
Top-k Representative Queries with Binary Constraints

Arijit Khan Vishwakarma Singh

ETH Zurich Apple USA
arijit.khan@inf.ethz.ch vsingh014@gmail.com

ABSTRACT
Given a collection of binary constraints that categorize whether a
data object is relevant or not, we consider the problem of online
retrieval of the top-k objects that best represent all other relevant
objects in the underlying dataset. Such top-k representative queries
naturally arise in a wide range of complex data analytic applications
including advertisement, search, and recommendation. In this pa-
per, we aim at identifying the top-k representative objects that are
high-scoring, satisfy diverse subsets of given binary constraints,
as well as representative of various other relevant objects in the
dataset. We formulate our problem with the well-established notion
of the top-k representative skylines, and we show that the prob-
lem isNP-hard. Hence, we design efficient techniques to solve
our problem with theoretical performance guarantees. As a side-
product of our algorithm, we also improve the asymptotic time-
complexity of skyline computation to log-linear time in the number
of data points when all dimensions except one are binary in nature.
Our empirical results attest that the proposed method efficiently
finds high-quality top-k representative objects, while our technique
is one order of magnitude faster than state-of-the-art methods for
finding the top-k skylines with binary constraints.

1. INTRODUCTION
Over a database, the users often search for objects that satisfy

user-defined multiplebinaryconstraints — each of these constraints
can evaluate to either true or false for every specific object. In par-
ticular, given a setD of objects, a scoring functionf(d) for all
objectsd ∈ D, a collection of binary constraintsp1(d), p2(d), . . . ,
pr(d), and a small positive integerk, we consider the problem of
online retrieval of the top-k most representative objects that are
high-scoring, yet satisfy diverse subsets of given binary constraints,
as well as representative of various other relevant objects in the
dataset. Such top-k representative queries over objects with one
non-binary and many binary attributes naturally arise in many com-
plex data analytic applications [18, 25], including information re-
trieval, search, advertisement, and recommendation.

EXAMPLE 1. A real-estate agent maintains a database of avail-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SSDBM ’15,June 29 - July 01, 2015, La Jolla, CA, USA
Copyright 2015 ACM 978-1-4503-3709-0/15/06 ...$15.00.
http://dx.doi.org/10.1145/2791347.2791367.

able houses along with several attributes, such as price, number of
rooms, number of windows, floor type, outdoor space, neighbor-
hood quality, and distance from various points of interests. Given
such a database of available houses, a customer might not always
be interested in the actual value of an attribute, rather the prefer-
ences of a customer often arrive in the form of several binary con-
straints [25], e.g., distance from a schoolS less than 5 miles. Let
us assume that some customer requested for the following impor-
tant preferences: (1) distance from a schoolS less than 5 miles, (2)
distance from a popular nightclubN less than 5 miles, (3) distance
from the airportA less than 10 miles, (4) quiet neighborhood, (5)
garden-space more than 50 sq. meter, (6) mountain and lake view,
and (7) marble floor. Usually, there is a limitk on the number of
houses that the agent can show in order to convince the customer
to buy a house. Then, what are the top-k houses that the agent must
show to this customer?

In the above example, we say that a house isrelevantto the cus-
tomer if it satisfies at least one of the aforementioned constraints.
Nevertheless, finding the top-k houses with the lowest prices (the
price can be modeled as the scoring functionf() in our problem
setting) and satisfying all, or as many as possible, given constraints
is not a good idea from the agent’s perspective — it could result in
only a few expensive houses; while, in reality, the customer might
not be equally interested in satisfying all the above-mentioned con-
straints. Rather, it will be more promising to the agent if she reports
the top-k houses that are relatively low-cost, satisfy diverse subsets
of the aforementioned important constraints, and yet representative
of a large number of other relevant houses in the database.

In this paper, we formulate the problem of selecting the top-k
representative data-points with the well-established notion of dom-
inance or “pareto-optimality” [2]. We model the scoring function
f() and each binary constraintpi as a separate dimension. An ob-
jectr0 dominates another objectr if the value ofr is no larger than
that of r0 in each dimension, and the value ofr is smaller than
that ofr0 in at least one dimension. Finally, we retrieve the top-k
objects that collectively dominate the maximum number of other
relevant objects in the dataset.

