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Abstract—Computing the densest subgraph is a primitive
graph operation with critical applications in detecting com-
munities, events, and anomalies in biological, social, Web, and
financial networks. In this paper, we study the novel problem of
Most Probable Densest Subgraph (MPDS) discovery in uncertain
graphs: Find the node set that is the most likely to induce a
densest subgraph in an uncertain graph. We further extend our
problem by considering various notions of density, e.g., clique and
pattern densities, studying the top-k MPDSs, and finding the node
set with the largest containment probability within densest sub-
graphs. We show that it is #P-hard to compute the probability of
a node set inducing a densest subgraph. We then devise sampling-
based efficient algorithms, with end-to-end accuracy guarantees,
to compute the MPDS. Our thorough experimental results and
real-world case studies on brain and social networks validate the
effectiveness, efficiency, and usefulness of our solution.

Index Terms—uncertain graphs, densest subgraphs

I. INTRODUCTION

The discovery of dense subgraphs has attracted extensive
attention in the data management community [1], [2], [3], [4],
[5]. They may correspond to communities [6], filter bubbles
and echo chambers [7], [8] in social networks, brain regions
responding to stimuli [9] or related to diseases [10], and
commercial value motifs in financial domains [11]. They also
have wide applications in graph compression and visualization
[12], [13], [14], indexing for reachability and distance queries
[15], [16], and social piggybacking [17]. Densest subgraphs
usually maximize some notion of density in a given graph,
e.g., the edge density [1], defined as the ratio of the number
of induced edges to the number of nodes in a subgraph.
Although there are an exponential number of subgraphs, a
densest subgraph can be found both exactly and approximately
in polynomial time [1], [2]. There also exist many other
density metrics [18], such as the edge ratio, edge surplus,
triangle, clique, and pattern density, etc. [19], [20], [21], [5].

Uncertainty is intrinsic in large graphs due to errors in
measurements [22], edge imputation using inference and pre-
diction models [23], [24], and explicit manipulation including
privacy reasons [25]. An uncertain graph, where every edge
is associated with a probability of existence, is an expressive
data model that has prompted a great deal of research [26],
[27], [28]. Recently, researchers have extended several classic
network problems to uncertain graphs, e.g., nearest neighbors
[29], shortest paths and centrality [30], cliques [31], [32], [33],
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Fig. 1: Possible worlds of an uncertain graph and their probabilities

[34], core and truss decomposition [35], [36], clustering [37],
[38], [39], reliable subgraphs [40], and motif counting [41].
Surprisingly, except for maximum expected edge density [42],
the study of densest subgraph discovery on uncertain graphs is
still absent. The expected edge density of an uncertain graph is
defined as the expectation of the edge density value of a pos-
sible world (i.e., a deterministic graph) of the uncertain graph,
chosen at random [42]. However, a subgraph of the uncertain
graph having the maximum expected edge density may induce
densest subgraphs only in a few (even zero) possible worlds
of that uncertain graph. Such a subgraph can be large with
many low-probability edges, or having nodes that are loosely
connected (see Example 1). This defeats the purpose of finding
a densest subgraph. Instead, many applications would require
a densest subgraph with a high precision, such as being the
densest with a high probability. Specifically, given an uncertain
graph G, our goal is to find the node set that is the most likely
to induce a densest subgraph in G, i.e., maximize the sum of
the probabilities of those possible worlds of G in which this
node set induces a densest subgraph. We refer to the uncertain
subgraph induced by this node set as the most probable densest
subgraph (MPDS). To the best of our knowledge, computing
the MPDS is a novel problem. We demonstrate real-world
applications and case studies of our problem on uncertain brain
(§ VI-D) and social (§ VI-C) networks, where our proposed
MPDS distinguishes healthy brains from those with autism
and identifies meaningful communities in a social network.
Example 1. Figure 1 shows all possible worlds of an uncer-
tain graph with their existence probabilities. It can be verified
that, in each world, the connected component is also the
densest subgraph. As Table I shows, the node set {A,B,C,D}
has the maximum expected density (0.38), but it induces a
densest subgraph only in possible worlds G7 and G8 with low
existence probabilities (0.168 and 0.112). Thus, the probability
of {A,B,C,D} inducing a densest subgraph is only 0.28. In
contrast, the node set {B,D} has a lower expected density



TABLE I: Edge densities in possible worlds (PWs), expected edge
densities (EEDs) and densest subgraph probabilities (DSPs) of node
sets in the uncertain graph in Figure 1. The EED of a node set U is
the sum of the edge densities of the subgraphs induced by U across
all PWs, weighted by their probabilities. The DSP of U is the sum of
the probabilities of those PWs where U induces a densest subgraph.

PW:Pr. {A,B} {A,C} {B,D} {A,B,C} {A,B,D} {A,B,C,D}
G1:0.11 0 0 0 0 0 0
G2:0.07 0.5 0 0 0.33 0.33 0.25
G3:0.07 0 0.5 0 0.33 0 0.25
G4:0.25 0 0 0.5 0 0.33 0.25
G5:0.05 0.5 0.5 0 0.67 0.33 0.5
G6:0.17 0.5 0 0.5 0.33 0.67 0.5
G7:0.17 0 0.5 0.5 0.33 0.33 0.5
G8:0.11 0.5 0.5 0.5 0.67 0.67 0.75

EED 0.2 0.2 0.35 0.27 0.37 0.38
DSP 0.07 0.24 0.42 0.05 0.17 0.28

(0.35), but its probability of inducing a densest subgraph is
much higher (0.42), since it induces a densest subgraph in
possible worlds G4 and G7 with high existence probabilities.
Challenges and our contributions. We formulate and study
the novel problem of most probable densest subgraph (MPDS)
discovery in uncertain graphs: Given an uncertain graph G,
find the node set that is the most likely to induce a densest
subgraph in G. Our contributions are summarized below.
• Novel problems: To the best of our knowledge, the densest
subgraph discovery in uncertain graphs has not been inves-
tigated before, other than expected edge density [42]. Based
on edge density, clique density, and pattern density [5], we
propose densest subgraph probability as a more sophisticated
density metric. We prove that computing the densest subgraph
probability is #P-hard. We formulate and study the following
novel problems of MPDS discovery in uncertain graphs (§ II):
MPDS based on edge density, clique density, and pattern
density; for each of them, their top-k variants and nucleus
densest subgraph (NDS) variants. Real-world applications and
case studies demonstrate the usefulness of our novel problems.
• Efficient approximate solution with end-to-end accuracy
guarantees: In spite of the #P-hardness of computing the
densest subgraph probability, we design an efficient approxi-
mation algorithm for the top-k densest subgraphs discovery,
with an end-to-end accuracy guarantee. Our solution for edge
density-based MPDS is built on independent sampling of
possible worlds (e.g., via Monte-Carlo sampling) and, in each
of them, efficient enumeration of all edge-densest subgraphs
(via [43]). We provide time and space complexity analyses
and theoretical accuracy guarantees of our method (§III-A).
• Extension to other density notions: Our algorithm can
adapt well to clique and pattern densities while ensuring
the same accuracy guarantee. Although there exist efficient
algorithms to find one clique-densest and one pattern-densest
subgraph in a deterministic graph [5], the problems of enu-
merating all clique- and pattern-densest subgraphs in a deter-
ministic graph have not been studied earlier. However, such
enumerations are required in our solution framework. Thus,
as additional technical contributions, we develop novel, exact
algorithms for efficiently enumerating all clique- and pattern-
densest subgraphs in a deterministic graph (§ III-B, III-C).
• Practical nucleus densest subgraphs (NDS): In large

graphs, we find that the densest subgraph probability of every
possible node set may be quite small, due to the existence
of many possible worlds, each having a smaller probability;
and any two worlds might not have exactly the same densest
subgraph. This defeats our purpose of identifying a node set
that induces a densest subgraph with a high probability. In
such cases, we propose to find those nodes which are most
likely to form the “nucleus” of various densest subgraphs, i.e.,
whose containment probability within a densest subgraph is
maximized. We develop an approximate solution and present
theoretical analyses about its accuracy-efficiency trade-offs.
The novelty of our solution is that, by finding the maximum-
sized densest subgraph in each sampled world, we reduce this
problem to the closed frequent itemset mining problem, for
which efficient algorithms like TFP [44] exist (§ IV).
• Experiments and case studies: Our rigorous experiments
(§ VI) show that our MPDS and NDS are different from
the existing EDS notion in uncertain graphs (§ VI-B). Also,
our methods are efficient even on large graphs (§ VI-E). Our
case studies on brain (§ VI-D) and social (§ VI-C) networks
demonstrate useful real-world applications of the MPDS.

