Top-k Representative Queries with Binary Constraints

Arijit Khan Vishwakarma Singh

ETH Zurich Apple USA
arijit.khan@inf.ethz.ch vsingh0O14@gmail.com

ABSTRACT able houses along with several attributes, such as price, number of

Given a collection of binary constraints that categorize whether a rooms, nu_mber of WlndOWS, floor t)_/pe, ou?door space, nelgh_bor-
data object is relevant or not, we consider the problem of online hood quality, and d'S‘aﬂce from various points of Interests. Given
retrieval of the topk objects that best represent all other relevant such a database of available houses, a customer might not always

objects in the underlying dataset. Such fopepresentative queries be interested in the actual value of an attribute, rather the prefer-
naturally arise in a wide range of complex data analytic applications ences of 2a customg.r often a;rnve In thheofscilr m ofhseveral kl) inary con-
including advertisement, search, and recommendation. In this pa-Straints [25], e.g., distance from a scholless than 5 miles. Let

per, we aim at identifying the top-representative objects that are Y5 assufme that .somglcustomfer requeshtegbfor t::e folloy\lling impor-
high-scoring, satisfy diverse subsets of given binary constraints, tant preferences: (1) distance from a schédess than 5 miles, (2)

as well as representative of various other relevant objects in the diStance from a popular nightcluly less than 5 miles, (3) distance

dataset. We formulate our problem with the well-established notion from the airportA less than 10 miles, (4) quiet neighborhood, (5)
of the top4 representative skylines, and we show that the prob- garden-space more than 50 sq. meter, (6) mountain and lake view,

lem is NP-hard. Hence, we design efficient techniques to solve 2nd (7) marble floor. Usually, there is a limiton the number of
our problem with theoretical performance guarantees. As a side- houses that the agent can show in order to convince the customer

product of our algorithm, we also improve the asymptotic time- 0 Puy @house. Then, what are the toprouses that the agent must

complexity of skyline computation to log-linear time in the number ShOW to this customer?

of data points when all dimensions except one are binary in nature.

Our empirical results attest that the proposed method efficiently N the above example, we say that a houseeievantto the cus-
finds high-quality topk representative objects, while our technique tomer if it satisfies at least one of the aforementioned constraints.
is one order of magnitude faster than state-of-the-art methods for Nevertheless, finding the tophouses with the lowest prices (the

finding the topk skylines with binary constraints. price can be modeled as the scoring functjan in our problem
setting) and satisfying all, or as many as possible, given constraints
1 INTRODUCTION is not a good idea from the agent’s perspective — it could result in

only a few expensive houses; while, in reality, the customer might

Over a database, the users often search for objects that satisfyrot be equally interested in satisfying all the above-mentioned con-
user-defined multipleinary constraints — each of these constraints straints. Rather, it will be more promising to the agent if she reports
can evaluate to either true or false for every specific object. In par- the top4 houses that are relatively low-cost, satisfy diverse subsets
ticular, given a setD of objects, a scoring functioif(d) for all of the aforementioned important constraints, and yet representative
objectsd € D, a collection of binary constrainis (d), p2(d), . . ., of a large number of other relevant houses in the database.
pr(d), and a small positive integér, we consider the problem of) .

In this paper, we formulate the problem of selecting the #op-

online retrieval of the toge most representative objects that are tative dat ints with th Il-established noti fd
high-scoring, yet satisfy diverse subsets of given binary constraints, representative data-points wi € well-established notion of dom-

as well as representative of various other relevant objects in the 'NaNce dor “pﬁrgto-optlmahty’j [2]. We model tk:f scoring flj:m'%n
dataset. Such top-representative queries over objects with one /() @nd each binary constraip} as a separate dimension. An ob-

non-binary and many binary attributes naturally arise in many com- jectro dominates another objectf the value ofr is no larger than

plex data analytic applications [18, 25], including information re- that of 7o IN each dlmens_lon, a_nd the_ value rofis smaller than
trieval. search. advertisement. and recommendation. that of ro in at least one dimension. Finally, we retrieve the top-
' ' ' objects that collectively dominate the maximum number of other

relevant objects in the dataset.

ExamMPLE 1. Areal-estate agent maintains a database of avail- . . . '
Here, we must emphasize that we adopt a similar criteria as find-

Permission to make d|g|ta! or hard copies of all or part of this V_/ork for ing the topk representative skylines which was earlier proposed
personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear'N [16].. Unfort.unatgly, the prOblem of f'r,'d'ng the t,mfm%t repre-
this notice and the full citation on the first page. Copyrights for components Sentative skylines in an online manner is a non-trivial problem. The
of this work owned by others than ACM must be honored. Abstracting with dynamic nature of our query makes any kind of pre-computation
credit is permitted. To copy otherwise, or republish, to post on servers or to very difficult. Indeed, the asymptotic complexity of the best-known
redistribute to lists, requires prior specific permission and/or a fee. Request g|gorithm for skyline set computation @ (n(logn)”~') due to

permissions from Permissions@acm.org. i i i i -
SSDBM '15.June 29 - July 01, 2015, La Jolla, CA, USA [2], wheren is the number of data points afid+ 1) is the dimen

Copyright 2015 ACM 978-1-4503-3709-0/15/06 ...$15.00 sionality of each data point in our problem setting. Clearly, one
http://dx.doi.org/10.1145/2791347.2791367. can apply existing approaches, e.g., [16] to solve our problem by

considering each binary constraint as a separate dimendion: nigues have been proposed to rank the skyline points, such as the
ever, such approaches are not optimized for theitogpresentative representative skylines [16,26] and regret-minimizing skylines [19].
queries with binary constraints that we study in this work. Ourtech- Particularly, we adopted the skyline ranking scheme proposed in
nical contribution lies in the fact that we design efficient algorithms [16] — albeit, their techniques were developed for the metric space;
to leverage the binary constraints present in our queries. While we and hence, not optimized for answering topepresentative queries
provide the same approximation guarantee as in ffb&]presence with binary constraints. The presence of binary constraints in our
of binary constraints in our problem setting allows for reasoning problem setting allows for reasoning on the lattice, and this mech-
on the lattice (discussed in Section 5), and this mechanism is notanism is not straight-forward to be adapted to the case of general

straight-forward to be adapted to the case of general dimensions
as in [16]. Based on experiments over four diverse categories of
real-world and synthetic datasets, we find that proposed tech-
niques for finding the top-representatives aré0 times faster as
well as up to2 times less memory consuming than state-of-the-art
method16], which was designed for retrieving the tégepresen-
tative skyline points in the metric space.

Contributions: We make four important contributions.

(1) We formulate and investigate the novel problem of answering
the top4 representative queries with binary constraints in an online
manner.