Here, we must emphasize that we adopt a similar criteria as find-
ing the top-k representative skylines which was earlier proposed
in [16]. Unfortunately, the problem of finding the top-k most repre-
sentative skylines in an online manner is a non-trivial problem. The
dynamic nature of our query makes any kind of pre-computation
very difficult. Indeed, the asymptotic complexity of the best-known
algorithm for skyline set computation isO(n(log n)r−1) due to
[2], wheren is the number of data points and(r+1) is the dimen-
sionality of each data point in our problem setting. Clearly, one
can apply existing approaches, e.g., [16] to solve our problem by

1

considering each binary constraint as a separate dimension.How-
ever, such approaches are not optimized for the top-k representative
queries with binary constraints that we study in this work. Our tech-
nical contribution lies in the fact that we design efficient algorithms
to leverage the binary constraints present in our queries. While we
provide the same approximation guarantee as in [16],the presence
of binary constraints in our problem setting allows for reasoning
on the lattice (discussed in Section 5), and this mechanism is not
straight-forward to be adapted to the case of general dimensions
as in [16]. Based on experiments over four diverse categories of
real-world and synthetic datasets, we find thatour proposed tech-
niques for finding the top-k representatives are10 times faster as
well as up to2 times less memory consuming than state-of-the-art
method[16], which was designed for retrieving the top-k represen-
tative skyline points in the metric space.

Contributions: We make four important contributions.

(1) We formulate and investigate the novel problem of answering
the top-k representative queries with binary constraints in an online
manner.

(2) We improve the asymptotic complexity of skyline computation
to log-linear time in the number of data points, when all dimensions
except one are binary in nature1.

(3) We propose efficient techniques to find the dominance number
of an object as well as a set of objects; and thus, we can quickly
identify the top-k representative objects in an online manner.Our
algorithms are designed to utilize the fact that the constraints in our
queries are binary in nature.Therefore, our proposed schemes are
10 times faster as well as consume up to2 times less memory than
state-of-the-art method [16], which was designed for retrieving the
top-k skyline points in the metric space.

(4) As tested on four diverse categories of real-world and synthetic
datasets, our techniques are able to select high-quality top-k an-
swers in an efficient manner. We also show that the top-k objects
retrieved by our method indeed represent a large number of other
relevant objects in the dataset, even for very small values ofk, e.g.,
k = 5.

2. RELATED WORK
We categorize related work as follows.

Skyline Queries. The skyline operator was originated from the
maximal vector problem in computational geometry [3,14]. Börzs̈onyi
et al. [2] first introduced the skyline operator for large databases,
and also proposed an SQL syntax. Skyline queries for dynamic
preferences over nominal attributes were considered in [28]. Con-
strained skyline queries were proposed in [21], and thereafter, [6,
29] considered constrained skyline queries under distributed and
stream settings, respectively. Skyline queries over objects with one
non-binary and many binary attributes were previously considered
in [18], and the authors demonstrated the advantage of lattice-based
skyline computation techniques which is similar to ours. How-
ever, their query semantics are different, as they do not consider
the top-k answers to their queries. Endres et. al. further proposed
“preference queries”, which are constrained skyline queries in the
presence of hard and soft constraints [8,9].

For high dimensional data, the skyline set usually becomes quite
large [3, 11]; and hence, less informative. Therefore, various tech-

1It was shown in [2] why anO(n log n) algorithm is not suffi-
cient enough to find the skyline set when the dimensionality of each
data point is more than 2. In the worst case, the asymptotic com-
plexity of the best-known algorithm for skyline set computation is
O(n(log n)r−1).

niques have been proposed to rank the skyline points, such as the
representative skylines [16,26] and regret-minimizing skylines [19].
Particularly, we adopted the skyline ranking scheme proposed in
[16] — albeit, their techniques were developed for the metric space;
and hence, not optimized for answering top-k representative queries
with binary constraints. The presence of binary constraints in our
problem setting allows for reasoning on the lattice, and this mech-
anism is not straight-forward to be adapted to the case of general
dimensions as in [16].

Top-k Representative Queries.A large number of models exist
that support diversity in the top-k answer set, e.g., [1,4,7,17,23,27],
among many others. A few works [13, 15, 24] maximize diversity
as well as representativeness of the top-k results. Nevertheless,
they consider representativeness in the context of object-similarity;
whereas we use the notion of dominance or “pareto-optimality” as
representativeness, which is more suitable for our queries. Thus,
our top-k representative queries are more similar to the top-k rep-
resentative skylines as proposed earlier in [16].