II. PRELIMINARIES
An uncertain graph G is a triple (V,E, p), where V is a set

of n nodes, E ⊆ V × V is a set of m undirected unweighted
edges, and the function p : E → (0, 1] assigns a probability of
existence to each edge. Following the bulk of the literature on
uncertain graphs [26], [29], [30], [45], [46], [47], we assume
that the edges exist independent of each other: The uncertain
graph G can be interpreted as a probability distribution over 2m
deterministic instances (possible worlds) G = (V,EG) ⊑ G
obtained by independently sampling the edges. The probability
of a possible world G = (V,EG) being observed is:

Pr(G) =
∏
e∈EG

p(e)
∏

e∈E\EG

(1− p(e)) (1)

In the rest of this section, we first revisit several notions of
graph density [4], [19], [5] in deterministic graphs (§II-A).
We next extend these notions to uncertain graphs based on
the possible world semantics (§II-B). Then, our novel Most
Probable Densest Subgraph (MPDS) problem is formally
introduced, together with several practical variants (§II-C).
Finally, we discuss the hardness of our problem (§II-D).

A. Density Notions over Deterministic Graphs
1) Edge Density: The edge density [1] measures the av-

erage degree per node, which can be used for community
detection [48], [3] in social networks.
Definition 1 (Edge Density [1]). The edge density ρe of a
deterministic graph G = (V,E) is defined as:

ρe(G) =
|E|
|V | (2)

2) Clique Density: An h-clique (h ≥ 2) is a complete graph
of h nodes. The clique density is formally defined below.
Definition 2 (h-Clique Density [19]). Given an integer h ≥ 2,
the h-clique density ρh of a deterministic graph G = (V,E),
with the number of h-cliques µh(G), is defined as:

ρh(G) =
µh(G)

|V | (3)



Notice that a 2-clique is an edge. Thus, edge density is a
special case of clique density when h = 2. Clique density
benefits in higher-order community discovery and finding
subgraphs which are large near-cliques [49], [19].

3) Pattern Density: Given an arbitrary pattern graph, the
pattern density measures the average number of such patterns
per node occurring in a subgraph.
Definition 3 (Pattern Density [5]). Given a pattern graph ψ,
the pattern density ρψ (w.r.t. ψ) of a deterministic graph G =
(V,E), with the number of ψ-instances µψ(G), is:

ρψ(G) =
µψ(G)

|V | (4)

Clearly, clique density is a special case of pattern density
when the input pattern is a clique. Pattern density can be
more expressive in real-world applications. For instance, in
the LinkedIn social network, the “employer” nodes (e.g.,
companies) cannot directly link to the “education” nodes
(e.g., universities). Thus, “employer” nodes and “education”
nodes never form a clique. However, they can be connected
via nodes representing “employee”. A subgraph which is
dense w.r.t. the “employer-employee1-education-employee2-
employer” diamond pattern may identify a group of employees
with common work experiences and educational backgrounds.

B. Extending Density Notions to Uncertain Graphs
We define the probability of a node set inducing a densest

subgraph in an uncertain graph using possible world semantics.

Definition 4 (Densest Subgraph Probability). Given an uncer-
tain graph G = (V,E, p) and a node set U ⊆ V , the densest
subgraph probability of U , denoted by τ(U), is the sum of
the probabilities of all possible worlds where the subgraph
induced by U has the largest density. Formally,

τ(U) =
∑
G⊑G

Pr(G)× 1

[
ρ(G[U ]) = max

W⊆V
ρ(G[W ])

]
(5)

The above equation verifies, in each possible world of the
uncertain graph G, whether the node set U induces a subgraph
with the maximum density. G[W ] = (W,EG[W ]) denotes
the subgraph of G induced by a node set W ⊆ V , where
EG[W ] = {(u, v) ∈ EG : u ∈ W, v ∈ W}. The indicator
function 1 [·] returns 1 if the inner condition is true (i.e., the
subgraph induced by U has the largest density in G), and
0 otherwise. Note that the node set whose induced subgraph
has the maximum edge density in G may not be unique. The
density metric ρ can follow any of the density notions (§ II-A)
based on the real application demand. In the following, without
loss of generality, densest subgraph probability is coupled with
edge density ρe by default. For h-clique density ρh and pattern
density ρψ , we refer to h-clique densest subgraph probability
τh and pattern densest subgraph probability τψ respectively.
Example 2. Figure 2 shows an input uncertain graph and
some of its possible worlds. The subgraphs induced by the
node set {A,C,D} contain a 3-clique (i.e., triangle) only
in possible worlds G1, G2, G3, and G4. In fact, {A,C,D}
induces 3-clique densest subgraphs in possible worlds G1,

Fig. 2: 3-Clique and pattern densities in an uncertain graph

G2, and G3, thus the 3-clique densest subgraph probability
of {A,C,D} is 0.009 + 0.036 + 0.009 = 0.054.

For the pattern ψ, we notice that the subgraphs induced by
node set {A,B,C,D} contain ψ only in possible worlds G2,
G3, G4, G5, G6, G7, and G8. Moreover, {A,B,C,D} induces
the ψ-densest subgraphs in all these six possible worlds, thus
the ψ-densest subgraph probability of {A,B,C,D} is 0.294.

C. Problem Formulations

We formulate the problem of finding a node set that is the
most likely to induce a densest subgraph in an uncertain graph.

Problem 1 (Most Probable Densest Subgraph (MPDS)).
Given an uncertain graph G = (V,E, p), find the node set
U∗ ⊆ V that has the highest densest subgraph probability.

U∗ = argmax
U⊆V

τ(U) (6)

The h-Clique-MPDS and Pattern-MPDS problems can
be defined analogously. In the following, we provide two
other variants of our MPDS problem. First, the user may be
interested in exploring more possible choices besides the best
node set. Thus, we provide the top-k variant below.

Problem 2 (Top-k Most Probable Densest Subgraphs (Top-k
MPDSs)). Given an uncertain graph G = (V,E, p) and
a positive integer k, find the top-k distinct node sets
U∗1 , U

∗
2 , . . . , U

∗
k (where each U∗i ⊆ V , i ∈ [1, k]) having the

highest densest subgraph probabilities. Formally,

τ(U∗
i ) ≥ τ(U∗

i+1) ∀i ∈ [1, k)

τ(U∗
i ) ≥ τ(U) ∀i ∈ [1, k] & ∀U ⊆ V, U /∈ {U∗

1 , . . . , U
∗
k} (7)

Second, in large graphs, we observe that the densest sub-
graph probability of every node set can be quite small, e.g.,
below 3.91× 10−5 in Homo Sapiens, Biomine, and Twitter
(§ VI). In such cases, reporting MPDSs contradicts our goal
of identifying node sets that can induce densest subgraphs
with high probabilities. Instead, we find those sets with the
highest containment probabilities within a densest subgraph.
Such node sets form the “nuclei” of various densest subgraphs
across different possible worlds of the uncertain graph.

Definition 5 (Densest Subgraph Containment Probability).
The densest subgraph containment probability γ(U) of U ⊆ V
is the sum of the probabilities of all possible worlds G of the
uncertain graph G = (V,E, p) such that U is contained in a
densest subgraph of G. Formally,

γ(U) =
∑
G⊑G

Pr(G)× 1

[
∃U ′ ⊇ U : ρ(G[U ′]) = max

W⊆V
ρ(G[W ])

]
Example 3. Considering the input uncertain graph in Fig-
ure 1, the node set {B,D} can induce a densest subgraph



with probability 0.42 (in possible worlds G4 and G7). We
notice that {B,D} is also contained in densest subgraphs
of other possible worlds (G6 and G8), even though {B,D}
alone does not induce densest subgraphs in these worlds. The
overall densest subgraph containment probability of {B,D}
is 0.7 (due to G4, G6, G7, and G8), which implies that this
node set is a critical component in forming densest subgraphs.

There are two caveats for finding the top-k node sets with
the highest densest subgraph containment probabilities: (1) A
small-sized node set (e.g., a singleton) can also have a high
containment probability; however, such sets do not represent
meaningful graph communities; (2) If a node set U and one of
its supersets U ′ have equal containment probabilities γ(·), then
it makes more sense to report U ′ only (to avoid redundancy).
We, therefore, require that all returned node sets must have a
minimum specified size and must be closed w.r.t. γ(·). A node
set is closed w.r.t. γ(·) if none of its supersets has the same
value of γ(·). We now define our NDS problem.

