (Section IV-A). We describe our algorithm
with a simpler binary tree in the following section, and later in
Section IV-B, we show how to convert a tree to an equivalent
binary tree suitable for our method.

A. Exact Solution over Directed Binary Trees

On a directed tree, a node v can only be activated by
its closest ancestor u, including the node itself, such that u
belongs to one of the seed sets S1, S2, . . ., Sm. This is simply
because u blocks the path from any farther ancestor u′ to
v, where u′ is also a seed node. Therefore, Pr(v, i, S), the
probability that node v will be influenced by Ci’s campaign,
has the following expression in case of a directed tree.

Pr(v, i, S) =

⎧⎨
⎩
0 if u �∈ Si;∏
(u′,v′)∈Path(u,v)

pu′v′ otherwise.

Here, u denotes the closest ancestor of v, such that u is
a seed node. First, we compute for every node v in the tree
dataset, the probability that v gets activated by each of its
ancestors u, which is simply

∏
(u′,v′)∈Path(u,v) pu′v′ . We store

these activation probabilities in a table B of size O(nd), where
n is the total number nodes in the tree and d is the depth
of the tree. Let B(u, v) denote the activation probability that
node v is activated by its ancestor u. Clearly, B(v, v) = 1. The
computation of table B requires O(nd) time, if we re-use the
activation probabilities from a parent node in order to compute
the activation probabilities for its children nodes.

Next, we apply a dynamic-programming-based algorithm
to find the optimal seed sets for all campaigners over a directed
binary tree. For this purpose, we introduce another table OPT

v

u

l(v) r(v)

OPT(v, u, iu, [k′1, k′2, , k′m]T

iu

Fig. 6: Exact solution over binary tree: MCIC model

of the form OPT(v, u, j, [k′1, k
′
2, . . . , k

′
m]T), where: (a) v is

any node in the tree, (b) node u denotes the nearest ancestor
of node v such that u is a seed node, (c) j ∈ (1,m) denotes the
campaigner Cj such that u is a seed node of campaigner Cj ,
and (d) each k′i ≤ k denotes the number of seed nodes already
assigned to campaigner Ci in the subtree rooted at v. An entry
in the OPT table, e.g., OPT(v, u, j, [k′1, k

′
2, . . . , k

′
m]T) repre-

sents the host’s expected revenue for the optimal assignment
of all seed sets Si, i ∈ (1,m), |Si| = k′i over the subtree
rooted at node v: given u, which is v’s nearest ancestor that is
a seed node, is rather assigned as a seed node to campaigner
Cj . It can be noted that the size of OPT table is Θ(ndmkm).
The entries in OPT are computed by performing a post-order
traversal over the tree dataset as given in Equations 2, 3, 4.

In our dynamic programming, OPT(v, u, j, [k′1, k
′
2, . . . ,

k′m]T) is computed as the maximum over two cases. (a) Case1:
the first case considers the scenario when v is not selected as
a seed node, and (b) Case2: the second case considers the
situation when v is assigned to some campaigner as a seed
node. Here, l(v) and r(v) denote the left and right subtrees
of v, respectively, as illustrated in Figure 6. For simplicity of
description, we assumed that the budget of seed-set size for
each of the m campaigners is k. Then, to fill one entry in
the OPT table, we need O(mkm) time. Therefore, the time
complexity of our dynamic programming is O(ndm2k2m).

It is important to note that the dynamic programming termi-
nates by computing the OPT entries for the root node vr, that
is, OPT(vr,−1, i, [k, . . . , k]T) for all i ∈ (1,m). The value
−1 at the second index indicates that the root node vr does
not have an ancestor. Therefore, OPT(vr,−1, i, [k, . . . , k]T) is
invariant of i. Once we terminate our dynamic programming,
we determine whether a node will be a seed node (and
if so, that node will be assigned to which campaigner) by
backtracking using the OPT entries of its children nodes.
The backtracking process requires another O(mnkm) time.
Therefore, the overall time complexity of finding the optimal
seed nodes over a directed binary tree is O(ndm2k2m). We
note that our dynamic-programming-based exact solution over
directed binary trees is polynomial-time in the number of
tree nodes; however, it has exponential time-complexity in the
number of client campaigners.

Space and Time Complexity. In this section, we summarize
the space and time complexity of our dynamic-programming-
based solution. The space complexity is O(ndmkm): table B
has size O(nd) and table OPT has size Θ(ndmkm). The time
complexity of our dynamic programming is O(ndm2k2m).
B. Directed Trees to Binary Trees Conversion

Our dynamic-programming-based exact solution for the
revenue maximization problem (Problem 1) can be applied
over non-binary trees. In fact, given a directed tree, we first
convert it to an equivalent directed binary tree. We use the
conversion technique in [16]. For each non-leaf node v with
children v1, v2, . . . , vΔ, where Δ > 2 in the original tree,

we replace v with a binary tree of depth at most logΔ and
leaves v1, v2, . . . , vΔ. For each newly introduced node u, we
assign the revenue Aiu = 0, for all campaigners i ∈ (1,m).
While applying our dynamic programming (Section IV-A),
we also incur an additional constraint that no such newly
introduced node can be selected as a seed node. Finally, for
each newly introduced edge, the direction is always from the
root towards the leaves, and each of them has probability 1.
The incoming edges to the leaves v1, v2, . . . , vΔ have the same
probability as that of the previous incoming edges to nodes
v1, v2, . . . , vΔ, respectively. This conversion process ensures
that the newly introduced edges and nodes will not affect the
MCIC propagation model as in the original directed tree.