Constrained Optimization Queries. [30] designed efficient in-
dexing methods to find an exact solution of thek-constrained op-
timization query. [22] studied the problem of multi-objective opti-
mization, in which solutions to a combinatorial optimization prob-
lem were evaluated with respect to several cost criteria, and the
authors investigated the notion ofǫ-Pareto solution. A syntacti-
cally close work to ours is theOPAC query proposed in [12]. The
authors consideredǫ-Pareto answers to optimization queries under
parametric aggregation constraints over multiple database tuples.
However, their optimization function and constraints are aggre-
gated over multiple tuples. On the other hand, in our query se-
mantics, the scoring function as well as the query constraints are
applied over individual database tuples.

3. PROBLEM DEFINITION
Let us denote byD the set of all data points. We next start with

a few definitions.

DEFINITION 1. [Satiated Constraints by a Data Point]Given a
set of binary query constraintsP = {p1, p2, . . . , pr}, the satiated
constraintsP (d) by some data pointd ∈ D are simply the subset
of constraints satisfied byd. Formally,

P (d) = {pi ∈ P : pi(d) is true} (1)

We say that a data pointd ∈ D is relevant, if it satisfies at least
one of the given query constraints, i.e.,P (d) 6= φ. We shall use
the terms “data points” and “relevant data points” interchangeably,
i.e., given the query constraints, we shall consider only the relevant
data points in our algorithm.

DEFINITION 2. [Dominance]Given two data pointsd, d′ ∈ D,
a scoring functionf , and a set of constraintsP , we say thatd
dominatesd′ if one of the following holds true:(1) f(d) > f(d′)
andP (d) ⊇ P (d′), or (2) f(d) = f(d′) andP (d) ⊃ P (d′).

The dominance relation satisfies the following properties.

PROPERTY 1. The dominance relation is transitive. It is not
reflexive, neither symmetric, nor anti-symmetric.

Now, we formally define skyline points in a database with respect
to the scoring functionf and the set of binary constraintsP .

DEFINITION 3. [Skyline Point]A data pointd ∈ D is called a
skyline point if it is not dominated by any other points inD.

2

Table 1:Run-through Example. The query contains three constraints:p1,
p2, p3.

Database f(d) Satiated
Points Constraints

d1 15 p1

d2 12 p2

d3 11 p3

d4 9 p1, p2

d5 6 p1

d6 5 p3

d7 4 p1, p2

d8 2 p2

From the above definitions, we note that each skyline point cor-
responds to the highest-scoring (decided byf()) point for some
subset of query constraints. For simplicity of description, we here-
inafter assume that no two data points have the samef() score. We
shall discuss later how our techniques can be adapted to consider
scenarios when multiple data points have the same f() score. Next,
in order to identify the top-k most representative data points, we
introduce a ranking criteria using the notion ofdominance num-
ber [16,21], which is formally defined below.

DEFINITION 4. [Dominance Number of a Point]The dominance
numberN(d) of a data pointd ∈ D is defined as the number of
data points inD that are dominated byd.

N(d) = |{d′ : d′ ∈ D, d dominatesd′}| (2)

DEFINITION 5. [Dominance Number of a Set]Given a set of
pointsD1 ⊆ D, the dominance number of the setD1 is defined as
the number of data points inD that are dominated by at least one
of the points inD1.

N(D1) = |{d′ : d′ ∈ D, ∃d(d ∈ D1, d dominatesd′)}| (3)

EXAMPLE 2. In Table 1, we show8 data points, along with
their f() scores and satiated constraint sets. Based on our defi-
nition, the skyline points ared1, d2, d3, and d4, as they are not
dominated by any other points in the database. The data points
dominated by the skyline pointsd1, d2, d3, and d4 are: {d5},
{d8}, {d6}, and{d5, d7, d8}, respectively. We further observe that
{d1, d4} together dominate3 data points:{d5, d7, d8}.

Problem Formulation. We are now ready to formally define our
problem,KREP, abbreviated for k-representative.

PROBLEM 1. [KREP] Given the datasetD, a query〈f, P 〉,
and a positive integerk, find the set ofk data points, such that
the total number of points dominated by at least one of them is
maximized.