Problem 3 (Top-k Nucleus Densest Subgraphs (NDSs)).
Given an uncertain graph G = (V,E, p) and positive integers
k and lm, let V≥lmc denote the set of all node sets of size at
least lm that are closed w.r.t. γ(·). Find the top-k closed node
sets U∗1 , U

∗
2 , . . . , U

∗
k (where U∗i ∈ V≥lmc , i ∈ [1, k]) having the

highest densest subgraph containment probabilities. Formally,

γ(U∗
i ) ≥ γ(U∗

i+1) ∀i ∈ [1, k)

γ(U∗
i ) ≥ γ(U) ∀i ∈ [1, k] & ∀U ∈ V≥lm

c \ {U∗
1 , . . . , U

∗
k} (8)

Notice that the Top-k MPDS and the NDS problems can
be analogously extended to their clique and pattern versions.
D. Hardness
Theorem 1. Computing the densest subgraph probability of a
node set U in an uncertain graph G = (V,E, p) is #P-hard.
Proof. We prove by a reduction from the #P-hard problem of
finding the number of matchings in a graph [45]. A matching
in a deterministic graph G = (V,E) is an edge set M ⊆ E
without any common nodes.

Consider a deterministic graph G = (V,E). This graph is
transformed, by adding two new nodes v1 and v2 along with
an edge between them, into an uncertain graph G = (V ∪
{v1, v2}, E∪{(v1, v2)}, p), where the probability of each edge
is 0.5, except the new edge (v1, v2) which has probability 1.
Clearly, this reduction takes O(|E|) time, which is polynomial
in the size of G. It can be shown that: • Any possible world
G′ ⊑ G with non-zero probability has Pr(G′) = (0.5)|E|. •
There is a bijection between the set of subsets of E and the set
of possible worlds of G with non-zero probability. • The node
set {v1, v2} induces a densest subgraph in a possible world iff
every node has degree at most 1 in that world, i.e., the edges
in the world excluding (v1, v2) form a matching in G. Thus,

τ({v1, v2}) =
∑
G′⊑G

Pr(G′)× 1

[
{v1, v2} = argmax

W⊆V
ρ(G′[W ])

]
=

∑
G′⊑G

Pr(G′)× 1
[
each node has degree at most 1 in G′]

= (0.5)|E|
∑

G′⊑G:Pr(G′ )̸=0

1
[
each node has degree at most 1 in G′]

= (0.5)|E|
∑
M⊆E

1 [M is a matching in G]

The sum in the last line above is the number of matchings in
G. Thus, a solution to our problem on G provides a solution
to the matching counting problem on G.

Since the computation of τ(U), for a given U , is #P-
hard, the computations of its generalizations τh(U) and τψ(U)
are also #P-hard. Thus, finding the node sets with the top-k
densest subgraph probabilities, as well as computing the NDS,
are also very difficult. Given such computational challenges,
we design approximate algorithms, with end-to-end accuracy
guarantees, to find the most probable densest subgraphs in an
uncertain graph, based on various graph density notions.

III. APPROXIMATE SOLUTIONS FOR DENSEST SUBGRAPHS

In this section, we develop approximation algorithms for
detecting the top-k MPDSs, along with end-to-end theoret-
ical accuracy guarantees. Our technical contributions are
as follows: (1) We design novel approximation methods to
compute the top-k MPDSs in an uncertain graph for all
density notions: edge (§ III-A), clique (§ III-B), and pat-
tern (§ III-C). (2) As building blocks of the algorithms for
clique and pattern densities, we also design novel algorithms
to discover all clique and pattern densest subgraphs in a
deterministic graph12(§ III-B and § III-C). (3) Additionally,
we use these methods to design approximation algorithms,
with end-to-end theoretical quality guarantees, for computing
the corresponding NDS (§ IV).

A. Top-k MPDS: Approximate Algorithm

The proposed solution (Algorithm 1) runs θ independent
iterations as follows: Sample a possible world G ⊑ G and find
all the node sets inducing the densest subgraphs in G (Line
5). τ̂(U) denotes the estimated densest subgraph probability,
which is computed as the average frequency that a node set U
induces a densest subgraph across θ rounds. Finally, we return
the top-k node sets having the highest τ̂(·).
Lemma 1. τ̂(U) is an unbiased estimator for τ(U). Formally,
E[τ̂(U)] = τ(U).

Proof. Let Xi(U) be a binary random variable denoting
whether U induces a densest subgraph in the ith possible
world; thus τ̂(U) = 1

θ

∑θ
i=1Xi(U). Clearly, E[Xi(U)] =

Pr (Xi[U ] = 1) = τ(U), and hence E[τ̂(U)] = τ(U).
The unbiasedness ensures that the estimated τ̂(U) goes

closer to the true value τ(U) as the sample size θ increases.
The technique in [43] for computing all densest subgraphs

in a deterministic graph (Line 5) involves reducing the graph
to its ⌈ρ̃⌉-core [51], where ρ̃ is a lower bound on the max-
imum edge density ρ∗e of any subgraph. This is followed by
computing ρ∗e using the state-of-the-art Goldberg’s algorithm
[1]. During each iteration of its binary search, the Goldberg’s
algorithm tries to find a subgraph with density larger than a
guessed value α by computing the minimum cut in a flow

1Due to the extra nodes for cliques/patterns in the flow network, the definitions and
theorems do not trivially follow [43]; more details can be found in the remark in § III-B

2Our empirical study [50] validates that considering all densest subgraphs can
significantly outperform (e.g., up to 20× in LastFM) the method that considers only
one randomly chosen densest subgraph.



Algorithm 1 Top-k MPDS estimation
Input: Uncertain graph G = (V,E, p), positive integer k, and number of samples θ
Output: (Approximate) Top-k MPDS
1: for all U ⊆ V do
2: τ̂(U)← 0
3: for i = 1 to θ do
4: Sample a possible world G ⊑ G
5: S ← All densest subgraphs in G via [43]
6: for all U ∈ S do
7: τ̂(U)← τ̂(U) + 1

θ
8: return Top-k U ’s having the highest τ̂(U)

Fig. 3: Finding all densest subgraphs in a possible world

network parameterized by α. Once ρ∗e is found, all densest
subgraphs are enumerated by traversing the strongly connected
components (SCCs) in the residual graph (under a maximum
flow) of the flow network with α = ρ∗e; the details can be
found in [43] and in the example below.
Example 4. We shall compute all densest subgraphs in a
possible world G (Figure 3(b)) of an uncertain graph G
((Figure 3(a)). A flow network Gα (Figure 3(c)) is constructed
as follows. (1) Add a source node s and a sink node t. (2)
If an edge (u, v) exists in G, add an edge from u to v and
one from v to u in Gα, both with capacity 1. (3) Add an
edge from s to each node v in G with capacity equal to the
degree of v in G. (4) Add an edge from each node in G to t
with capacity 2α. Goldberg’s algorithm [1] conducts a binary
search with [0,m] as the initial range of α. In each iteration,
it guesses an α and computes the maximum flow (minimum
cut) in the flow network. Once terminated, the optimal density
is assigned to be ρ∗ = α. In this example, we get ρ∗ = 1
and a densest subgraph {A,B,C,D} (which corresponds to
the minimum cut). To find the other densest subgraphs, we
create the residual graph ((Figure 3(d)) by removing all the
edges with zero residual capacity. The densest subgraphs are
enumerated by exploring the SCCs in this residual graph. In
this case, we find one additional densest subgraph {B,C,D}.
Space complexity. The majority of the memory is consumed
by the flow network in each iteration of the binary search, and
hence the overall space complexity is O(m+ n).
Time complexity. Recall that we sample θ possible worlds.
The computation of the ⌈ρ̃⌉-core of each possible world
takes O(m) time [51]. Let nc and mc denote the num-
ber of nodes and edges respectively in the ⌈ρ̃⌉-core of a
sampled possible world G ⊑ G. As shown in [43], the
computation of ρ∗e takes O

(
ncmc log

(
n2
c

mc

))
time, while the

enumeration of the densest subgraphs takes O(L) time per
subgraph, where L is the number of nodes in that densest
subgraph (note that L ≤ n). Denoting respectively by n∗c ,
m∗c , d∗, and L∗ the maximum number of nodes, edges,

densest subgraphs, and nodes in a densest subgraph in any
possible world, the overall time complexity of our algorithm is
O
(
θ
(
m+ n∗cm

∗
c log

(
n∗2
c

m∗
c

)
+ d∗L∗

))
. Practically, n∗c ≪ n,

m∗c ≪ m and L∗ ≪ n, as validated in our experiments
(§ VI). For instance, n∗

c

n = 2.45 × 10−4, L∗

n = 1.8 × 10−4,
m∗
c

m = 5.43 × 10−3, and d∗ = 1 in our large Twitter dataset,
making Algorithm 1 efficient even with large-scale graphs.
Accuracy guarantee. We theoretically analyze the sample size
θ to return the true top-k node sets with a high probability.