(2) We improve the asymptotic complexity of skyline computation
to log-linear time in the number of data points, when all dimensions
except one are binary in natutre

(3) We propose efficient techniques to find the dominance number
of an object as well as a set of objects; and thus, we can quickly
identify the topk representative objects in an online manr@ur
algorithms are designed to utilize the fact that the constraints in our
queries are binary in natureTherefore, our proposed schemes are
10 times faster as well as consume uRtomes less memory than
state-of-the-art method [16], which was designed for retrieving the
top-k skyline points in the metric space.

(4) As tested on four diverse categories of real-world and synthetic
datasets, our techniques are able to select high-quality: t@p-
swers in an efficient manner. We also show that thektayjects

retrieved by our method indeed represent a large number of other

relevant objects in the dataset, even for very small valués efg.,
k=>5.

2. RELATED WORK

We categorize related work as follows.
Skyline Queries. The skyline operator was originated from the
maximal vector problem in computational geometry [3,14jrBonyi
et al. [2] first introduced the skyline operator for large databases,
and also proposed an SQL syntax. Skyline queries for dynamic
preferences over nominal attributes were considered in [28]. Con-

dimensions as in [16].

Top-k Representative Queries.A large number of models exist
that support diversity in the top-answer set, e.g., [1,4,7,17,23,27],
among many others. A few works [13, 15, 24] maximize diversity
as well as representativeness of the kopesults. Nevertheless,
they consider representativeness in the context of object-similarity;
whereas we use the notion of dominance or “pareto-optimality” as
representativeness, which is more suitable for our queries. Thus,
our top+ representative queries are more similar to thekapp-
resentative skylines as proposed earlier in [16].

Constrained Optimization Queries. [30] designed efficient in-
dexing methods to find an exact solution of #heonstrained op-
timization query. [22] studied the problem of multi-objective opti-
mization, in which solutions to a combinatorial optimization prob-
lem were evaluated with respect to several cost criteria, and the
authors investigated the notion efPareto solution. A syntacti-
cally close work to ours is th@ PAC query proposed in [12]. The
authors consideredPareto answers to optimization queries under
parametric aggregation constraints over multiple database tuples.
However, their optimization function and constraints are aggre-
gated over multiple tuples. On the other hand, in our query se-
mantics, the scoring function as well as the query constraints are
applied over individual database tuples.

3. PROBLEM DEFINITION

Let us denote byD the set of all data points. We next start with
a few definitions.

DEFINITION 1. [Satiated Constraints by a Data Poi@ilen a
set of binary query constraint® = {p1, p2, ..., pr}, the satiated
constraintsP(d) by some data poind € D are simply the subset
of constraints satisfied by. Formally,

P(d) = {p: € P : pi(d)is true} 1)

We say that a data point € D is relevant if it satisfies at least
one of the given query constraints, i.€(d) # ¢. We shall use
the terms “data points” and “relevant data points” interchangeably,

strained skyline queries were proposed in [21], and thereafter, [6, j o given the query constraints, we shall consider only the relevant
29] considered constrained skyline queries under distributed and 55 points in our algorithm.

stream settings, respectively. Skyline queries over objects with one

non-binary and many binary attributes were previously considered

DEFINITION 2. [DominancelGiven two data pointd,d’ € D,

in [18], and the authors demonstrated the advantage of lattice-basedy scoring functionf, and a set of constraint®, we say thatd

skyline computation techniques which is similar to ours. How-

dominates?’ if one of the following holds true(1) f(d) > f(d')

ever, their query semantics are different, as they do not considerandp(d) D P(d'),or (2) f(d) = f(d') andP(d) > P(d").

the top% answers to their queries. Endres et. al. further proposed
“preference queries”, which are constrained skyline queries in the
presence of hard and soft constraints [8, 9].

For high dimensional data, the skyline set usually becomes quite
large [3,11]; and hence, less informative. Therefore, various tech-

It was shown in [2] why ar©(n log n) algorithm is not suffi-
cient enough to find the skyline set when the dimensionality of each
data point is more than 2. In the worst case, the asymptotic com-
plexity of the best-known algorithm for skyline set computation is

O(n(logn)™™1).

The dominance relation satisfies the following properties.

PROPERTY 1. The dominance relation is transitive. It is not

reflexive, neither symmetric, nor anti-symmetric.

Now, we formally define skyline points in a database with respect
to the scoring functiorf and the set of binary constrainks

DEFINITION 3. [Skyline Point]A data pointd € D is called a
skyline point if it is not dominated by any other pointdin

Table 1:Run-through Example. The query contains three constraipts: PROOF. Let, if possible, there be a non-skyline poititin the
P2, p3. top-k result set as defined in the problé¢REP. There can be two
distinct cases{1) at least one of the skyline points, sdywhich
dominatesd’, is in the topk set. In that case, if we remové

Database f(d) Satiated
Points Constraints

= = from the top# set, that will not reduce the dominance number of
1 p1 . . .

da 12 P2 the set with the remaininfk — 1) points. Now, we can add a new
ds 11 P3 skyline point in the set, since the total number of skyline points in
Z‘j g ”11;1”2 the dataset is at leakt Otherwise,(2) all the skyline points, that
e 5 3 dominated’, are not in the toge set. Then, it is advantageous to
d7 4 P1, P2 replaced’ by any skyline pointd that dominates!’, sinced has

ds 2 bz higher dominance number thdh This completes the proof.]

Our problem is, however, nontrivial. The following theorem

From the above definitions, we note that each skyline point cor- shows that theKREP problem is intractable.
responds to the highest-scoring (decided ify) point for some)
subset of query constraints. For simplicity of description, we here- ~ THEOREM 2. TheKREP problem isNP-hard.
inafter assume that no two data points have the sgfecore. We PROOF The proof directly follows by reduction from tHeP-
shall discuss later how our techniques can be adapted to considecomplete set cover problem [5], defined by a collection of subsets
scenarios when multiple data points have the same f() score. Next,S; S, ...,S,, of a ground seU = {uy,uz, ..., u:}. We would
in order to identify the toge most representative data points, we like to know whether there exist of the subsets whose union is
introduce a ranking criteria using the notion @dminance num- equal toU. Now, we show that this can be viewed as a special
ber[16, 21], which is formally defined below. instance of theKREP problem. Each se&i;,Ss,...,S,, could be
considered as a skyline point and each element in the ground set
c ' ' can be considered as a non-skyline poin€;Itoversu; in the set
numberN (d) of a data pointd € D is defined as the number of ., er problem, we assume that the skyline psintominates the
data points inD that are dominated by. non-skyline point.;. Hence, the set cover problem is equivalent to

N(d) = |{d' : d' € D, ddominates!'}| @) deciding iff there is a set df skyline points, with (set) dominance

number greater than or equalitoHence the theorem.]