Note that in our problem, we do not explicitly seek for an an-
swer set consisting only of skyline points. However, if the total
number of skyline points inD with respect to some query〈f, P 〉
is at leastk, it is easy to verify (Theorem 1) that the top-k repre-
sentative points defined by theKREP problem will indeed be the
top-k set of skyline points (in terms of the dominance number of
the set). Therefore, we shall design an algorithm that identifies the
top-k skyline set.

THEOREM 1. If the total number of skyline points inD with
respect to some query〈f, P 〉 is at leastk, then the top-k results
will be all skyline points in one optimal solution of our problem.

PROOF. Let, if possible, there be a non-skyline pointd′ in the
top-k result set as defined in the problemKREP. There can be two
distinct cases:(1) at least one of the skyline points, sayd, which
dominatesd′, is in the top-k set. In that case, if we removed′

from the top-k set, that will not reduce the dominance number of
the set with the remaining(k − 1) points. Now, we can add a new
skyline point in the set, since the total number of skyline points in
the dataset is at leastk. Otherwise,(2) all the skyline points, that
dominated′, are not in the top-k set. Then, it is advantageous to
replaced′ by any skyline pointd that dominatesd′, sinced has
higher dominance number thand′. This completes the proof.

Our problem is, however, nontrivial. The following theorem
shows that theKREP problem is intractable.

THEOREM 2. TheKREP problem isNP-hard.

PROOF. The proof directly follows by reduction from theNP-
complete set cover problem [5], defined by a collection of subsets
S1, S2, . . . , Sm of a ground setU = {u1, u2, . . . , ut}. We would
like to know whether there existk of the subsets whose union is
equal toU. Now, we show that this can be viewed as a special
instance of theKREP problem. Each setS1, S2, . . . , Sm could be
considered as a skyline point and each element in the ground set
can be considered as a non-skyline point. IfSi coversuj in the set
cover problem, we assume that the skyline pointSi dominates the
non-skyline pointuj . Hence, the set cover problem is equivalent to
deciding iff there is a set ofk skyline points, with (set) dominance
number greater than or equal tot. Hence the theorem.

4. OVERVIEW OF SOLUTION
In this section, we provide a brief overview of our solution tech-

nique. Since theKREP problem isNP-hard (Theorem 2), we re-
sort to an efficient approximation algorithm with theoretical per-
formance guarantee. Fortunately, Theorem 3 ensures that the ob-
jective function ofKREP is submodular [16], and it monotonically
increases withk.

THEOREM 3. The objective function ofKREP (i.e., the number
of points dominated by the top-k representative set) is submodular,
and it monotonically increases withk.

PROOF. A function g() is submodular if it satisfies the follow-
ing property:g(A ∪ {x}) − g(A) ≥ g(B ∪ {x}) − g(B), for all
elementsx and all pairs of setsA ⊆ B, i.e., the marginal gain from
adding an element to a setA is at least as high as the marginal gain
from adding the same element to a superset ofA. In our problem
setting, letA denote a skyline set andg(A) be the total number of
points dominated by at least one skyline point inA. Clearly, the
marginal gain from adding a skyline point to setA will be at least
as high as the marginal gain from adding the same skyline point
to a superset ofA. Therefore, the objective function ofKREP is
submodular. Besides, the total number of points dominated by at
least one skyline point inA monotonically increases with the size
of A.

Due to submodularity, we apply an iterative hill-climbing method
(Algorithm 1) to derive an approximate solution within a factor of
(1− 1/e) ≈ 0.63 of the optimum solution [20]. More specifically,
given already selected top(j − 1) skyline points, where1 ≤ j <
k, we select thej-th skyline point such that the number of points
dominated by thej-th skyline, but not by any of the previous(j−1)
skylines, is maximized.

While the above-mentioned hill-climbing method forms the core
of our solution technique, one still needs to efficiently compute the

3

Algorithm 1 Finding Top-k Representative Objects

Require: Database pointsD, query〈f, P 〉, integerk
Ensure: Top-k representative setS of sizek
1: find the skyline setM
2: S = φ
3: for i = 1 to k do
4: d∗ = argmaxd∈D\S N(S

⋃
{d}) /* N dominance number */

5: S = S
⋃
{d∗}

6: end for
7: outputS

following two dominance numbers — (1) the dominance number
of any skyline point, and (2) the dominance number of any skyline
set. Our main technical contribution lies in designing efficient al-
gorithms to solve the two aforementioned problems by leveraging
the binary constraints present in our queries. We describe our algo-
rithm to find the dominance numbers of individual skyline points
in Section 5, while our method to compute the dominance number
of a skyline set is given in Section 6.