As shown in [16], for the aforementioned tree-to-binary-
tree conversion method, the number of nodes in the equivalent
binary tree is at most twice the number of nodes in the directed
input tree, and the depth of the binary tree is at most a factor
of logΔ∗ larger than the depth of the original tree, where Δ∗
is the maximum out-degree of any node in the input tree.

OPT

⎛
⎜⎝v, u, j,

⎡
⎢⎣
k′1
...

k′m

⎤
⎥⎦
⎞
⎟⎠ = max{Case1,Case2} (2)

Case1 =
k′
1

max
k′′
1 =0

···
max···

k′
m

max
k′′
m=0

⎧⎪⎨
⎪⎩OPT

⎛
⎜⎝l(v), u, j,

⎡
⎢⎣
k′′1
...

k′′m

⎤
⎥⎦
⎞
⎟⎠

+OPT

⎛
⎜⎝r(v), u, j,

⎡
⎢⎣
k′1 − k′′1

...
k′m − k′′m

⎤
⎥⎦
⎞
⎟⎠+Aj,v × B(u, v)

⎫⎪⎬
⎪⎭

(3)

Case2 =
m

max
i=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k′
1

max
k′′
1 =0

..
k′
i−1
max
k′′
i =0

..
k′
m

max
k′′
m=0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
OPT

⎛
⎜⎜⎜⎝l(v), v, i,

⎡
⎢⎢⎢⎣

k′′1
...k′′i

...
k′′m

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

+OPT

⎛
⎜⎜⎜⎜⎜⎝
r(v), v, i,

⎡
⎢⎢⎢⎢⎢⎣

k′1 − k′′1
...

k′1 − k′′i − 1
...

k′m − k′′m

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

+Ai,v

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4)

C. Graphs to Most Influential Directed Tree Extraction

The revenue maximization problem is NP-hard in directed
graphs (Theorem 2). Therefore, given a directed and connected
graph G, we first extract the most influential tree T ∗, which
is a directed spanning tree of G, and formally defined below.

Definition 1 (Most Influential Tree): Given a connected
graph G = (V,E, P) with a root node vr, the most influential
tree T ∗ = (V,ET∗ , P) with ET∗ ⊆ E is a directed spanning
tree of G, with the same root node vr, such that the product
of the edge probabilities in T ∗ is maximized. Formally,

T ∗ = argmax
T∈SpanningTrees(G)

∏
(u,v)∈ET

pu,v (5)

SpanningTrees(G) denotes all directed spanning trees of
G. Intuitively, the most influential tree aims at preserving the
most influential path between every pair of nodes as much as
possible. These most influential paths play an important role
in influence cascade over real-world social networks [15].

The problem of finding the most influential tree can be
converted to the problem of finding the minimum-cost directed
spanning tree by minimizing the sum of negative logarithms
to the edge probabilities in T ∗ as given in Equation 6.

T ∗ = argmin
T∈SpanningTrees(G)

∑
(u,v)∈ET

− log(pu,v) (6)

Thus, one can find the most influential directed tree in time
O(e+n logn) due to Gabow et al. [10]. It is important to note
that [10] requires some root node vr to be present in the input
graph G such that all other nodes in G are reachable from vr.
Therefore, we first add a dummy root node vr and then connect
all nodes in G to vr, with edges directed towards the nodes in
G. Each of these newly-introduced edges is assigned a very
low edge-probability. For the dummy root node vr, we also
assign revenue Aivr = 0 for all campaigners i ∈ (1,m); and
then, we further incur an additional constraint that vr cannot
be selected as a seed node during our dynamic-programming-
based exact solution over the most influential tree T ∗.

V. SOLUTION WITH LINEAR THRESHOLD MODEL

In this section, we consider the revenue maximization
problem (Problem 1) under the K-LT influence cascade model.
We recall that our problem is NP-hard under the K-LT model
(Theorem 2). However, we shall later illustrate that given an
already-selected set of seed nodes, one can optimally partition
these seed nodes among m campaigners in polynomial time
such that the host’s expected revenue is maximized. Using this
result, we design a two-step approximation algorithm to solve
our original revenue maximization problem with a theoretical
performance guarantee of 1

m (1− 1
e).

Overview. In the first phase (Section V-A), the host opti-
mistically assumes that it is possible to influence each user
by a campaign that gives the maximum revenue to the host
for that user. This is equivalent to assigning, for each user
u, a revenue Au which is the maximum of Aiu values over
all campaigners i. Thus, the host identifies mk seed nodes
assuming there is only one campaigner and with the objective
that her expected revenue is maximized under this optimistic
assumption. However, in reality, there are m campaigners,
each with a seed-set of size k. Therefore, in the second
step (Section V-B), the host partitions these already-selected
mk seeds among m campaigners with the objective that her
expected revenue is maximized under the multi-campaigner
setting and considering the original revenue matrix. Below,
we describe both these steps in details.

A. Optimistic Seed Set Selection

In the first phase, the host optimistically assumes that each
user in the network can be influenced by a campaign such that
the corresponding campaigner gives the maximum amount of
money for that particular user. In other words, for each user
u in the network, the host optimistically assigns a revenue Au

which is the maximum of Aiu values over all campaigners i.

Formally, Au = max
i∈(1,m)

{Aiu}. Therefore, the host solves the

following problem in the first step.