DEFINITION 4. [Dominance Number of a Poirithe dominance

DEFINITION 5. [Dominance Number of a SeBiven a set of
points D; C D, the dominance number of the 9@t is defined as 4., OVERVIEW OF SOLUTION
the number of data points i that are dominated by at least one In this section, we provide a brief overview of our solution tech-
of the points inD; . nique. Since th&REP problem isNP-hard (Theorem 2), we re-

N(Dy) =|{d": d' € D, 3d(d € Dy, ddominatesl’)}| (3) sort to an efficient approximation algorithm with theoretical per-
formance guarantee. Fortunately, Theorem 3 ensures that the ob-

jective function ofKREP is submodular [16], and it monotonically

EXAMPLE 2. In Table 1, we shovg data points, along with increases witlk.
their f() scores and satiated constraint sets. Based on our defi- L))
nition, the skyline points aré:, d, ds, and da, as they are not THEOREM 3. The objective function d{REP (i.e., the number

dominated by any other points in the database. The data points ©f Points dominated by the tdprepresentative set) is submodular,
dominated by the skyline points, dz2, ds, and dy are: {ds}, and it monotonically increases with

{ds}, {ds}, and{ds, d7, ds}, respectively. We further observe that PROOF A function g() is submodular if it satisfies the follow-
{d1, d4} together dominat8 data points:{ds, d7,ds}. ing property:g(A U {z}) — g(A) > g(B U {z}) — g(B), for all
elementse and all pairs of setd C B, i.e., the marginal gain from
adding an element to a sétis at least as high as the marginal gain
from adding the same element to a superset.ofn our problem
setting, letA denote a skyline set angA) be the total number of

PROBLEM 1. [KREP] Given the dataseD, a query (f, P) points dominated by at least one skyline pointAin Clearly, the
and a positive intege, find the set of data points, such that ~ Marginal gain from adding a skyline point to sewill be at least

the total number of points dominated by at least one of them is as high as the marginal gain from adding the same skyline point
maximized. to a superset of. Therefore, the objective function &fREP is

submodular. Besides, the total number of points dominated by at
Note that in our problem, we do not explicitly seek for an an- least one skyline point ik monotonically increases with the size

swer set consisting only of skyline points. However, if the total Of A. [
number of skyline points iD with respect to some queryf, P)
is at leastk, it is easy to verify (Theorem 1) that the téprepre-
sentative points defined by theREP problem will indeed be the
top-k set of skyline points (in terms of the dominance number of
the set). Therefore, we shall design an algorithm that identifies the
top-k skyline set.

Problem Formulation. We are now ready to formally define our
problem,KREP, abbreviated for kepresentative.

Due to submodularity, we apply an iterative hill-climbing timed
(Algorithm 1) to derive an approximate solution within a factor of
(1 —1/e) =~ 0.63 of the optimum solution [20]. More specifically,
given already selected tqg — 1) skyline points, wheré < j <

k, we select thg-th skyline point such that the number of points
dominated by thg-th skyline, but not by any of the previogg—1)

THEOREM 1. If the total number of skyline points i with skylines, is maximized.

respect to some queryf, P) is at leastk, then the topk results While the above-mentioned hill-climbing method forms the core
will be all skyline points in one optimal solution of our problem. of our solution technique, one still needs to efficiently compute the

Algorithm 1 Finding Top-k Representative Objects

Require: Database point®, query(f, P), integerk

Ensure: Top-k representative sét of sizek

: find the skyline sef\/

1S=¢

cfori=1tokdo
d* = argmaxge p\s N(SU{d}) /* N dominance number */
S = S\H{d*}

end for

outputS

NogahrwnhE

following two dominance numbers — (1) the dominance number
of any skyline point, and (2) the dominance number of any skyline
set. Our main technical contribution lies in designing efficient al-
gorithms to solve the two aforementioned problems by leveraging
the binary constraints present in our queries. We describe our algo-Formally,

rithm to find the dominance numbers of individual skyline points B(w)=|{d: de D, P(d) = L(v)}|)

in Section 5, while our method to compute the dominance number
of a skyline set is given in Section 6. S()=H{d: de D, P(d) C L(v), P(d) # ¢}|

The subset counf(v) is essentially the number of data points
in D that are dominated by (or equivalent to) some pdirt D,
5. FINDING DOMINANCE NUMBER OF A with ¥(d) = v, based on the satiated constraints set. Hence, to
SKYLINE POINT determine the dominance numhi(d) of a skyline pointd with

In this section, we shall design efficient techniques to find all ¥ (d) = v, we subtract front(v) the number of points that are not
skyline points and their individual dominance numbers (line 1 of dominated bylinterms off() score. For simplicity of description,
Algorithm 1). The first step of our method is to build main memory- We assume that no two points have the sgfflescores. We shall
based effective data structures by performing a single scan over thediscuss at the end of Section 5.2 how our techniques can be adapted
database. Therefore, we first describe our data structures whichtO consider scenarios when multiple data points have the gdine

Figure 1. Query Lattice and Associated Counts for Run-through
Example in Table 1

will be useful in our algorithms. score. Finally, we compute the dominance numivgtl) by using
our algorithm, which will also be described in Section 5.2.
5.1 Main Memory Data Structures Skyline Bit: With each lattice node, we attach a variablskyline

. . . bit B(v) that can take values eithéror 1. The skyline bits sat-
Query Lattice: The query lattice, denoted b§ = (V, E, L), is isfy the following during execution of our algorithm. A data point
a directed acyclic graph. It is formed based on the given query ; - p guch thatW (d) = v, and B(v) = 1, cannot be a skyline
constraints seP. If P contains a total of constraints, the lattice point. 'AII skyline bits are ihitialized td in 'the beginning of our

Q consists of 2" — 1) nodes. Each lattice nodec V corresponds algorithm.

to a subset of the query constraints set, except the null subset. We

exclude the null subset as we consider only the relevant data pointsPriority Queue: Given the scoring functiorf, we maintain a pri-

in our algorithm. The label set of each lattice nadis denoted as ority queueL, which stores all data point ids in descending order
L(v), which is a subset aP. of their f() scores.

There is an edge from lattice nodeto ', if L(v') C L(v),
and|L(v)| — |L(v")| = 1. v’ is called asuccessopof v, denoted
asv’ € succ(v), if there is a directed path from to v’ in Q.
Alternatively, v is called apredecessoof v'. The nodev itself is
not included in successor or predecessor.of

Space Complexity.The storage complexity due to our main mem-
ory data structures ®(n + 2") — the first part is due to the map-
ping relation and the priority queue; whereas the second component
is due to the query lattice, and associated count values and skyline
bit with each lattice node. Here, is the cardinality of the dataset
andr is the number of binary constraints in the query.