Theorem 2. Let V1, . . . , Vk denote the true top-k node sets
having the highest densest subgraph probabilities, and let CV
denote the set of candidate node sets after θ rounds. Then,

Pr ({V1, . . . , Vk} ⊆ CV ) ≥ 1−
k∑
i=1

(1− τ(Vi))
θ (9)

Proof. Since we compute all densest subgraphs in each of
θ independently sampled possible worlds, Pr (Vi /∈ CV ) =
(1− τ(Vi))

θ ∀i ∈ {1, . . . , k}. From the union bound,

Pr ({V1, . . . , Vk} ⊆ CV ) = 1− Pr (∃i ∈ {1, . . . , k} : Vi /∈ CV )

≥ 1−
k∑
i=1

Pr (Vi /∈ CV ) = 1−
k∑
i=1

(1− τ(Vi))
θ

From Theorem 2, if the densest subgraph probabilities of
the true top-k node sets and the sample size θ are reasonably
large, they are all highly likely to be included in the candidate
node set, which is necessary for all of them to be returned.

Theorem 3. Let V1, . . . , Vk+1 denote the true top-(k+1) node
sets having the highest densest subgraph probabilities, and
let CV denote the set of candidate node sets after θ rounds.
Define mid = 1

2 [τ (Vk) + τ (Vk+1)] and

dU =

{
τ(U)−mid if U ∈ {V1, . . . , Vk}
mid− τ(U) otherwise

(10)

Then, the probability that V1, . . . , Vk are returned by Algo-
rithm 1 is at least[

1−
k∑
i=1

(1− τ(Vi))
θ

][
1−

∑
U∈CV

exp
(
−2d2Uθ

)]
(11)

Proof. Let CV ′ = CV \ {V1, . . . , Vk}. We have:

Pr(V1, . . . Vk are returned) ≥ Pr({V1, . . . , Vk} ⊆ CV )×

Pr

 ∧
U∈{V1,...,Vk }̂

τ(U) > mid

 ∧

 ∧
U∈CV ′̂

τ(U) < mid

 (12)

Now, using the union bound and Hoeffding’s inequality,

Pr

 ∧
U∈{V1,...,Vk}

τ̂(U) > mid

 ∧

 ∧
U∈CV ′

τ̂(U) < mid


= 1− Pr

 ∨
U∈{V1,...,Vk }̂

τ(U) ≤ mid

 ∨

 ∨
U∈CV ′

τ̂(U) ≥ mid


≥ 1−

∑
U∈{V1,...,Vk}

Pr (τ̂(U) ≤ mid)−
∑

U∈CV ′
Pr (τ̂(U) ≥ mid)

= 1−
∑

U∈{V1,...,Vk}
Pr (τ̂(U)− τ(U) ≤ −dU )−

∑
U∈CV ′

Pr (τ̂(U)− τ(U) ≥ dU )

≥ 1−
∑

U∈CV
exp

(
−2d2Uθ

)
(13)



Algorithm 2 Find all clique-densest subgraphs
Input: Deterministic graph G = (V,E), positive integer h
Output: All h-clique densest subgraphs in G
1: ρ̃← Density returned by the peeling method [19], [5]
2: Gc ← (⌈ρ̃⌉, h)-core of G [5]
3: Λ← All (h− 1)-cliques contained in h-cliques in Gc [54]
4: ρ∗h ← maxS⊆V ρh(S) [55]
5: H ← Flow network as in [20]
6: f∗ ← Maximum flow in H
7: C ← SCCs of the residual graph Hf∗ , excluding those of s and t
8: return Algorithm 3 (∅, C, V )

Finally, plugging (9) and (13) into (12), we obtain (11).

From Theorem 3, if the densest subgraph probabilities of
the true top-k node sets are reasonably large in contrast to the
others and if the sample size θ is sufficiently large, the true
top-k sets are returned by Algorithm 1 with a high probability.
Remarks. (1) Notice that the algorithmic framework and
accuracy guarantees can be adapted to solve the top-k Clique-
MPDS (resp. Pattern-MPDS) problems. However, we need
to develop an efficient algorithm for detecting all clique (resp.
pattern)-densest subgraphs in each sampled possible world
(Line 5 of Algorithm 1), which is our novel technical contri-
bution in § III-B (resp. § III-C). (2) Our analyses are based on
the assumption that we use Monte Carlo to sample possible
worlds. There also exist other sampling techniques such as
Lazy Propagation [52] and Recursive Stratified Sampling [53].
We empirically show in our extended version [50] that, for
our problem, these three sampling strategies result in similar
sample sizes θ and have comparable running times, while
Monte Carlo consumes much less memory.

B. h-Clique-MPDS: Approximate Algorithm

Inspired by [43], we develop a novel, exact, and efficient
solution to discover all clique-densest subgraphs in a deter-
ministic graph (Algorithm 2). This is a novel problem, and no
existing work has studied it. Therefore, Algorithm 2 is one of
our novel technical contributions. In the following, we first
revisit the concepts of clique degree (Definition 6) and clique-
based core (Definition 7) in deterministic graphs. Then, we
illustrate the technical details and the intuitions of our algo-
rithm, together with a running example. Finally, we provide
theoretical analyses about its efficiency and correctness.

Definition 6 (h-Clique Degree [5]). The h-clique degree
(h ≥ 2) of a node v in a deterministic graph G, denoted
by degG(v, h), is the number of h-cliques in G containing v.

Definition 7 ((k, h)-Core [5]). Given a deterministic graph
G and two integers h ≥ 2 and k ≥ 0, the (k, h)-core of G,
denoted by Rk, is the largest subgraph of G such that, for
every node v in Rk, degRk(v, h) ≥ k.

Armed with these definitions, we proceed to the details of
Algorithm 2, which consists of two general steps: (1) The
technique in [55] is applied to compute the maximum density
of any subgraph of G. (2) A flow network H is constructed
following [20], [43]. The SCCs of the residual graph under a
maximum flow in H indicate all densest subgraphs of G.

Algorithm 3 Enumerate all clique densest subgraphs
Input: Component sets C1 and C2, node set V
Output: All clique-densest subgraphs
1: R← ∅
2: if C1 ̸= ∅ then
3: R← R ∪

(⋃
C∈C1∪des(C1) C ∩ V

)
4: for all C ∈ C2 do
5: if C ∩ V ̸= ∅ then
6: C2 ← C2 \ {C}
7: S ← Algorithm 3 (C1 ∪ {C}, C2 \ (des(C) ∪ anc(C)), V )
8: R← R ∪ S
9: return R

Fig. 4: Finding all 3-clique densest subgraphs in a possible world

In Line 1, it runs the peeling method of [19], which
iteratively removes the node with the smallest h-clique degree
and returns the maximum density among all the resultant
subgraphs, denoted by ρ̃. Then, in Line 2, it replaces G with its
(⌈ρ̃⌉, h)-core, i.e., the subgraph induced by those nodes which
have h-clique degree at least ρ̃. After that, Line 3 computes the
set Λ of all (h−1)-cliques contained in h-cliques in G, which
are enumerated using the method in [54]. Line 4 computes ρ∗h,
the maximum h-clique density of any subgraph, by the method
in [55], which iteratively computes a (predicted) clique-densest
subgraph via optimizing a convex program, till the computed
subgraph is deemed to be indeed clique-densest. After that,
the clique density of the computed subgraph is returned.

Next, Line 5 constructs a flow network H [20], [5], which
contains one node for each (h−1)-clique in Λ and one for each
node in V , in addition to a source node s and a sink node t
(see our extended version [50] for the pseudocode). Once H is
constructed, Algorithm 2 computes a maximum flow f∗ in H
(Line 6) and then identifies the strongly connected components
(SCCs) of the residual graph Hf∗ of H under f∗ (Line 7) after
removing the edges with zero residual capacity.