Problem 2 (Optimistic Seed Set Selection): Assuming
there is only one campaigner and given a revenue Au for
each user u in the network, find the seed set of size mk such
that the expected revenue of the host is maximized. Formally,

argmax
S

∑
u∈V

[Au · PrLT(u, S)]

such that |S| = mk (7)

Here, PrLT(u, S) denotes the expected spread of an influence
from the seed set S to node u following LT model with one
campaigner. Unfortunately, Problem 2 is also NP-hard fol-
lowing [13]; nevertheless, the objective function is monotonic
and sub-modular as shown in Theorem 3.

Theorem 3: The objective function of Problem 2 is sub-
modular. Formally, let F (S) =

∑
u∈V [Au ·PrLT(u, S)]. Then,

F (S ∪ {v})− F (S) ≥ F (S1 ∪ {v})− F (S1) (8)

Here, S1 ⊇ S and v �∈ S1.

Proof: The proof follows by considering the live-edge
model, which is shown to be equivalent to the LT model in
[13]. In the live-edge model, each node v picks at most one of
its incoming edges at random, that is, it selects the incoming
edge from u with probability pu,v, and it does not select any
incoming edge with probability 1−∑

u∈in(v) pu,v. Let X be
one possible world with probability Prob(X) under the live-
edge model, and RX(S) be the host’s revenue due to nodes
that are reachable from the seed set S in that possible world
X . One may verify that RX(S) is sub-modular with respect
to S. Now, our objective function F (S) is given by:

F (S) =
∑

all possible world X

[Prob(X) ·RX(S)] (9)

As the non-negative linear combination of sub-modular func-
tions is also sub-modular, F (S) is sub-modular.

Thus, we apply an iterative hill-climbing algorithm (Algo-
rithm 1) that finds the seed set with an approximation guar-
antee (1 − 1

e) of the optimal solution [13]. The hill-climbing
algorithm works in mk iterative steps. At each iteration, the
algorithm selects a non-seed node u as a seed node, such that
the expected revenue due to u and the previously selected
seed nodes is maximized. Our hill-climbing-based iterative
solution for the optimistic seed selection problem (Problem 2)
is similar to state-of-the-art viral marketing techniques that
identify the top-k seed nodes for a single campaigner such
that its expected influence spread in the network is maximized
[13]. Although we optimize the host’s expected revenue instead
of the expected influence spread, due to the single-campaigner
and sub-modular nature of Problem 2, one can easily apply
an existing viral marketing algorithm [7], [11], [13] (with
some modification in the objective function) as the underlying
technique to solve Problem 2.

We shall later show in Theorem 4 that the iterative hill-
climbing algorithm for the optimistic seed selection, coupled
with an optimal partition of those seed sets among m cam-
paigners, generates a solution to the original revenue maxi-
mization problem with the approximation guarantee 1

m (1− 1
e).

Algorithm 1 Hill-Climbing for Optimistic Seed Set Selection

Require: Graph G = (V,E, P), Au = maxi{Aiu} ∀u ∈ V
Ensure: Seed set S of size mk

1: S = φ
2: for i = 1 to mk do
3: v = argmaxv∈V \S F (S

⋃{v}) / / F () is defined in Th. 3
4: S = S

⋃{v}
5: end for
6: Output S

Time Complexity. The time complexity of our iterative hill
climbing algorithm is O(mkn(n+ e)t), where mk is the total
number of seed nodes identified, and t is the number of Monte-
Carlo samples performed over the entire graph in order to find
one seed node.
B. Partition of Seed Set

In the second phase, the host optimally partitions the
previously selected mk seed nodes among m campaigners,
such that her expected revenue is maximized under the actual
multi-campaigner K-LT model and considering the original
revenue matrix. We formally define our problem statement for
the second step as follows.

Problem 3 (Optimal Seed-Set-Partition): Given already
selected seed set S of size mk and the revenue matrix
(Aiu)m×n, partition S into m subsets S1, S2, . . . , Sm, such
that each Si has size k, and the expected revenue of the host
is maximized following the multi-campaigner K-LT model.

We show that Problem 3 can be solved optimally in polynomial
time using a dynamic-programming-based approach. For this
purpose, we introduce the notion of individual revenue of the
host from every seed node.

Definition 2 (Individual Revenue): The individual revenue
Ri(u) represents the expected revenue of the host from a seed
node u ∈ S when u is assigned to the i-th campaigner Ci.

Individual Revenue Computation. We now describe our
method to compute individual revenues. We start by randomly
assigning a distinct number from 1 to mk to every seed node
in S. Let us denote by I(u) the number assigned to seed node
u. We also associate a list L of size mk with each node v
in the network. The j-th entry of list L(v), denoted as Lj(v),
represents the spread that some seed node u ∈ S can achieve
at node v following the K-LT model, where I(u) = j. For a
seed node u ∈ S, we initialize:

Lj(u) =

{
1, if I(u) = j;
0, otherwise.

Next, we simulate K-LT model starting from seeds in S.
At any discrete step of K-LT model, if some node v becomes
active, we consider all its in-neighbors v′ ∈ in(v) that were
activated in the previous step. We compute Lj(v) as follows:

Lj(v) =

∑
v′∈in(v)

v′activated in prev. step

[pv′v × Lj(v
′)]

∑
v′∈in(v)

v′activated in prev. step

pv′v
(10)

U1 U2 U3

V1

0.4
0.3

0.2

C1= 1
C2 = 0

C1= 0
C2 = 1

C1= 1
C2 = 1

C1= 0.5
C2 = 0.7

ϴ = 0.6

Fig. 7: Example of individual revenue computation

Finally, we compute individual revenue Ri(u) for every
seed u ∈ S and for every campaigner Ci as given below.