ExampLE 3. In Figure 1, we present the query lattice corre- . -
sponding to our run-through example in Table 1. With each lattice 9-2 Algorithm Description

node, we also show two additional values — equivalence count (E) |jtiajization: Our first step consists ofane-time sequential scan-
and subset count (S), which will be defined shortly. ning of the datasetD. For each data point € D, we eval-

uate f(d), and verify how many of the user-defined constraints
{p1,p2,...,pr} are satisfied byl. While scanning the dataset, we

Mapping Relation: We define a mapping relatio#l : D — V, perform two additional taskg1) We insert the data points € D
such that¥(d) = v if P(d) = L(v). One may note tha¥ is a into a priority queueC that stores its elements in descending order
many-to-one mapping. of their f(d) scores(2) We build the query lattic®. At the end of

Count Values: With each lattice node € V, we associate two the sequential scanning, we also compute the count vakies)
count values: equivalence count and subset countefjbivalence for each lattice node. All the skyline bif3(v) are initialized ta0.
count E(v) is the number of data points in the input dataset Skyline Finding: Next, we access the data points from the top of
whose satiated constraints set is samé.@s). The subset count the priority queueC. Thus, we process all poinise D in descend-
S(v), on the other hand, is the number of data point®iwhose ing order of theirf(d) scores. Based on our invariant condition on
satiated constraints set is a subsef.¢f), except the null subset. the skyline bitB, a pointd is a skyline point only ifB(v) = 0,

wherev = ¥(d). If we find a pointd as a skyline point, we com-
pute its dominance numbé¥(d), which will be discussed shortly.
If d is a skyline point, we also set the following skyline bits:
B(v) = 1; and B(v') = 1 for all v' € succ(v). This setting
of skyline bits ensures that, if we process some data pbiat a
later stage, wherd& (d’') = v' and B(v") = 1, thend’ cannot be a
skyline point.
Compute Dominance Number: We recall that the subset count
S(v) is the number of points i that are dominated by (or equiv-
alent to) some data poiat € D, ¥(d) = v, based on the satiated
constraints set. Hence, to determine the dominance nuriéy
of a skyline pointd, with ¥(d) = v, we subtract fromS(v) the
number of points that are not dominateddin terms of its score
f(). We keep track of dominance gf{() scores using &raversal
variable T'(v), associated with each lattice node

DEFINITION 6. [Traversal VariablepAssume we are currently
processing some data poidtwith score f(d), and ¥(d) = wv.
Then, the traversal variabl&(v) for lattice nodev stores the num-
ber of pointsd’ € D, such that¥(d') = v and f(d’) > f(d).

The traversal variable of a lattice nodeis incremented byl
after we finish processing of the data poihsuch that¥(d) =
v. Now, to compute the dominance number of a skyline pdint
with ¥(d) = v, we traverse each successor nedef v in the
query lattice. Then, we aggregafgv) with T'(v") for all such
v'. Finally, the dominance number of the skyline pailitwhere

¥ (d) = v, is given by:
N(d)

S)—[1+T(v)+

v’ €suce(v)

C) ®)

One may verify that the expressipn-T'(v)+3 /¢ yce(v) T(v")]

in the above equation denotes the number of data points that ar

not dominated byl in terms of its scoref(), but dominated by
(or equivalent toy in terms of satiated constraints. Note that we
includel in the expressiofil + T'(v) + 3=,/ ¢ yee(w) T (V)] tO TE-
flect the fact that a data point is not dominated E)y itself. Therefore,
subtracting this expression frosYv), which denotes the number
of data points that are dominated by (or equivalentd@nly in

terms of satiated constraints, provides the actual dominance num-

ber N(d) of that data pointd. A complete description to find all
the skyline points, along with their dominance numbers, is given in

Algorithm 2 Finding All Skyline Points and Their Dominance
Numbers

Require: Database point®, query(f, P), integerk
Ensure: Skyline setM

1: compute query lattic®, equivalence count®, and subset count$

2: set traversal variabl&'(v) < 0, skyline bit B(v) « 0 for each lattice
node

3: L «+ data items in descending order) score

4: while £ not emptydo

5: d « remove top-item fronC

6: v+« ¥(d)

7. if B(v) # 1then

8: insertd in skyline set\/ * d is a skyline point */

9: dominance noN(d) = S(v) — [1+T(v)+ Y T()]

v’ €suce(v)

10: Bv) =1 [* set skyline bit of v */

11: forall v € succ(v) do

12: B(') =1 I* set skyline bits of all successors of v */

13: end for

14: endif

15 T(v) « T(v) +1 /* update traversal variable T(v) */

16: end while

17: outputM

an early termination criteria for our method. Each time we find
skyline point, we also verify whether one of the following condi-
tions is true for every lattice node (i) its skyline bitB(v) = 1 or,

(i) its equivalence counE(v) = 0. If one of the aforementioned
conditions is true for all lattice nodes, then the remaining points in
the priority queueC, which are not processed yet, cannot be skyline
points. Hence, we terminate our algorithm.

Multiple Data Points with Same f() Scores:Our skyline set find-

ejng algorithm (Algorithm 2) can be adapted if there are multiple

data points with the sam#() score. In such cases, data points with
the samef () scores are processed in batches (inside lines 5 to 15
in Algorithm 2). In particular, let us assume that do, . . ., dj are

the data points retrieved from the top©find having the samg()
score. We further soi,, ds, . . . , di. in descending order of their
satiated constraint set sizg3(d)|, and process them in that order.

If multiple data points have the sanfi€) score, they satisfy exactly
the same set of constraints, and if the corresponding skyline bit
in the query lattice is also set asthen all of them are reported as

skyline points. Otherwise, a data point — whose satiated constraint

set is a superset of the satiated constraint set of another data point
EXAMPLE 4. We provide an example of dominance number com-— would be processed earlier, and the later would no longer be

putation using our run-through example in Table 1. We access the considered as a skyline point based on our algorithm. Equation 5,

data points in descending order of thef) scores. Assume, we Which computes the dominance number of a skyline point (line 9,

have already processed data poiuts d, ds. Note that®(d,) Algorithm 2), is modified as follows:

vs, U(d2) = ve, U(d3) = vr. Therefore, the traversal variable for

each lattice node will be as follow&'(vi) = T'(v2) = T'(vs)

T(va) = 0, andT'(vs) = T(vs) = T(vr) = 1. The skyline

bits, on the other hand, will be as followd3(v1) = B(v2) =

Algorithm 2.