Finally, in Line 8, Algorithm 3 enumerates one densest
subgraph of G for every value of C ∪ des(C), where C is
an SCC of Hf∗ , and the set des(C) (resp. anc(C)) denotes
the set of SCCs having a directed path from (resp. to) C in
the SCC graph of Hf∗ . The detailed theoretical analyses for
Algorithms 2 and 3 are given in our extended version [50].
Example 5. We shall compute all h-clique densest subgraphs
(h = 3) in a possible world G (Figure 4(b)) of an uncertain
graph G ((Figure 4(a)). The maximum 3-clique density ρ∗h
of any subgraph of G can be easily computed as 1

3 . A flow
network Gα is constructed as in Figure 4(c). Instead of directly
adding edges between nodes as for edge density (Example 4),
a new set of nodes representing the (h− 1)-cliques is added.



A (h − 1)-clique node ψi has a directed edge to each node
contained in this (h−1)-clique, with infinite capacity. If a node
v forms an h-clique with the (h−1)-clique ψi, a directed edge
from v to ψi is added with capacity 1. For simplicity, we only
show the capacities of the edges entering and leaving ψ1 in
Figure 4(c). In this example, the (h− 1)-cliques are all edges
in the possible world, as shown in Figure 4(d). After plugging
in ρ∗h = 1

3 and computing the maximum flow, we identify a
3-clique densest subgraph {A,B,C,D,E, F}, and obtain a
residual graph as shown in Figure 4(e). The remaining 3-
clique densest subgraphs are {A,B,C} and {D,E, F}. Each
of them corresponds to an SCC of the residual graph.
Remark. Our Algorithm 2 for computing all clique-densest
subgraphs has similarities to the method of computing all
edge-densest subgraphs in [43]. However, there are also major
differences from [43]: As demonstrated in Example 5, our flow
network H has one additional node for each (h− 1)-clique in
Λ (in addition to one for each node in V as in [43]), and the
edges are from nodes in V to nodes in Λ (unlike [43], where
the edges only exist between nodes in V ). Thus, some non-
trivial additions3 need to be incorporated into the definitions
and proofs in [43] to prove the correctness of our Algorithms
2 and 3. This forms one of our novel technical contributions.
Space complexity. Let Gc be the (⌈ρ̃⌉, h)-core in Lines
1-2 of Algorithm 2, with nc and mc the corresponding
node and edge counts respectively. As each h-clique of Gc
contains h distinct (h − 1)-cliques, |Λ| = O (hµh(Gc)),
where µh(Gc) is the number of h-cliques in Gc. Thus, the
number of nodes in H is O (nc + hµh(Gc)) and the number of
edges is O

(
nc +

∑
v∈V degGc(v, h) + (h− 1)hµh(Gc)

)
=

O
(
nc + h2µh(Gc)

)
. Since these consume the most memory,

the space complexity of Algorithm 2 is O
(
nc + h2µh(Gc)

)
.

When we adapt Algorithm 1 for h-Clique-MPDS, in addi-
tion to the memory required for storing the uncertain graph,
the majority of the memory is consumed by Line 5, which
invokes Algorithm 2. Denoting by µ∗h the maximum number
of h-cliques in the (⌈ρ̃⌉, h)-core of any possible world of G, the
overall space complexity of our method is O

(
m+ n+ h2µ∗h

)
.

Time complexity. For Lines 1-3 in Algorithm 2, the ma-
jor step is enumerating all h-cliques in G, which takes
O
(
hm

(
1
2 · µh(G)

)h−2)
time, where µh(G) is the num-

ber of h-cliques in G [54]. If T denotes the number of
iterations involved in computing ρ∗h using [55], the run-
ning time of Line 4 consists of optimizing the convex pro-
gram and computing the maximum flow in each iteration
[55], and requires O

(
2Thµh(Gc) + T

(
nchµh(Gc) + n3c

))
time, where nc is as defined above. Lines 5-6 can be
done in O

((
nchµh(Gc) + n3c

))
time [5]. Line 7 takes

O
(
nc + h2µh(Gc)

)
time, as it involves finding the SCCs of

Hf∗ , whose node and edge counts are stated above. In Line 8,
each densest subgraph is enumerated exactly once (as proved
in our extended version [50]), and each subgraph enumeration
takes time linear in the corresponding number of nodes.

3In our extended version [50], Definitions 10-11 and the proofs of Lemmas 9-10 are
different from [43]. Moreover, Lemma 7 is newly derived and serves as a critical reason
for not considering the SCC of the sink node.

Algorithm 4 Find all pattern-densest subgraphs
Input: Deterministic graph G = (V,E), pattern ψ = (Vψ, Eψ)
Output: All pattern-densest subgraphs w.r.t. ψ in G
1: ρ̃← Density returned by the peeling method [5]
2: Gc ← (⌈ρ̃⌉, ψ)-core of G [5]
3: Λ← All ψ-instances in Gc [56]
4: ρ∗ψ ← maxS⊆V ρψ(S) [55]
5: H ← Flow network as in [5]
6: f∗ ← Maximum flow in H
7: C ← SCCs of the residual graph Hf∗ , excluding those of s and t
8: return Algorithm 3 (∅, C, V )

Denoting respectively by n∗c , d∗, L∗, and T ∗, the
maximum number (in the (⌈ρ̃⌉, h)-core of any possible
world) of nodes, densest subgraphs, nodes in a densest
subgraph and iterations of [55] to compute ρ∗h, and by
µ∗h the maximum number of h-cliques in any possible
world, the overall time complexity of our method is
O

(
θ
(
hm

(
1
2
· µ∗

h

)h−2
+ 2T

∗
hµ∗

h + T ∗ (n∗
chµ

∗
h + n∗3

c

)
+ d∗L∗

))
.

Practically, n∗c ≪ n and T ∗ is very small, as validated
in our experiments (§ VI). For instance, T ∗ = 11,
n∗
c

n = 4.731 × 10−4, L∗

n = 2.049 × 10−5, µ∗
h

m = 0.181,
and d∗ = 1 for our large Twitter dataset, making our
algorithm quite efficient with large-scale graphs.
Accuracy guarantee. We briefly show (and in details in our
extended version[50]) that Algorithm 2 correctly computes all
clique-densest subgraphs in a deterministic graph. Thus, our
overall accuracy guarantees for finding the top-k h-Clique-
MPDSs in an uncertain graph remain the same as in §III-A.

Theorem 4. Algorithm 2 enumerates each h-clique densest
subgraph of a deterministic graph G exactly once.

Proof Sketch. Lines 1-2 of Algorithm 2 are justified by the fact
that the densest subgraph is in the (⌈ρ∗h⌉, h)-core, and hence
in the (⌈ρ̃⌉, h)-core [5]. The correctness of Line 4 follows
from [55]. The main idea behind the remaining lines is that
all h-clique densest subgraphs of G are hidden in the SCCs of
the residual graph Hf∗ of H under a maximum flow f∗. Any
h-clique densest subgraph of G constitutes a minimum s-t cut
in H. Thus, this subgraph has no outgoing edge in Hf∗ .

C. Pattern-MPDS: Approximate Algorithm
Algorithm 4 for finding all pattern-densest subgraphs (w.r.t.

a given pattern ψ = (Vψ, Eψ)) is inspired by [43]. As earlier,
finding all pattern-densest subgraphs in a deterministic graph
is a novel problem, and Algorithm 4 is a novel contribution.

Algorithm 4 is similar to Algorithm 2 (§ III-B); in fact, the
(k, h)-core (Definition 7) can be extended to the (k, ψ)-core
(Line 2), and ρ∗ψ is computed in Line 4 by extending [55]. In
Line 3, Λ refers to the set of all ψ-instances in G instead of
cliques, which is enumerated using [56]. Moreover, the flow
network H (constructed as in [5]; the pseudocode is included
in our extended version [50]) contains one node for each group
of ψ-instances with a common node set, instead of one for
each instance, to reduce the memory footprint and running
time. This forms the main difference between our method and
the one in [43], resulting in some non-trivial additions which
constitute one of our novel contributions (see [50]).



Accuracy guarantee. We prove in our extended version [50]
that Algorithm 4 correctly computes pattern-densest sub-
graphs w.r.t. ψ in a deterministic graph. The main difference is
in the derivation of the capacity of a minimum cut in H, which
is quite different from the one in § III-B as mentioned above.
Finally, since Algorithm 4 correctly computes all pattern-
densest subgraphs w.r.t. ψ in a deterministic graph, our overall
accuracy guarantees for finding the top-k Pattern-MPDS in
an uncertain graph remain the same as in §III-A.
Space complexity. Let Gc be the (⌈ρ̃⌉, ψ)-core in Lines 1-
2 of Algorithm 4, with nc and mc the corresponding node
and edge counts respectively. Clearly |Λ| = O (µψ(Gc)),
where µψ(Gc) is the number of ψ-instances in Gc. Thus, the
number of nodes in H is O (nc + µψ(Gc)) and the number
of edges is O (nc + |Vψ|µψ(Gc)). Also, computing ρ∗ψ (Line
4) requires O(nc + |Λ|) = O(nc + µψ(Gc)) space [5]. Since
these constitute most of the memory consumed, the total space
complexity of Algorithm 4 is O (nc + |Vψ|µψ(Gc)).