Ri(u) =
∑
v∈V

[Ai,v × LI(u)(v)] (11)

We refer to Ri(u) as the individual revenue of the host
due to seed u, when u is assigned to Ci. We demonstrate the
computation of individual revenues with an example.

Example 4: In Figure 7, we assume there are three seed
nodes: u1, u2, and u3, and also two campaigners: C1 and C2.
The seed nodes are not assigned to any specific campaigners
yet. We show the revenue vectors corresponding to each node
inside the rectangular boxes. In the beginning, all seed nodes
are activated, and in the next round, v1 gets activated, since its
activation threshold θv1 = 0.6 < pu1,v1+pu2,v1+pu3,v1 = 0.9.
Following Equation 10, we get: LI(u1)(v1) =

0.4
0.4+0.3+0.2 = 4

9 .
Similarly, LI(u2)(v1) = 3

9 , and LI(u3)(v1) = 2
9 . Finally, we

compute the individual revenues by following Equation 11.
For example, R1(u1) =

∑
v=u1,u2,u3,v1

A1,v × LI(u1)(v) =

1× 1+0+0+0.5× 4
9 = 1.22. Similarly, we have: R1(u2) =

0 + 0 + 0 + 0.5× 3
9 = 0.17.

Properties of Individual Revenue. The individual revenue
Ri(u) satisfies several interesting properties which are critical
for our dynamic-programming-based exact solution.

Proposition 1: For a given seed node u and a given cam-
paigner Ci, 1 ≤ i ≤ m, Ri(u) is invariant to how other seed
nodes are assigned to the various campaigners.

Proposition 2: If some seed nodes u1, u2, . . ., uj ∈ S are
assigned to a campaigner Ci, 1 ≤ i ≤ m, then the expected
revenue of the host due to u1, u2, . . . , uj is simply the sum of
Ri(u1),Ri(u2), . . . ,Ri(uj); and this is invariant to how the
remaining seeds are assigned to other campaigners.

We omit the proofs due to limitation of space. The first
proposition follows from the definition of the K-LT model —
given a pre-defined seed set S, the activation of other nodes
in the network is determined by the first phase of the K-
LT model, that is, the classical LT model assuming all the
campaigners cascading the same information. Whether a node
in the network will be activated or not is independent of how S
is partitioned among multiple campaigners [19]. The partition
of S only influences the following: among the active nodes
in the network, which one will adopt what campaign and
with how much probability. The second proposition follows
from the linearity property of Lj(v) in Equation 10, that is,
L{u1,u2}(v) = Lu1(v) + Lu2(v), for any two distinct seed
nodes u1, u2 ∈ S and for any node v in the graph.

Example 5: In Figure 7, R1(u1) = 1.22 and R1(u2) =
0.17. Note that, R1(u1) +R1(u2) = 1.39, and this is exactly

same as R1({u1, u2}), that is, the expected revenue of the host
when both u1 and u2 are assigned to the campaigner C1.

Dynamic Programming Based Exact Solution. We are
now ready to describe our dynamic-programming-based exact
algorithm to solve the optimal seed-set-partitioning problem
(Problem 3). Our algorithm processes the seed nodes u ∈ S in
the ascending order of their assigned I(u) numbers. We recall
that I(u) ∈ (1,mk). The dynamic programming maintains
a table EXACT(j, [k′1, k′2, . . . , k′m]T), that stores the optimal
expected revenue of the host when we have already partitioned
the seed nodes with number from 1 to j into m subsets
{S1, S2, . . . , Sm}, such that |Si| = k′i ≤ k, and we have
also assigned them to the respective campaigners. Clearly,
1 ≤ j ≤ mk and j =

∑m
i=1 k

′
i. The dynamic programming

proceeds as given in Equation 12.

EXACT

⎛
⎜⎜⎝j,

⎡
⎢⎢⎣
k′1
k′2
...

k′m

⎤
⎥⎥⎦
⎞
⎟⎟⎠ = max

i∈(1,m)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
EXACT

⎛
⎜⎜⎜⎜⎜⎝
j − 1,

⎡
⎢⎢⎢⎢⎢⎣

k′1
...

k′i − 1
...

k′m

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

+ Ri(u)

⎫⎪⎬
⎪⎭ (12)

In Equation 12, u denotes the node with I(u) = j.
The optimal assignment of the last seed node is determined
by EXACT(mk, [k, k, . . . , k]T). The optimal assignment of
previous seed nodes are determined by backtracking with the
usage of EXACT values. The correctness of our dynamic-
programming-based solution follows from Propositions 1, 2.

Space and Time Complexity. Our algorithm has space com-
plexity O(km) due to the EXACT table. The time complexity
of our dynamic programming is O(mkm). This is because
we need to fill the table of size km; and in order to fill each
entry in the table, we compute the maximum of m values. The
backtracking requires another O(m2k) time; since there are
mk seed nodes that we need to assign to different campaigners;
and for each seed node, we compare m values to find the best
assignment. In addition, one needs to compute the expected
revenue vectors for all seed nodes by running a breadth-first-
search from each of these mk seed nodes. Hence, the time
required to compute the expected revenue vectors for all seed
nodes is O(mk(n+e)), where n and e are the number of nodes
and edges in the graph, respectively. Therefore, the time com-
plexity of our exact solution is O(mkn+mke+m2k+mkm)
— which is polynomial in the size of the graph.

Performance Guarantee. Theorem 4 provides the overall
approximation guarantee of our method for the host’s revenue
maximization problem under the K-LT model. We provide the
proof in our extended version [14].