N(d) = S(w) — [k + T(v) + T(v")] (6)

>

v’ €suce(v)

B(vs) = B(vs4) = 0, andB(vs) = B(vg) = B(vr) = 1. Next,
we shall process the data poitf. Since¥(d4) = v2 and the cor-
responding skyline biB(v2)=0, d4 is a skyline point. To compute

Here, k' < k is the number of data points in the current batch
that map to the same lattice node Finally, we update the corre-
sponding traversal variables (line 15 of Algorithm 2) at the end of

its dominance number, we consider all the nodes of the sub-lattice processing the current batch of data poits di,, . . ., di,. Spe-
rooted atve and find their traversal variables. More specifically, cially, we increment the traversal variatl§v) by &', wherek’, as
the dominance number @, is given as:S(v2) — [1 + T'(v2) + specified earlier, is the number of data points in the current batch
T(vs) + T(vs)] = 3. Finally, we increment the traversal variable that also map to the lattice node
of vy by 1, that is, T'(v2) becomed. We also set the skyline bits of . .

(v2) 5.3 Time Complexity

vz and that of all its descendents &s

Let us denote the number of data pointsiinasn. Also, we
Early Termination: While Algorithm 2 terminates after process- assume that the number of query constraints iand the number
ing all the data points (see line 4, Algorithm 2), we further propose of skyline points isn.

Decrease

Sorting Data Points: The sorting of all data points in the priority
queue based on thefi() scores require®(n logn) time. fs) > fd) >

Query Lattice Construction: The complexity of formulating the @
query lattice iSD2(2"). One also needs to compute the equivalence I(@)=i
count E(v) and the subset courst(v) for each lattice node. In |

order to compute all the equivalence counts, we identify for each nerease
data pointd € D, its corresponding lattice node: = W¥(d). This Figure 2: Interpretation of Traversal Listands’ are skylines with

requiresO(nr) time. Now, for computing the subset count of each time stampsi andi + 1, respectively.d is a data point also with
lattice nodev, we aggregate the equivalence count of that node time stampi. Then,f(s) > f(d) > f(s').

and that of all its descendants. Therefore, the computation of all
subset counts requires anoth®(2?") time. Hence, the overall
time complexity to compute the query lattice and associated data count how many of such data points are not dominated by any of

.Y

w
-~

@

s
I(s)=i I(s")=i+1

-
T

\j

structures i (nr 4+ 47). the previously selected skyline points fr@n In order to evaluate
Finding Skylines and Dominance NumbersWe access data points Poth these criteria effectively, we perform some modifications in
from the top of priority queueC in descending order of thejf() our earlier data structure, which are addressed below.

scores. For each data pgint, we verify if.it isa skyling point.. This 6.1 Modification in Data Structure

can be done by first looking at the mapping of that point to its cor-)

responding lattice node, and then checking the skyline bit for that Ve construct the query lattio@ as before. However, there are
lattice node. This requires totél(nr) time for alln data points. some updates in our data structure.

If a point d, with ¥(d) = v, is evaluated to be a skyline, we SkyCount Variable: The skycount variabld is initialized as. It
need to traverse all successorswoin the query lattice, in order is incremented by when we find a skyline point while processing
to determine the dominance numberdf Finally, each time we data points from the priority queue. We recall thatC stores data
find a skyline point, we also verify all lattice nodes for the early points in descending order of thefi() scores.

termination criteria. All these processes requiten2”) time for Time Stamp: We dynamically associate a time stamh@) with
total m skyline points. We note thab < 27, and usuallym << each data poini € D. While processing a data poittfrom the
n. priority queue/L, d's time stampl(d) is assigned to the current

Therefore, the overall time complexity to identify all the sky- Vvalue of the skycount variable.
line points and their dominance numberg£ién log n + nr + 47).
Thus, we improve the asymptotic complexity of skyline computa-
tion to log-linear time in the number of data points, when all di-

Table 2:Time Stamps for Data Points

Database Time Stamp

mensions except one are binary in natute reality, our method Points 1(d)
is even more efficient due to the two following reasons: (1) we ef- a: T
fectively prune all the non-skyline points using skyline bits, and dz 2
(2) we achieve early termination by verifying the skyline bits and 33 2
equivalence count values. df; 4

ds 4

d 4
6. FINDING DOMINANCE NUMBER OF A ds 4

SKYLINE SET

In order to solve th&REP problem (Problem 1), we note thatit ~ Traversal List: We dynamically allocate a traversal lis{v) with
is not sufficient to find the dominance numbers of individual sky- €ach lattice node. Thei-th entry of the traversal list; (v) counts
line points. We also require to compute the dominance number the number of data point¢ € D, which are mapped to, and
of a skyline set. More specifically, since we use the iterative hill- Which has its time stamp(d) = i. Formally,

climbing technique (Algorithm 1) to solve theREP problem, itis Tw)=|{de D: ¢(d) = v, I(d) =i} @)
necessary to find theesidual dominancaumber of a skyline point
with respect to a skyline set, which is defined below. The traversal lists are updated incrementally while we process
data points from the priority queug.
DEFINITION 7. [Residual Dominancefiven a skyline sef, Note that¥;(v) denotes the number of data poimtssuch that

the residual dominanc&(s, S) of a skyline point ¢ S is defined U(d) = vandf(s) > f(d) > f(s'), wheres ands’ are skylines

as the number of data points dominatedspyout not by any data with time stampsl(s) = i andI(s") = i + 1, respectively. For
pointins. a pictorial interpretation, see Figure 2. In other words, data points
corresponding t@;(v) are not dominated by any skyline point with
time stamp higher thai However, they could be dominated by
some skyline point with time stamp lower than or equal.tdVe
utilize this property to compute the residual dominance humbers in
our algorithm discussed in Section 6.2.

Clearly, the problem that we need to solve at this point is: how
do we compute the residual dominance valis, S) at each it-
eration of our iterative hill-climbing algorithm? If the intersection
between the satiated constraint setsand that of all previously
selected skyline points il is empty, then the residual dominance
number ofs is same as its individual dominance number. How- EXAMPLE 5. We show the time stamp value for each data point
ever, complexity arises when the intersection is non-empty. In such in Table 2, while the traversal lists for all lattice nodes are given in
cases, we need to consider all the nodes of the sub-lattice rooted affable 3.

v, wherev = ¥(s). Now, for each lattice node’ € succ(v), we
not only count how many data poinds such that)(d) = v’, are Space Complexity:We now report the additional space complex-
dominated by based onf() scores; additionally, we also need to ity incurred by our modified data structures. The size of a traversal

Decrease

(s) @ I(s)
f(d) @

Increase
f(st) @ Imin

Case (b)

Table 3:Traversal Lists for Lattice Nodes
Decrease

(50 (50 I
f(s) @ I(s)

- Increase

f(d) @

Case (a)

Traversal Lists
1 =2 =3 7

Lattice nodes I S

)

4

v1
V2
v3
V4
Vs
Ve
vr

coroooo|ll
oroococoo
mroooooo
RrRrROONO

Figure 3: Computation of Residual Dominangedready selected
in the top# skyline set,s a candidate for the top-skylines in the
current roundd a data point such that(d) is a descendent af(s)
in the query lattice.

list associated with some lattice node@gm), wherem is the
number of skyline points. Since: < 2", the overall space com-
plexity due to all traversal lists i©(4"). In addition, the time
stamp values incur an addition@(n) space complexity. There-
fore, the overall space consumed by our main-memory data struc-
ture in order to find the top-representative points 8(n + 4").