When we adapt Algorithm 1 for Pattern-MPDS, in addition
to the memory required for storing the uncertain graph, the
majority of the memory is consumed by Line 5, which invokes
Algorithm 4. Denoting by µ∗ψ the maximum number of ψ-
instances in the (⌈ρ̃⌉, h)-core of any possible world of G, the
overall space complexity is O

(
m+ n+ |Vψ|µ∗ψ

)
.

Time complexity. Assume that the enumeration of all ψ-
instances in a possible world takes O(tψ) time. By a similar
analysis as in § III-B, denoting respectively by n∗c , d∗, L∗,
µ∗ψ , and T ∗, the maximum number (in the (⌈ρ̃⌉, ψ)-core of
any possible world) of nodes, densest subgraphs, nodes in
a densest subgraph, ψ-instances, and iterations of [55] to
compute ρ∗ψ , the overall time complexity of our method is

O
(
θ
(
tψ + 2T

∗ |Vψ|µ∗ψ + T ∗
(
n∗cµ

∗
ψ + n∗3c

)
+ d∗L∗

))
.

Remark. For larger graphs and bigger patterns ψ, we find
that the enumeration of all ψ-instances (which is necessary
to compute the densest subgraphs in a possible world) can
be expensive. In such cases, we resort to a heuristic method
in which we enumerate some reasonably dense subgraphs
(instead of all densest ones) using [5]. Specifically, we use a
method different from Algorithm 4, which runs core decom-
position w.r.t. ψ. If kmax denotes the maximum core number,
then the (kmax, ψ)-core is a reasonably dense subgraph. In
particular, the (kmax, ψ)-core’s density is at least 1

|Vψ| times
the maximum density of any subgraph [5]. Based on this,
we return the (kmax, ψ)-core and all intermediate subgraphs
(obtained during core decomposition) having greater densities.
Experimental results [50] show that this heuristic method
yields good-quality solutions with higher efficiency.

IV. NDS: APPROXIMATE SOLUTION

We convert the NDS (nucleus densest subgraphs) problem
into the widely-studied closed frequent itemset mining prob-
lem and develop an approximate method (Algorithm 5) to find
the top-k NDS for all three notions of density: edge, clique,
and pattern density. The algorithm first runs θ independent
rounds: Sample a possible world G ⊑ G and insert, into the

Algorithm 5 Estimate all NDS in an uncertain graph
Input: Uncertain graph G = (V,E, p), positive integers k and lm, no. of samples θ
Output: (Approximate) NDS
1: CV ← ∅
2: for i = 1 to θ do
3: Sample a possible world G ⊑ G
4: S ← Maximum-sized densest subgraph in G
5: CV ← CV ∪ {S}
6: return TFP(CV , k, lm) [44]

set of candidate node sets CV , the maximum-sized densest
subgraph of G4. For a node set U ⊆ V , let γ̂(U) denote
the estimated densest subgraph containment probability of U ,
which is computed as the fraction of node sets in CV which
contain U . Then a closed frequent itemset mining algorithm
(e.g., TFP [44]) is applied to compute the top-k closed node
sets in CV of size at least lm having the largest values of γ̂(·).
A node set is closed w.r.t. γ̂(·) if it has no superset with the
same value of γ̂(·). Here, lm is a user input decided based on
the minimum desired size of a returned subgraph.

The maximum-sized densest subgraph in a deterministic
graph (Line 4) can be computed using parts of the methods
in § III. For edge density, we terminate after computing the
SCCs of the residual graph under a maximum flow [43]. For
clique and pattern densities, we terminate after computing the
value of the maximum density of a subgraph, since we also
get the maximum-sized densest subgraph in this process [55].
Space complexity. The major memory cost is due to the flow
network in each iteration of Algorithm 5. Therefore, the overall
space complexity is the same as in § III.
Time complexity. The time complexity is similar to the ones
in § III, plus that for computing the closed frequent node sets
by TFP, which is reasonable in our experiments (§ VI-F).
Accuracy guarantee.
Theorem 5. Let V1, . . . , Vk+1 denote the true top-(k + 1)
closed node sets of size at least lm having the highest densest
subgraph containment probabilities, and let CV denote the
set of candidate node sets after θ rounds. Define mid =
1
2 [γ (Vk) + γ (Vk+1)] and

dU =

{
γ(U)−mid if U ∈ {V1, . . . , Vk}
mid− γ(U) otherwise

(14)

For each i ∈ [1, k], let G(Vi) denote the set of all possible
worlds of G whose densest subgraphs contain Vi. Define G =⋃k
i=1 G(Vi) and CV as the set of all closed node sets w.r.t.

γ̂(·) of size at least lm. Then, the probability that V1, . . . , Vk
are returned by Algorithm 5 is at least[

1−
∑
G∈G

(1− Pr(G))θ
][

1−
∑
U∈CV

exp
(
−2d2Uθ

)]
(15)

The proof is given in our extended version [50]. From
Theorem 5, if the densest subgraph containment probabilities
of the true top-k node sets are reasonably larger than the other

4By a trivial generalization of [57] to all density notions, the union of the node sets
of all densest subgraphs of a deterministic graph G induces the maximum-sized (w.r.t.
node count) densest subgraph in G. Thus, a node set is contained in a densest subgraph
of G if and only if it is contained in the maximum-sized densest subgraph of G.



closed node sets w.r.t. γ̂(·) of size at least lm, and if the sample
size θ is sufficiently large, the true top-k sets are returned by
Algorithm 5 with a high probability.

V. RELATED WORK

We first revisit the densest subgraph problem in determin-
istic graphs. Then, we discuss the maximum expected density
in uncertain graphs. Finally, we state several close notions for
cohesive and dense substructures in uncertain graphs.
Densest subgraph in a deterministic graph. Given an undi-
rected, unweighted, deterministic graph, the original densest
subgraph (DS) problem [1] finds a subgraph with the highest
edge-density, exact solutions to which are based on min-
cuts in flow-networks [1], [5] and linear programming [1],
[2]. To mitigate high computation costs, researchers proposed
approximate algorithms with theoretical guarantees, e.g., [2],
[5], [58], [59]. Variants of the edge-density-based DS problem
were also studied, such as triangle-density, clique-density,
pattern-density, and edge-surplus based DS [5], [20], [55],
[19], [3], size-bounded DS [60], top-k DS maintenance on
dynamic graphs [61], [58], [59], locally DS [62], density-
friendly graph decomposition [63], [64], DS on directed [65],
bipartite [66], multilayer graphs [67], etc. For surveys and
tutorials, we refer to [68], [4]. Enumerating all the densest
subgraphs based on edge-density in a deterministic graph has
been recently studied in [43], which we use as a subroutine
to find the MPDS of an uncertain graph in our problem.
We notice that the problems of enumerating all clique-DS
and pattern-DS in a deterministic graph were not studied in
the literature. Thus, as additional technical contributions, we
develop novel, exact algorithms for efficiently enumerating
all clique- and pattern-DS in a deterministic graph, and use
them as subroutines to respectively find the h-Clique- and the
Pattern-MPDS of an uncertain graph in our problem.
Expected edge densest subgraph. The expected edge density
of a node set U in an uncertain graph is the expectation of the
edge density of the subgraph induced by U across all possible
worlds. Zou [42] designed a polynomial-time algorithm to find
the subgraph with the maximum expected edge density in an
uncertain graph using maximum flow techniques. As shown
in Example 1 and our experiments (§VI-B and §VI-C), the
expected edge densest subgraph is different from the MPDS: a
subgraph of an uncertain graph having the maximum expected
edge density may induce densest subgraphs only in a few
possible worlds of the graph. Such a subgraph can be large
with many low-probability edges or loosely connected nodes.
Core and truss decompositions in uncertain graphs. As
cohesive and dense substructures finding, core and truss de-
compositions are popular. The k-core (resp. k-truss) of a graph
is a maximal subgraph in which every node is connected
to at least k other nodes (resp. each edge participates in at
least (k− 2) triangles). They have been extended to uncertain
graphs [35], [69], [70], [71], [36], [72], [73]. The innermost
cores and trusses have been used in applications such as task-
driven team formation due to their higher densities [36], [35].
However, unlike the MPDS, their returned node set may not

TABLE II: Characteristics of our datasets
Name n m Type Edge Prob: Mean,

St. Dev., Quart.
Karate 34 78 Social 0.25, 0.09,
Club {0.18, 0.26, 0.33}
Intel 54 969 Device 0.33, 0.19,
Lab {0.16, 0.27, 0.44}

LastFM 6 899 23 696 Social 0.33, 0.19,
{0.16, 0.27, 0.44}

Homo 18 384 995 916 Bio 0.32, 0.21,
Sapiens {0.18, 0.24, 0.34}
Biomine 1 045 414 6 742 939 Bio 0.27, 0.21,

{0.12, 0.22, 0.36}
Twitter 6 294 565 11 063 034 Social 0.14, 0.10,

{0.10, 0.10, 0.19}
Friendster 65 608 366 1 806 067 135 Social 0.005, 0.013,

{0.001, 0.003, 0.005}

Fig. 5: Patterns used in our experiments

be most likely to induce a densest subgraph in an uncertain
graph (§VI-B and §VI-C).