Theorem 4: The iterative hill-climbing solution of the op-
timistic seed selection (Problem 2), coupled with the optimal
partition of those seed sets (Problem 3), guarantees 1

m(1− 1
e)

2Fi(Si) =
∑

u∈V [Aiu ·Pr(u, Si)], i.e., host’s revenue considering only
campaigner Ci, with seed set Si

Algorithm 2 RevMax-Separate: Greedy Seed Set Selection

Require: Graph G = (V,E, P), rev. matrix (Aiu), m campaigners
Ensure: Seed sets S1, . . . , Sm, each of size k

1: Sort and process campaigners in descending order of
∑

u∈V Aiu

for each campaigner Ci; 1 ≤ i ≤ m
2: for i = 1 to m do
3: Si = φ
4: for j = 1 to k do
5: v = argmaxv∈V \Si

Fi(Si

⋃{v}) 2

6: Si = Si

⋃{v}
7: end for
8: V = V \ Si

9: end for
10: Output S1, . . . , Sm

approximation to the original revenue maximization problem
(Problem 1) under the K-LT model, and with the assumption
that each campaigner has the same number of seed nodes.
Here, m is the number of campaigners.

VI. GREEDY SOLUTIONS

Our proposed techniques in the previous sections are
polynomial-time to the graph size, and they also provide the-
oretical performance guarantees under additional constraints,
e.g., exact solution over tree datasets for MCIC model, and
1
m (1− 1

e)-optimal solution over any graph under K-LT model.
Nevertheless, the running time of our algorithms increases
exponentially with the number of seed nodes. Therefore, in this
section, we propose more efficient greedy techniques for the
host’s revenue maximization problem. For ease of discussion,
we refer to our earlier solution techniques in Sections IV and V
as RevMax-Combined (RevMax-C), while we call our greedy
solutions as RevMax-Separate (RevMax-S).

RevMax-Separate. This is a greedy method as given in
Algorithm 2. We first sort the campaigners in descending order
of

∑
u∈V Aiu, that is, the aggregated money that each cam-

paigner Ci is willing to provide to the host if all the users in the
network adopt her product. Next, we process the campaigners
in that sorted order. For each campaigner, we identify the
top-k seed nodes such that the host’s revenue is maximized
by considering only that campaigner (and disregarding the
existence of other campaigners). Nevertheless, in order to
eliminate the influence-cascading effect of already-selected
seed nodes of previous campaigners, we delete these already-
selected seed nodes from the graph before identifying the top-k
seed nodes for the next campaigner (Line 8, Algorithm 2).

Time Complexity. The time complexity of our greedy algo-
rithm is O(mkn(n + e)t), where m is the number of cam-
paigners, k the number of seed nodes per campaigner, n and e
are the number of nodes and edges in the graph, respectively,
and t is the number of Monte-Carlo samples performed to
find one seed node. We note that unlike our approximated
algorithms in Sections IV and V, our greedy approach is
very scalable — the running time increases linearly with the
number of campaigners, number of seeds per campaigner, and
polynomially with the size of the graph.

VII. EXPERIMENTAL RESULTS

We present experimental results to illustrate effectiveness,
efficiency, and scalability of our algorithms. The code is

implemented in C++ and the experiments were performed on
a single core of a 132GB, 2.26GHz Xeon server.

A. Experiment Setup
� Datasets: We summarize our data sets in Table I. Additional
results over tree datasets can be found in the extended version.

TABLE I: Dataset Characteristics
Dataset # Nodes # Edges Edge Prob: Mean, SD, Quartiles

Flickr 78 322 20 343 018 0.09 ± 0.06, {0.06, 0.07, 0.09}
DBLP 684 911 4 569 982 0.08 ± 0.07, {0.05, 0.05, 0.10}
NetHEPT 15 229 62 752 0.28 ± 0.28, {0.0006, 0.27, 0.53}

Flickr. Flickr is an online community, where users share pho-
tos, and participate in common-interest groups. The probability
of an edge between any two users is computed assuming
homophily [20]; in particular, the Jaccard coefficient of the
interest groups that the two users belong to.

DBLP. The dataset is a subset of the popular co-authorship
network used in [20]. The edge probabilities express the
strength of the collaboration between the two incident authors.
Particularly, if two authors collaborated c times, we assign the
corresponding probability as 1− exp−c/10.

NetHEPT. This graph is created from the “High Energy
Physics - Theory” papers of arXiv from 1991 to 2003 [7]. Since
there is no edge probabilities on this graph, we synthetically
assign probabilities on edges that simulates the community
structure in a social network. We identify 60 non-overlapping
communities from this graph dataset, each with 170 nodes.
If an edge is completely inside a community, we uniformly
assign a probability between 0.2 to 0.8; all other edges are
assigned probabilities uniformly from 0 to 0.001. Such an edge
probability assignment reflects the fact that users inside the
same community have higher influence on each other than on
someone else outside that community. The edge probabilities
are assigned differently in both directions, i.e., puv �= pvu.

For K-LT model, if the sum of probabilities of incoming
edges to a node is more than 1, we normalize those edge prob-
abilities by their aggregate, such that the sum of probabilities
for in-edges to every node is no more than 1 [20]. We also
limit the number of Monte-Carlo samples to 1 000 in all our
experiments [20].

� Number of Campaigners and Seed Nodes: We vary the
number of campaigners from 2 to 10, while the number of
seed nodes per campaigner is varied from 5 to 100.

� Revenue Distribution: We consider three categories of
revenue distribution to simulate various real-world scenarios.