6.3 Time Complexity

6.2 Finding Residual Dominance The time complgxity to construct 'Fhe pri.ority queﬂe.query.
))) i lattice Q, and then finding all the: skyline points along with their

In this section, we shall describe our algorithm to compute the gominance numbers ©(nlogn + nr 4 47).
residual dominance number. Assunf,= {s1,s2,...,5j-1} Next, to identify the topk skyline set, we requirg iterations of
have already been selected as the(fop1) skyline points in our it- the hill-climbing method. As an initialization phase of the iterative
erative hill-climbing algorithm (Algorithm 1). Now, given another pjji_climbing, we also need to sort the skyline points based on their
skyline points, we shall compute the residual dominance number y5minance numbers, which has complex@m log m). At the
R(s,S) as follows. Specifically, we consider all the nodes of the j-th iteration of hill-climbing method (Algorithm 1)1 < j <
sub-lattice rooted at, wherev = ¥(s), and aggregate their con- %, we might need to consider all the remainifig. — j)_skylin_e
tributions inR(fr,LS). Let u/s c_:onsider a lattice nqdé € succ(v). points to identify the topj-th skyline points;. Now, computing
Observe thad i~ ;) Ti(v') is the number of pointd € D, such the residual dominance for one skyline point at jhth iteration
that¥(d) = o', ands dominatesi. Here,m is the maximum value requires®(m2") time. Therefore, our hill-climbing method with
of the SkyCount variable, which is equivalent to the total number total k iterations have time complexi®(m?2k2").
of skyline points. Recall that, for simplicity of description, we as- Considering the initial data-structure-construction time and since
sume no two data points have the safii¢ score. Now, there can m < 27, the overall time complexity of our method@(n log n +
be two distinct cases. nr + k8"). We note that for a relatively small number of query
constraints:, the time complexity of our algorithm is dominated by
O(nlogn + nr). In such settings, our query processing time in-
creases log-linearly with the number of data points, and itincreases
linearly with the number of constraints.

o If L(v') ¢ P(s¢), for all sy € S, thens; does not dominate
d, forall s, € S, where¥(d) = v'. Thus,3>1" ;) Ti(v')
gives the number of point, with ¥'(d) = v’, ands domi-
natesd, but s; does not dominaté, for all s; € S.

7. EXPERIMENTAL RESULTS

e Otherwise, we first identify als; € S for which P(s;) D) o
We present experimental results to demonstrate (1) efficiency

L(v"). Now, we need to verify ifs dominatesd and none

of theses, dominatesl, for some data poinf with ¢(d) =

v’. As boths ands,; dominated in terms of satiated query
constraints, we need to consider thé{) scores. Thus, we
find I, — the minimum time stamp of al}, € S for which
P(s;) 2 L(v'). Again, two distinct cases may occur as
shown in Figure 3.

— Case (a).If the time stamp of is greater thard, ., it
implies thatf (s) is smaller thary (s;) for somes; € S.
Hence, for all points! with ¥'(d) = ', if s dominates
d, it follows that there exists somg € S such thats;
also dominated. Therefore, in such cases, does not
contribute anything iR(s, S).

— Case (b).On the other hand, if the time stamp ofs
lower thanl nin, thean’:}z‘;l %i(v") gives the num-
ber of pointsd with ¥(d) = v’, such thats dominates

d, buts,; does not dominaté, for all s; € S.

(Sec. 7.2), (2) effectiveness (Sec. 7.3), and (2) scalability (Sec. 7.4)
of our techniques over three synthetic datasets. We also demon-
strate case studies using one real-world dataset (Sec. 7.5).

7.1 Experimental Setup

Data Sets:We used three synthetic and one real-world datasets as
summarized below.

Synthetic DatasetsWe generated these synthetic datasets by us-
ing the generator obtained from [2]. In tthedependentdataset,

all attribute values are generated independently from a pre-defined
range with a uniform distribution. Th€orrelateddatabase rep-
resents an environment in which points that have higher values in
one dimension also have higher values in the other dimensions. In
theanti-correlateddataset, points which have higher values in one
dimension have lower values in one or all of the other dimensions.
The cardinality of each of our synthetic datasets is 1M, the dimen-
sionality of each data point is5. The range of each attribute lies
between (1,100).

Car Dataset.We obtained thear dataset from [10]. The database

contains information aboui98 different models of cars — each

model has a certain number of reviews (range: ~1540) and KREP mmmmm

10 various ratings (range: © 10) corresponding to fuel, interior, 70 | FMG

exterior, build, performance, comfort, reliability, fun, and overall- =

rating. \q"’_), 30 + 1
Query Selection and Parameter SettingFor our synthetic datasets, g

we design our queries as follows. Each data péistl 5-dimensional, S 10 + 1
and let us denote b#p; (d) the value of theé-th dimension of a data E‘>;

point d. We design our top representative queries with binary 2 St 1
constraints as given in Equation 8. We also vary the number of

query constraints from 2 to 14. Let us denote by, thei-th con-

straint, which is:D;(d) > 95. 1 ‘

max Dis(d) indp corr anti
deD

. (a) Query Processing Time
subjectto D;(d) > 95, Vie (1,r) (8)

KREP ===

Comparing Methods: We compare the efficiency of oltREP EMG mmn

framework with that oFMG [16], which is state-of-the-art method

for finding the topk representative skyline&MG [16] applies the
similar notion of dominance-number-based ranking of a skyline set.
However, as the method was designed for the metric space, it is not
optimized towards our query semantics, where the constraints are
binary in nature. We compare our efficiency results and memory
usage with that oFMG. The authors of [16] kindly provided us
the executables (compiled using gcc). Since both our approach and
FMG have the same approximation guarantee (see Theorem 3) in
terms of identifying the topk: representative skyline nodes, we only
present the effectiveness results of our method.