VI. EXPERIMENTAL RESULTS

We run experiments to demonstrate the effectiveness and
efficiency of our methods. Our C++ code [74] is executed on
one core of a 512GB, 2.4GHz Xeon server running Ubuntu.
A. Experimental Setup
Real-world datasets (Table II). (1) Karate Club [75] is a
social network of a university karate club. Nodes are club
members and edges are interactions. (2) Intel Lab [76] is
a collection of sensor communication data with 54 sensors
deployed in the Intel Berkeley Research Lab between February
28 and April 5, 2004. (3) LastFM [77] is a musical social
network where users listen to music. An edge between two
users exists if they communicate at least once. (4) Homo Sapi-
ens [78] is a protein interaction network. Nodes are proteins
and edges are interactions between proteins. (5) Biomine [79]
is constructed by integrating cross-references from biological
databases. Nodes represent biological concepts such as genes,
proteins etc., and edges denote real-world phenomena between
two nodes, e.g., a gene “code” for a protein. (6) Twitter [80]
is a widely used social network where nodes are users and
edges are retweets. (7) Friendster [81] is a social network
with nodes (users) and edges (friendships).
Edge probability models. We adopt widely used models for
generating edge probabilities. In (1) Karate Club, (6) Twitter,
and (7) Friendster, we assign the probability of an edge as
1−e−

t
µ , which is an exponential cdf of mean µ to the number t

of communications between the two users. We set µ = 20 [82].
In (2) Intel Lab, a (real) edge probability denotes the fraction
of messages from the sender that successfully reached the
receiver [76], [30]. In (3) LastFM, the probability of any edge
is the reciprocal of the larger of the out-degrees of its source
and target nodes [82]. In (4) Homo Sapiens, an edge proba-
bility is the confidence on the existence of the corresponding
interaction, based on real biological experiments [78]. In (5)
Biomine [79], an edge probability quantifies the existence of
a phenomenon between the two endpoints, which combines
relevance, informativeness, and confidence [29], [35], [36].



TABLE III: Densest subgraph containment probabilities of the NDS,
the expected densest subgraph (EDS), the innermost η-core and γ-
truss (η = γ = 0.1); Expected densities of the NDS and EDS

Dataset Containment Probability Expected Density
NDS EDS Core Truss NDS EDS

Homo Sapiens 1 0.05 1 1 54 54.62
Biomine 1 0.01 0.99 0 46.45 48.02
Twitter 1 0 0.95 0 37.65 38.64

TABLE IV: Densest subgraph probabilities of the MPDS, the
expected densest subgraph (EDS), the innermost η-core and γ-truss
(η = γ = 0.1); Expected densities of the MPDS and EDS

Dataset Densest Subgraph Probability Expected Density
MPDS EDS Core Truss MPDS EDS

Karate Club 0.012 0 0 0 0.703 0.75
Intel Lab 0.078 0.01 0.01 0 3.246 3.25
LastFM 0.075 0 0.04 0.02 0.667 0.86

TABLE V: Probabilistic density of our proposed subgraphs (MPDS
for the two smaller datasets and NDS for the two larger ones) and
of existing dense subgraphs in uncertain graphs

Dataset Probabilistic Density
MPDS/NDS EDS Core Truss

Karate Club 0.281 0.095 0.073 0.134
LastFM 0.333 0.007 0.008 0.013
Biomine 0.546 0.191 0.212 0.538
Twitter 0.789 0.042 0.121 0.781

TABLE VI: Probabilistic clustering coefficient of our proposed
subgraphs (MPDS for the two smaller datasets and NDS for the
two larger ones) and of existing dense subgraphs in uncertain graphs

Dataset Probabilistic Clustering Coefficient
MPDS/NDS EDS Core Truss

Karate Club 0.284 0.150 0.094 0.158
LastFM 0.333 0.002 0.022 0.257
Biomine 0.546 0.203 0.217 0.539
Twitter 0.775 0.142 0.253 0.768

Methods compared. We compare our MPDS and NDS
algorithms with those for computing the expected densest
subgraph [42], (k, η)-core [35], and (k, γ)-truss [36] (§ VI-B).
As discussed in § II-C, we show the results for MPDS on the
three smaller datasets and NDS on the four larger ones.
Parameters. • h for Clique-MPDS/NDS: We vary h ∈
{3, 4, 5} [20]. h = 2 denotes an edge. • ψ for Pattern-
MPDS/NDS: We vary ψ ∈ {2-star, 3-star, c3-star, dia-
mond} [5] (Figure 5). • Top-k MPDSs: We vary k ∈
{1, 5, 10}, with default value 1. • Top-k NDSs: We vary
k ∈ {1, 5, 10, 50, 100}. • Min. size threshold lm: We vary
lm ∈ [1, 750]. Beyond that range, no NDS is returned for our
datasets. • # Sampled worlds θ: We vary θ ∈ {20 × 10, 21 ×
10, . . . , 28 × 10}. The default value is chosen as in § VI-F.

B. Comparison with Expected Density, Core, and Truss De-
compositions in Uncertain Graphs

We compare our MPDS/ NDS with some existing or close
notions of densest subgraphs in uncertain graphs: expected
densest subgraph (EDS) [42], innermost η-core [35], and
innermost γ-truss [36]. As shown in Table III, the containment
probability of the η-core is comparable to (yet not greater than)
that of the NDS for all datasets, in contrast to the EDS and
the γ-truss. This makes sense for the following reason. The
innermost η-core is likely to be an innermost core (and hence
a reasonably dense subgraph [5]) of a possible world of the
input graph. However, the same cannot be said about the other

TABLE VII: Purity (§ VI-C) of the node sets in the top-k MPDSs
and in the existing notions of dense subgraphs over Karate Club
uncertain graph. There are only two cores and two trusses in this
graph; thus the entries for k > 2 are empty for those subgraphs.

Top-k Purity
MPDS EDS Core Truss

1 1 0.6 0.5 0.538
2 1 0.6 0.515 0.536
5 1 0.749 - -
10 1 0.699 - -

subgraphs. Table III demonstrates that our solution produces
the most optimal node set with the highest densest subgraph
containment probability compared to the other approaches. In
addition, for each of our smaller datasets, we compare the
densest subgraph probability of the MPDS with those of the
EDS, innermost η-core and innermost γ-truss. As shown in
Table IV, the MPDS outperforms the other subgraphs.

Since the EDS performs very poorly for all datasets, for
fairness, we compare the expected densities of the EDS and
our NDS/MPDS. Tables III and IV show that our solutions
produce subgraphs with expected densities comparable to the
optimal values, thereby showing that our returned subgraphs
are good even with respect to expected density.

We also consider two external evaluation metrics: • Proba-
bilistic Density PD(U) [36] for capturing the cohesiveness of
a probabilistic subgraph U , which is defined as the weighted
sum of existing edges divided by the maximum number of
possible edges this subgraph can have (Equation 16); and •
Probabilistic Clustering Coefficient PCC(U) [83] for measur-
ing how well the nodes in a probabilistic subgraph U cluster
together, which is computed as three times the weighted sum
of all possible triangles divided by the weighted sum of all
neighboring edge pairs. The weights are existence probabilities
of edges/triangles/neighboring edge pairs, assuming indepen-
dence among edges (Equation 17). VU , EU , and ∆U denote
the set of nodes, edges, and triangles in U , respectively.