Uniform (U). In this setting, each campaigner selects its target
users uniformly over the network and independent of other
campaigners. Thus, we assign every revenue-matrix-element
Aiu = 1 monetary unit, with probability 1

m ; and Aiu = 0.1
monetary unit, with probability (1− 1

m). Here, m is the number
of campaigners. One may note that we have normalized the
amount of money that a campaigner gives to the host for one
user on a scale from 0.1 to 1 monetary units.

Clustering with Low Competition (CLC). In this setting,
we assume that each campaigner’s target users form certain
clusters in the network. In addition, we also assume that there
are some users who belong to target sets of all the campaigners.
We call this model “clustering with low competition” as we

limit the ratio of such mutually overlapping target users to a
relatively small percentage. We simulate this setting as follows.
We first partition the graph into 15 non-overlapping and highly-
connected clusters, each cluster having equal number of nodes.
For the first 5 clusters, all Aiu values are set to 1 monetary
unit, i.e., 33% of the nodes belong to the target users of
all campaigners. The remaining clusters are assigned to the
campaigners in a round-robin manner. If a cluster is assigned to
campaigner Cj as its target set, we then assign each Aju = 0.5
monetary unit, and the remaining Aiu = 0.1 monetary unit,
for all j �= i, inside that cluster.

Clustering with High Competition (CHC). This setting is
similar to the previous CLC setting — the only difference is
that there is a relatively large number of users who belong to
the target sets of all campaigners. We simulate this setting as
before; however, we assign the first 10 out of the 15 clusters
as the target sets for all campaigners. This implies that 66%
of the nodes belong to the target users of all campaigners.

U, CLC, and CHC models ensure almost equal host’s
revenue from each of her client campaigners. Due to limitation
of space, we provide in our extended version [14] the results
with some additional unequal revenue distributions, as well
as for the case when the campaigners allow different number
of seed nodes. We find that those results are similar to other
results with U, CLC, and CHC distributions as shown below.
� Comparing Methods: We compare our approximated algo-
rithms RevMax-C (Sections IV and V) and greedy RevMax-S
(Section VI) with a randomized seed selection approach.

Random. We randomly select a distinct seed set for each cam-
paigner. In our experiments, we did 10 runs of the Random
method, and selected the best one that results in the maximum
revenue out of all these 10 runs.

We compare the three aforementioned techniques —
RevMax-C, RevMax-S, and Random under both IC and LT
models. As the underlying viral marketing method in RevMax-
S and RevMax-C, we use the CELF++ algorithm [11] due
to its efficiency. We use the publicly-available source code of
CELF++ provided by the respective authors [11].

� Evaluation Metrics: We compare host’s revenues obtained
from RevMax-S and RevMax-C with that of Random.

Revenue Improvement Rate (RIR). This is defined as the
ratio of the host’s expected revenue from the seed sets identi-
fied by RevMax-C (or, RevMax-S) with respect to the host’s
revenue obtained from a random selection of seed sets.

B. Performance: Effectiveness & Efficiency
We first demonstrate our results over the MCIC model

(Section VII-B1), and the K-LT model (Section VII-B2). Since
RevMax-C does not scale well with many campaigners and
with a large number of seed nodes, we consider at most 5
campaigners and up to 20 seeds per campaigner in these exper-
iments. The scalability of RevMax-S with more campaigners
and seed nodes is illustrated later in Section VII-C.

1) Performance with MCIC Model: We present revenue
improvement rates with the MCIC model in Tables II and III.
The host’s revenue from RevMax-C technique almost always
outperforms that from the RevMax-S approach by a margin
of 5%∼10%. We show the corresponding efficiency results
for the MCIC model in Figures 8(a) and 8(b). We find that

TABLE II: Revenue Improvement Rate (RIR), MCIC Model
with 2 Campaigners, NetHEPT Dataset

Revenue #Seed Nodes RIR RIR
Distribution per Camp. RevMax-S RevMax-C

5 2.52 3.14
CRH 10 2.92 3.28

15 2.68 3.07
20 1.94 2.23

5 3.30 3.33
CRL 10 2.91 3.20

15 2.48 2.94
20 2.09 2.37

5 3.23 3.52
U 10 2.12 2.04

15 2.72 2.80
20 2.34 2.52

TABLE III: Revenue Improvement Rate (RIR), MCIC Model
with 2 Campaigners, 5 Seeds/Campaigner

Dataset Revenue RIR RIR
Distribution RevMax-S RevMax-C

CRH 2.52 3.14
NetHEPT CHL 3.30 3.33

U 3.23 3.52

CRH 1.04 1.04
DBLP CRL 1.02 1.03

U 1.03 1.03

CRH 1.43 1.66
Flickr CHL 1.20 1.15

U 1.01 1.11

 400
 700

 1300

 5000

 20000

 50000

5 10 15 20

Se
ed

s
Fi

nd
in

g
T

im
e

(S
ec

)

Seeds / Campaigner

RevMax-S
RevMax-C

(a) NetHEPT dataset

 400

 1000

 3000

 10000
 20000

 50000

N.HEP. DBLP Flickr

Se
ed

s
Fi

nd
in

g
T

im
e

(S
ec

) RevMax-S
RevMax-C

(b) 5 Seeds/Campaigner

Fig. 8: Seed sets finding time, MCIC model, 2 campaigners

RevMax-C requires less amount of time to identify the top-k
seed nodes as compared to that of RevMax-S, over the smaller
NetHEPT dataset and for 5 seeds per campaigner. However, as
we consider larger datasets and more seeds per campaigner,
RevMax-C requires more time. This is because RevMax-
C identifies the seed sets over the most influential tree of
the corresponding graph dataset in an exact manner, and this
process requires time O(ndm2k2m). Clearly, the running time
of RevMax-C increases at a higher rate as one increases the
number of nodes n, and the number of seeds k per campaigner.