26 r 1

13 ¢ 1

main memory usage (MB)

indp corr anti

We implemented our codes using C++. Each experimental result (b) Main Memory Usage
was averaged oveo runs. All experiments were run using a single
core in128GB, 2.4GHz Xeon server. Figure 4: Comparison betwedfREP andFMG: #Constraints = 4,

7.2 Efficiency TopK =10

Comparison with FMG: In these experiments, we compare the 12PI€ 4:Query Processing Time vs. Tdp+# Constraints =9
query processing times ¢§REP and FMG. It is worthwhile to

mention that both these methods identify the kogkyline set with |

Hill-Climbing (sec)

the highest dominance number. Neverthel€84G was designed Datasets | Initialization (Sec) —55p=r—fopR=T0 topk=20 Topk=50
for the metric space; and hence, it cannot exploit the fact the our indp 1.083 0.3661 0.3853 0.3953 0.4007
constraints are binary in nature. For our comparison, we use the corr 0.766 0.0407 ~ 0.0410 ~ 0.0410 ~ 0.0410

anti 0.967 0.1954 0.1972 01978 0.1994

executables provided by the authors [16]. Since their executables
can support data points with maximum dimensionality dihlyve
restrict the number of query constraintsdam these experiments.
Figure 4(a) shows that our methodREP is one order of mag-
nitude faster thafrMG over the three synthetic datasets. In Fig-
ure 4(b), we compare the main memory usaggREP andFMG.

We find thatKREP outperformsFMG in terms of memory usage

in all our experiments. Particularly, for our synthetic datasets, the
memory usage oKREP is almost half of the memory used by
FMG: 13.2MB for KREP vs. 26MB for FMG. Our results attest
that the proposed framework is more efficient than state-of-the-art 7 3 Effectiveness
FMG technique — both in terms of running time as well as in mem-
ory usage.

differentiate in Table 4 the initialization phase from thp-fosky-

line finding step, which corresponds to the iterative hill-climbing
algorithm. For these experiments, we set the number of query con-
straints a9, and the topk values varied frond to 50. We observe
that the running time for finding the toprepresentative data points
increases almost linearly with increasing valueg .of

We measure the effectiveness of our fopepresentative points
based on how many of the relevant data points that they dominate.
Varying Number of Top-% Skyline Points: In this section, we We recall that a data point is relevant if it satisfies at least one of
show the effect of varying tog-values on our query processing the query constraints. We define a metrépresentativenesas the
time. As our query processing time is dominated by the initial- percentage of relevant data points that are dominated by out top-
ization phase, that is, sorting of the data points according to their representative points. We present the representativeness of our top-
optimization scores and building of the query DAG based on sati- k£ data points, corresponding to different valueskpin Tables 5
ated constraints sets, the effect of varying topalues is minimal and 6.
over the entire query processing time. Therefore, to realize the Table 5 shows the representativeness of ouritapswers when
variation of running time with respect to different tépsalues, we we set the number of query constraintsdaslt can be observed

Table 5:Representative Power of Top-k Skylines, # Constraints = 9. Rep-

resentativeness is measured as the percentage of relevant data points domi-

nated by our toge representative points.

% Representativeness

Datasets | # Relevant Points | # Skylines [Topk=3 Topk=5 _ Topk=I0
indp 369478 211 93.07% 97.53% 98.79%
corr 298 8 48.99% 69.80% 100.00%
anti 254716 120 84.58% 97.64% 99.47%

Table 6:Representative Power of Top-k Skylines, # Constraints = 14. Rep-

resentativeness is measured as the percentage of relevant data points domi-

nated by our toge representative points.

% Representativeness

Datasets | # Relevant Points | # Skylines

| topk=3 fopk=5 fopk=10
indp 512623 1262 82.35% 87.27% 94.88%
corr 435 14 26.44% 41.84% 76.09%
anti 363807 595 72.72% 86.85% 92.64%

that there are more tha2b0K relevant data points for botimde-
pendentandanti-correlateddatasets, while the number of skyline
points is also higher thah00 for each of these data points. How-
ever, only the tog points can represent more thar% of all rel-

evant data points. These results attest the high effectiveness of our

KREP framework, even for a small value #f We note that the to-
tal number of relevant points and skyline points for toerelated
dataset are onlg98 and 8, respectively. This is because of our
query setting in Equation 8 and also due to the characteristic of the
correlateddataset, that is, points that are good in one dimension
are good in the other dimensions as well.

Table 6 shows the representativeness of ourkt@mswers with

15

0.5

query time (sec)

0.15
0.1M

0.4M 0.7M

data points
(a) Varying #Data Points, #Constraints = 9, TopK = 10

M

indp [
corr
anti

95

query time (sec)

14

query constraints
(b) Varying #Constraints, # Data Points = 1M, TopK = 10

Figure 5: Scalability over Synthetic Datasets

14 query constraints. We find that the representativeness percent-) .
age of our topk answers decreases as we increase the number offithm is O(nlogn + nr + k8"), wheren denotes the number of
query constraints. This inindeed expected since both the number of"0des, the number of query constraints, ahdlenotes the tog-

relevant points and the number of skyline points increase when we
have more query constraints. Nevertheless, ourltbdata points

are still representative of more tha6% of the relevant data points
for both indpendentand anti-correlateddatasets, and more than
75% for thecorrelateddataset. These results attest the high useful-
ness and information content of our tgérepresentative answers,
even for small values ¢, such ag = 5, or 10.

7.4 Scalability

Varying Number of Data Points: We analyze the scalability of
our method with varying number of data points in Figure 5(a). We
fix the number of query constraints @swhile varying the number

of data points fron0.1M to 1M. It can be observed that our query
processing time increases almost linearly with respect to the num-
ber of data points. These results illustrate the high scalability of our
algorithm for finding the top: representative data-points.

Varying Number of Query Constraints: We study the scalability

of our method with varying number of query constraints in Fig-
ure 5(b). Note that the Y-axis is logarithmic in this figure. Our
results show that the query processing time increases almost lin-
early with the number of query constraints, till the number of query
constraints is less thar0. However, the query processing time in-
creases exponentially with more that query constraints. This
observation can be explained by our time-complexity analysis in
Section 6.3. We recall that the overall time-complexity of our algo-

value. Whenr is small, the time-complexity is dominated by the
terms:(nlogn) and(nr); and therefore the running time increases
almost linearly with the number of query constraints. However,
when we have more than a certain number of query constraints, the
query processing time increases exponentially wjtwhich is due

to the term(k8") in our complexity result.

7.5 Case Studies on Real-World Dataset

For thecar dataset, we design our query as follows. We use the
number of reviews per car-models as the scoring function — recall
that the maximum number of reviews for any car model is 540. On
the other hand, ratings corresponding to 10 different attributes are
utilised in our query constraints. More specifically, each rating has
a value in (0,10); and we say that a car-model is relevant if at least
one of the ratings for that car-model is greater than or equal to 9.
Out of 598 car-models, we find that 500 of them are relevant ones,
while there are also 14 skyline car-models based on the aforemen-
tioned query setting. We present the topar-models obtained by
our method in Table 7. We find that our tépanswers are repre-
sentative of 98% of the relevant car-models, while we require only
0.09 sec to retrieve these tépresults by using our algorithm. One
may note that each of our tdprepresentative car-models satisfies
a diverse subsets of the query constraints, while they also have a
relatively large number of reviews.