PD(U) =

∑
e∈EU

p(e)
1
2
|VU |(|VU | − 1)

(16)

PCC(U) =
3
∑

△uvw∈∆U
p(u, v)p(u,w)p(v, w)∑

(u,v),(u,w)∈EU ,v ̸=w
p(u, v)p(u,w)

(17)

Tables V-VI demonstrate that our NDS/MPDS significantly
outperforms other dense subgraph notions based on both
probabilistic density and probabilistic clustering coefficient,
implying that the NDS/MPDS is much more cohesive, i.e.,
most of the possible edges induced by the NDS/MPDS node
set tend to exist, and the nodes in the NDS/MPDS cluster
together. Only the innermost truss achieves slightly lower
results on the two larger datasets.
C. Case Studies: Karate Club Network

Densest subgraphs in social networks can correspond to
communities [6], filter bubbles and echo chambers [7], [8].
Table VI already shows that the MPDS of the Karate Club
dataset has a much higher probabilistic clustering coefficient
than the other existing dense subgraph notions. We show that
the MPDS also represents a more meaningful and concise
community (of club members) than the other subgraphs. All
four subgraphs are shown in Figure 6. Notice that the MPDS
only contains nodes from one single ground-truth community



(a) MPDS (b) Expected Densest Subgraph (c) Innermost core (d) Innermost truss
Fig. 6: Case studies to compare with existing dense subgraphs in uncertain graphs on the Karate Club dataset. The relevant subgraphs are
in blue, while the colour of a node denotes its ground-truth community [75]. The thickness of each edge is proportional to its probability.

(a) Typically developed (b) ASD-affected
Fig. 7: Node sets of 3-clique MPDSs in brain networks. The colored
boundaries denote the cerebellum, occipital, and temporal lobes.

(a) Typically developed (b) ASD-affected
Fig. 8: 3-clique MPDSs in brain networks. The thickness of each
edge is proportional to its probability.

[75] and has edges with higher probabilities, in contrast
to all the other subgraphs which contain nodes from both
communities and have many low-probability edges. Moreover,
in Table VII, we report the average purity (i.e., the highest
fraction of nodes from the same ground-truth community [75]
in a node set) of the top-k (up to k = 10) subgraphs returned
by each notion, and observe that MPDSs always achieve
100% purity. Thus, users can retrieve the top-k MPDSs to
identify high-quality communities. This case study highlights
the importance of computing MPDSs despite other notions of
dense subgraphs in uncertain graphs.
D. Case Studies: Brain Networks

A brain network can be defined as an uncertain graph where
nodes are brain regions of interest (ROIs), an edge indicates
co-activation between two ROIs, and an edge probability indi-
cates the strength of the co-activation signal. Dense subgraphs
in brain networks can represent brain regions responding
together to stimuli [9] or related to diseases [10].

The dataset we use [84] contains data of 52 Typically De-
veloped (TD) children and 49 children suffering from Autism
Spectrum Disorder (ASD). Each subject is represented as a
graph over 116 nodes (ROIs). GASD and GTD are uncertain

(a) Typically developed (b) ASD-affected
Fig. 9: Node sets of 3-clique EDSs in brain networks. The colored
boundaries denote various brain regions as shown.

(a) Typically developed (b) ASD-affected

Fig. 10: 3-clique EDSs in brain networks. The thickness of each
edge is proportional to its probability.

graphs, defined over the same set of nodes as the original ones,
while the probability of each edge is the average of those of
the same edge across all graphs in the ASD and TD groups.

Using BrainNet Viewer [85], we show the 3-clique MPDSs
for both GTD and GASD in Figures 7 and 8. The MPDS in
GASD lies entirely in the occipital lobe, in contrast to that
in GTD, which also contains one node in the temporal lobe
and one in the cerebellum. Besides, the MPDS in GASD is
more symmetrical than that in GTD, since the former has only
one node (MOG.R) without its counterpart in the other hemi-
sphere, while the latter has two more such nodes (CRBL6.L
and FFG.R). This is consistent with the results of different
works in neuroscience indicating that, in contrast to typically
developed brains, those affected by ASD are characterized
by under-connectivity between distant brain regions and over-
connectivity between closer ones [86], [87], and that the hemi-
spheres of ASD-affected brains are more symmetrical than
those of typically developed ones [88]. Our consistent findings
underline the importance of finding MPDSs in uncertain brain
networks that can differentiate healthy and autistic brains.

We now show that the expected (3-clique) densest subgraph
(EDS) cannot characterize and distinguish autistic brains,
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Fig. 11: Running times of our proposed methods; MPDS for the smaller datasets and NDS for the larger ones; HS denotes HomoSapiens

unlike our proposed MPDS. The EDS notion was defined for
edge density [42]; however, we show that it can be extended to
clique and pattern densities (in [50]). Figures 9 and 10 present
3-clique EDSs in both GTD and GASD. Both of them span
as many as 9 brain regions and are similar (w.r.t. symmetry)
since both only have the same 3 nodes (PCUN.R, MFG.R
and CRBLCrus2.L) without their counterparts in the other
hemispheres. These contradict the characteristics of autistic
brains in the biological literature [86], [87], [88] and fail to
distinguish them from normal ones. This is consistent with
our observation in Example 1 that EDSs tend to be very large
and span several unimportant nodes, and hence can be less
meaningful in real-world applications. Our MPDS is more
powerful than the existing EDS in analyzing autistic brains.
We also show in [50] that the innermost core and the innermost
truss cannot characterize and distinguish autistic brains.
E. Efficiency

We report the running times of our methods in Figure 11.
As shown in Figures 11(a) and 11(c), the running times for
edge density are smaller than those for clique density. This is
because the flow networks involved in computing edge densest
subgraphs are much smaller; they only contain nodes for each
node in the sampled possible worlds (§ III-A), in contrast to
those for h-clique densest subgraphs which also contain nodes
for each (h− 1)-clique contained in h-cliques in the sampled
possible worlds (§ III-B). However, there is no clear winner
among 3-clique, 4-clique, and 5-clique. This is because, even if
larger cliques take a longer time to enumerate, smaller cliques
can be more in number, thereby increasing the size of the flow
network and hence the running time. Similar arguments can
be made for the four patterns (Figures 11(b) and 11(d)).
F. Parameter Sensitivity
Varying θ. We study the effects of the variation of θ in Figure
12. As in § VI-E, although we show the results for only two
datasets, the other datasets exhibit similar trends. For MPDS
on the Intel Lab dataset (Figure 12(a)), increasing θ steadily
increases the similarity of the returned node sets to those for
the previous value of θ till a certain point (θ = 160), after
which it converges, while the running time keeps increasing.
Similar effects can be observed at θ = 640 for NDS on the
Biomine dataset (Figure 12(b)). We choose such values of θ
as default for the respective datasets in our experiments.
Varying k for top-k NDSs. Figure 13(a) shows that increasing
the value of k results in the reduction of the average estimated
densest subgraph containment probability. This shows that
increasing the value of k too much results in the returned
node sets being of lower quality.
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Fig. 12: Variation, w.r.t. θ, of the running time and the similarity of
the returned node sets to those for the previous value of θ
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Fig. 13: Variation of the average estimated densest subgraph con-
tainment probability with k and lm for NDS queries

Varying lm. Figure 13(b) shows the variation of the average
estimated densest subgraph containment probability with in-
creasing lm. Till a certain value of lm, the probability remains
constant; since the returned node sets should be closed, our
algorithm avoids reporting too small node sets even for smaller
values of lm. After that, the probability keeps decreasing with
lm till a certain value beyond which it remains 0 as there is
no larger closed node set. This helps in choosing a feasible
upper bound on lm for a specific dataset.

VII. CONCLUSIONS

We studied the novel problem of finding the Most Probable
Densest Subgraph (MPDS) in an uncertain graph, according to
edge, clique, and pattern densities. We proved that computing
the densest subgraph probability for any given node set is #P-
hard. We proposed a solution which returns the most frequent
densest subgraphs from some sampled worlds, with theoretical
accuracy guarantees. As building blocks, we designed novel al-
gorithms to compute all clique- and pattern-densest subgraphs
in a deterministic graph. We then extended our algorithm to
compute the Nucleus Densest Subgraphs (NDS) via reduction
to closed frequent itemset mining. Our experiments on large
real-world graphs showed that our methods are efficient. Our
case studies showcased the usefulness of MPDS in differenti-
ating autistic brains from healthy ones and in detecting useful
communities in social networks.
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