2) Performance with K-LT Model: We first illustrate in
Tables IV and V the performance over the NetHEPT dataset
by varying the number of campaigners from 2 to 5, number
of seed nodes per campaigner from 5 to 15, and with three
different revenue distributions: uniform, clustering with low
competition, and clustering with high competition. We observe
the following for the K-LT model. With more campaigners
as well with more seed nodes, our greedy method RevMax-
S often outperforms our approximated technique RevMax-
C. This is because the performance guarantee provided by
RevMax-C is 1

m (1− 1
e), which decreases with m.

We show the efficiency results over the NetHept dataset
and with the K-LT model in Figure 9. We find that up to
5 seed nodes per campaigner, along with 2, 3, or even 5
campaigners, RevMax-C requires smaller running time as
compared to that of RevMax-S. This is due to how the
underlying viral marketing algorithm (i.e, CELF++ [11]) is

TABLE IV: Revenue Improvement Rate (RIR), K-LT Model,
CRH Revenue Distribution, NetHEPT

Camp. #Seed Nodes RIR RIR
per Camp. RevMax-S RevMax-C

5 8.99 9.20
2 10 7.73 7.97

15 6.89 6.82

5 5.86 5.94
3 10 7.01 7.29

15 6.10 5.73

5 5.70 5.85
5 10 5.00 4.83

15 5.04 4.77

TABLE V: Revenue Improvement Rate (RIR), K-LT Model
with 2 Campaigners, NetHEPT Dataset

Revenue #Seed Nodes RIR RIR
Distribution per Camp. RevMax-S RevMax-C

5 8.99 9.20
CRH 10 7.73 7.97

15 6.89 6.82

5 8.62 8.67
CRL 10 9.52 9.53

15 7.06 6.98

5 5.06 5.29
U 10 7.93 8.38

15 5.12 5.17

 400

 800

 2000

 6000
15000

2:5 2:1
0

2:1
5

2:2
0

3:5 3:1
0

3:1
5

3:2
0

5:5 5:1
0

5:1
5

5:2
0

Se
ed

s
Fi

nd
in

g
T

im
e

(S
ec

)

Campaigner : #Seeds-per-Campaigner

RevMax-S
RevMax-C

Fig. 9: Seed sets finding time, K-LT model, NetHEPT dataset

TABLE VI: Revenue Improvement Rate (RIR), K-LT Model,
CRL Revenue Distribution, DBLP Dataset

Camp.=2 # Camp.=3
#Seed Nodes RIR RIR RIR RIR

per Camp. RevMax-S RevMax-C RevMax-S RevMax-C

5 77.27 77.73 27.41 27.42
10 42.27 46.78 40.80 41.28
15 39.19 37.04 36.74 37.05
20 42.03 42.01 40.14 34.25
25 31.01 31.62 39.78 34.90

applied differently in both these methods. For RevMax-C,
CELF++ is applied only once to identify all the mk seed
nodes; while for RevMax-S, CELF++ is applied m times —
each time it identifies k seed nodes for one campaigner. How-
ever, CELF++ itself is an iterative algorithm; more specifically,
it requires k iterations to identify the top-k seed nodes. In one
run of the CELF++ algorithm, the first iteration is the most
expensive, and the subsequent iterations are significantly faster.
In RevMax-S, the first iteration of CELF++ runs for m times;
while in RevMax-C, the first iteration of CELF++ runs only
once. This explains why our proposed method RevMax-C is
faster compared to the RevMax-S. Nevertheless, RevMax-C
requires more time as one increases the number of seed nodes
per campaigner. This is because the pruning technique in the
CELF++ algorithm starts deteriorating with increasing number
of seed nodes. Since RevMax-C directly identifies mk seed
nodes, whereas RevMax-S iterates for k times and in each
iteration, it identifies m seed nodes; RevMax-C takes more
time for higher values of m or k.

We show the performance of RevMax-C and RevMax-S
with K-LT model over DBLP in Table VI. We find very similar

 2500

 3500

 6000

 9000

 15000

2:5 2:1
0

2:1
5

2:2
0

2:2
5

3:5 3:1
0

3:1
5

3:2
0

3:2
5

Se
ed

s
Fi

nd
in

g
T

im
e

(S
ec

)

Campaigner : #Seeds-per-Campaigner

RevMax-S
RevMax-C

Fig. 10: Seed sets finding time, K-LT model, DBLP dataset

 200

 1000

 2000

 6000

 15000

 20000 40000 60000 78322

Se
ed

s
Fi

nd
in

g
T

im
e

(S
ec

)

Nodes in Graph

RevMax-S
RevMax-C

(a) MCIC model

 1400

 5500

 12000
 15000

 27000

 20000 40000 60000 78322

Se
ed

s
Fi

nd
in

g
T

im
e

(S
ec

)

Nodes in Graph

RevMax-S
RevMax-C

(b) K-LT model

Fig. 11: Scalability: Seed sets finding time vs. varying graph
sizes, Flickr dataset, 2 campaigners with 5 seeds/campaigner

characteristics as before. With small number of seed nodes,
RevMax-C almost always outperforms RevMax-S both in
terms of revenue improvement rate as well as in terms of the
running time to identify the seed sets. However, RevMax-S
starts performing well with more campaigners and more seeds.