Summary: We summarize our experimental results bel@y.Due
to a large number of relevant points, it is important to design an ef-

Table 7:Case Study: Top-5 Representative Car-Model€amDataset

(3]
Car-Model]| # Reviews Satiated Constraints
Saturn Aura 216 interior, exterior, build, performance, comfort, [4]
reliability, fun, overall-rating
Volkswagen Eog 106 fuel, interior, exterior, build, performance, [5]
comfort, reliability, fun, overall-rating [6]
Toyota Tundra 234 exterior, performance, comfort, reliability, fun
Toyota Camry 223 fuel, interior, exterior, build, comfort, [N
Hybrid reliability, fun, overall-rating
Honda Fit 358 interior, exterior, build, reliability, fun, [8]
overall-rating
Bl
ficient and effective ranking scheme and report only theitopest [10]

representative pointg2) Our top+ result set is representative of

a large number of relevant data points; and therefore, provides in- 11]
teresting insights about the underlying dataset with respect to the
given query constraintg3) Our proposed algorithms até® times
faster and consume up 2dimes less memory than state-of-the-art
top-k representative skyline finding technique [16}) Our meth-

ods are very scalable with respect to the number of data points and
the number of query constraints for a reasonably lower number of [14]
query constraints, which is often the case in real-life scenarios.

[12]

[13]

[15]

[16]

8. CONCLUSIONS

In this paper, we formulated and investigated the novel prob- [17]
lem of answering the tog-representative queries with binary con-
straints. Our proposedREP framework finds the tog-data points [18]
that are representative of the maximum possible number of avail- [19]
able options with respect to the given constraints. For identifying
such topk representatives, we have designed efficient and scalable[20]
algorithms which utilize the fact that the constraints present in our
queries are binary in nature. Based on detailed empirical evaluation
over various real-world and synthetic datasets, we findKiiREP
is not only one order of magnitude faster than state-of-the-art top- [22]
k skyline-finding algorithms, it also produces highly-informative
results as well as provides interesting insights about the underly-
ing data with respect to the given query constraints. As a side-
product of our algorithm, we also improve the asymptotic com- [25]
plexity of skyline computation to log-linear time in the number of
data points, when all dimensions except one are binary in nature. In[26]
future work, we shall consider our framework for finding the fop- 27]
representative points in the presence of both binary constraints as
well as multiple non-binary scoring functions. [28]

[21]

[23]
[24]

[29]

9. REFERENCES

[1] A. Angel and N. Koudas. Efficient Diversity-aware SearchSIGMOD, 2011.
[2] S. Borzsonyi, D. Kossmann, and K. Stocker. The Skyline OperatotCBE,
2001.

[30]

10

J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the Average
Number of Maxima in a Set of Vectors and ApplicatiodsACM

25(4):536-543, 1978.

G. Capannini, F. M. Nardini, R. Perego, and F. Silvestri. Efficient
Diversification of Web Search Results.W.DB, 2011.

S. Cook. The Complexity of Theorem-proving ProcedureSTIOG 1971.

B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou. Parallel Distributed
Processing of Constrained Skyline Queries by FilterindCIBE, 2008.

M. Drosou and E. Pitoura. DisC Diversity: Result Diversification Based on
Dissimilarity and Coverage. INLDB, 2012.

M. Endres and W. Kiessling. Optimization of Preference Queries with Multiple
Constraints. IPersDB 2008.

M. Endres and W. Kiessling. Semi-Skyline Optimization of Constrained
Skyline Queries. IIADC, 2011.

K. Ganesan, C. Zhai, and J. Han. Opinosis: A Graph-Based Approach to
Abstractive Summarization of Highly Redundant OpinionsCimputational
Linguistics 2010.

P. Godfrey, R. Shipley, and J. Gryz. Maximal Vector Computation in Large
Data Sets. I'VLDB, 2005.

S. Guha, D. Gunopulos, N. Koudas, D. Srivastava, and M. Vlachos. Efficient
Approximation Of Optimization Queries Under Parametric Aggregation
Constraints. In/LDB, 2003.

M. Hua, J. Pei, A. W. C. Fu, X. Lin, and H.-F. Leung. Efficiently Answering
Top-k Typicality Queries on Large DatabasesVIrDB, 2007.

H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the Maxima of a Set of
Vectors.J. ACM 22(4):469-476, 1975.

R.-H. Liand J. X. Yu. Scalable Diversified Ranking on Large GraphtCDM,
2011.

X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting Stars: The k Most
Representative Skyline Operator.I®DE, 2007.

Q. Mei, J. Guo, and D. Radev. DivRank: The Interplay of Prestige and Diversity
in Information Networks. IrKDD, 2010.

M. Morse, J. Patel, and H. V. Jagadish. Efficient Skyline Computation over
Low-Cardinality Domains. I'VLDB, 2007.

D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu. Regret Minimizing
Representative DatabasesMhDB, 2010.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An Analysis of
Approximations for Maximizing Submodular Set Functiok&thematical
Programming 14(1):265-294, 1978.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. An Optional and Progressive
Algorithm for Skyline Queries. I8IGMOD, 2003.

C. H. Papadimitriou and M. Yannakakis. On the Approximability of Trade-offs
and Optimal Access of Web Sources A®CS 2000.

L. Qin, J. X. Yu, and L. Chang. Diversifying Top-K Results.RVLDB, 2012.

S. Ranu, M. X. Hoang, and A. Singh. Answering Top-k Representative Queries
on Graph Databases. 8iIGMOD, 2014.

A. D. Sarma, A. Lall, D. Nanongkai, R. J. Lipton, and J. Xu. Representative
Skylines using Threshold-based Preference DistributionkCIE, 2011.

Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based Representative Skyline. In
ICDE, 2009.

E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. A. Yahia. Efficient
Computation of Diverse Query Results.I®DE, 2008.

R. C.-W. Wong, J. Pei, A. W.-C. Fu, and K. Wang. Online Skyline Analysis
with Dynamic Preferences on Nominal Attributd&DE, 21(1):35-49, 2009.

L. Zhang, Y. Jia, and P. Zou. A Grid Index Based Method for Continuous
Constrained Skyline Query over Data StreamARWeb/WAIM Workshops
2009.

Z.Zhang, S. w. Hwang, , K. C.-C. Chang, M. Wang, C. A. Lang, and

Y. c. Chang. Boolean + Ranking: Querying a Database by K-constrained
Optimization. INSIGMOD, 2006.