C. Scalability
In Figure 11, we analyze the variation of running times

of RevMax-C and RevMax-S with different graph sizes. In
particular, we consider varying sizes of the Flickr dataset,
while keeping the number of campaigners and number of
seeds per campaigner fixed at 2 and 5, respectively. We find
that the running time of RevMax-C increases log-linearly
with increasing graph sizes under the MCIC model, while it
increases almost linearly for the K-LT model.

In Figure 12, we illustrate the scalability of our greedy
method RevMax-S with the number of seed nodes per cam-
paigner (up to 100) and also with the number of campaigners
(up to 10). Our results show that RevMax-S scales linearly
with the number of campaigners and also with the number of
seed nodes per campaigner.

VIII. CONCLUSIONS

In this paper, we formulate and investigate the novel
problem of revenue maximization of a social network host
that sells viral marketing campaigns to multiple client cam-
paigners. While our problem under both IC and LT models
of influence cascading is NP-hard, and neither monotonic,
nor sub-modular; we develop approximated algorithms with
theoretical performance guarantees. For scalability reasons,
we also design efficient greedy methods. Our experimental
evaluation conducted on various real-world graph datasets
and with diverse settings of revenue distributions attest that
our approximated algorithms usually outperform our greedy
methods by a margin of 5%∼10%. All our algorithms are
scalable with respect to the input graph size. While our
approximated techniques suffer from scalability issues with
increasing number of seed nodes and with many campaigners,
our greedy methods are scalable even with a large number of
campaigners and many seed nodes.

 1000

 5000

 10000

 15000

 20 40 60 80 100

Se
ed

s
Fi

nd
in

g
T

im
e

(S
ec

)

Seeds/Campaigner

camp = 10

MCIC
K-LT

(a) Varying #seeds

 5000

 10000

 15000

 2 4 6 8 10

Se
ed

s
Fi

nd
in

g
T

im
e

(S
ec

)

Campaigners

seeds/camp=100

MCIC
K-LT

(b) Varying #campaigners

Fig. 12: Scalability of RevMax-S: seed sets finding time
vs. varying seed set size and campaigners, NetHept dataset

REFERENCES

[1] J. L. Aaker, A. M. Brumbaugh, and S. A. Grier. Nontarget Markets and
Viewer Distinctiveness: The Impact of Target Marketing on Advertising
Attitudes. Consumer Psychology, 9(3):127–140, 2000.

[2] S. Bharathi, D. Kempe, and M. Salek. Competitive Influence Maxi-
mization in Social Networks. In WINE, 2007.

[3] A. Borodin, Y. Filmus, and J. Oren. Threshold Models for Competitive
Influence in Social Networks. In WINE, 2010.

[4] C. Budak, D. Agrawal, and A. E. Abbadi. Limiting the Spread of
Misinformation in Social Networks. In WWW, 2011.

[5] T. Carnes, C. Nagarajan, S. M. Wild, and A. v. Zuylen. Maximizing
Influence in a Competitive Social Network: A Follower’s Perspective.
In ICEC, 2007.

[6] W. Chen, A. Colin, R. Cumming, T. Ke, Z. Liu, D. Rincon, X. Sun,
Y. Wang, W. Wei, and Y. Yuan. Influence Maximization in Social
Networks when Negative Opinions May Emerge and Propagate. In
SDM, 2011.

[7] W. Chen, C. Wang, and Y. Wang. Scalable Influence Maximization for
Prevalent Viral Marketing in Large-Scale Social Networks. In KDD,
2010.

[8] W. Chen, Y. Wang, and S. Yang. Efficient Influence Maximization in
Social Nerworks. In KDD, 2009.

[9] P. Domingos and M. Richardson. Mining the Network Value Customers.
In KDD, 2001.

[10] H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan. Efficient
Algorithms for Finding Minimum Spanning Trees in Undirected and
Directed Graphs. Combinatorica, 6(2), 1986.

[11] A. Goyal, W. Lu, and L. V. S. Lakshmanan. CELF++: Optimizing the
Greedy Algorithm for Influence Maximization in Social Networks. In
WWW, 2011.

[12] S. Goyal and M. Kearns. Competitive Contagion in Networks. In STOC,
2012.

[13] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the Spread of
Influence through Social Network. In KDD, 2003.

[14] A. Khan, B. Zehnder, and D. Kossmann. Extended version. http://www.
ntu.edu.sg/home/arijit.khan/Papers/revmax_ext.pdf, 2016.

[15] M. Kimura and K. Saito. Tractable Models for Information Diffusion
in Social Networks. In PKDD, 2006.

[16] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila. Finding Effectors
in Social Networks. In KDD, 2010.

[17] F.-H. Li, C.-T. Li, and M.-K. Shan. Labeled Influence Maximization in
Social Networks for Target Marketing. In SocialCom, 2011.

[18] H. Li, S. S. Bhowmick, J. Cui, Y. Gao, and J. Ma. GETREAL: Towards
Realistic Selection of Influence Maximization Strategies in Competitive
Networks. In SIGMOD, 2015.

[19] W. Lu, F. Bonchi, A. Goyal, and L. V. S. Lakshmanan. The Bang for
the Buck: Fair Competitive Viral Marketing from the Host Perspective.
In KDD, 2013.

[20] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. k-Nearest Neighbors
in Uncertain Graphs. PVLDB, 2010.

[21] Y. Tang, X. Xiao, and Y. Shi. Influence Maximization: Near-Optimal
Time Complexity Meets Practical Efficiency. In SIGMOD, 2014.

[22] V. Tzoumas, C. Amanatidis, and E. Markakis. A Game-Theoretic
Analysis of a Competitive Diffusion Process over Social Networks. In
WINE, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