5. FINDING DOMINANCE NUMBER OF A
SKYLINE POINT

In this section, we shall design efficient techniques to find all
skyline points and their individual dominance numbers (line 1 of
Algorithm 1). The first step of our method is to build main memory-
based effective data structures by performing a single scan over the
database. Therefore, we first describe our data structures which
will be useful in our algorithms.

5.1 Main Memory Data Structures

Query Lattice: The query lattice, denoted byQ = (V,E,L), is
a directed acyclic graph. It is formed based on the given query
constraints setP . If P contains a total ofr constraints, the lattice
Q consists of(2r − 1) nodes. Each lattice nodev ∈ V corresponds
to a subset of the query constraints set, except the null subset. We
exclude the null subset as we consider only the relevant data points
in our algorithm. The label set of each lattice nodev is denoted as
L(v), which is a subset ofP .

There is an edge from lattice nodev to v′, if L(v′) ⊆ L(v),
and |L(v)| − |L(v′)| = 1. v′ is called asuccessorof v, denoted
as v′ ∈ succ(v), if there is a directed path fromv to v′ in Q.
Alternatively,v is called apredecessorof v′. The nodev itself is
not included in successor or predecessor ofv.

EXAMPLE 3. In Figure 1, we present the query lattice corre-
sponding to our run-through example in Table 1. With each lattice
node, we also show two additional values — equivalence count (E)
and subset count (S), which will be defined shortly.

Mapping Relation: We define a mapping relationΨ : D → V ,
such thatΨ(d) = v if P (d) = L(v). One may note thatΨ is a
many-to-one mapping.

Count Values: With each lattice nodev ∈ V , we associate two
count values: equivalence count and subset count. Theequivalence
countE(v) is the number of data points in the input datasetD
whose satiated constraints set is same asL(v). Thesubset count
S(v), on the other hand, is the number of data points inD whose
satiated constraints set is a subset ofL(v), except the null subset.

p1p2p3

p1p2 p1p3 p2p3

p1 p2 p3

v1

v2 v3
v4

v5 v6 v7

E = 0

S = 8

E = 2

S = 6

E = 0

S = 4

E = 0

S = 4

E = 2

S = 2

E = 2

S = 2

E = 2

S = 2

Figure 1: Query Lattice and Associated Counts for Run-through
Example in Table 1

Formally,

E(v) = |{d : d ∈ D, P (d) = L(v)}| (4)

S(v) = |{d : d ∈ D, P (d) ⊆ L(v), P (d) 6= φ}|

The subset countS(v) is essentially the number of data points
in D that are dominated by (or equivalent to) some pointd ∈ D,
with Ψ(d) = v, based on the satiated constraints set. Hence, to
determine the dominance numberN(d) of a skyline pointd with
Ψ(d) = v, we subtract fromS(v) the number of points that are not
dominated byd in terms off() score. For simplicity of description,
we assume that no two points have the samef() scores. We shall
discuss at the end of Section 5.2 how our techniques can be adapted
to consider scenarios when multiple data points have the samef()
score. Finally, we compute the dominance numberN(d) by using
our algorithm, which will also be described in Section 5.2.

Skyline Bit: With each lattice nodev, we attach a variableskyline
bit B(v) that can take values either0 or 1. The skyline bits sat-
isfy the following during execution of our algorithm. A data point
d ∈ D, such thatΨ(d) = v, andB(v) = 1, cannot be a skyline
point. All skyline bits are initialized to0 in the beginning of our
algorithm.

Priority Queue: Given the scoring functionf , we maintain a pri-
ority queueL, which stores all data point ids in descending order
of theirf() scores.

Space Complexity.The storage complexity due to our main mem-
ory data structures isΘ(n+ 2r) — the first part is due to the map-
ping relation and the priority queue; whereas the second component
is due to the query lattice, and associated count values and skyline
bit with each lattice node. Here,n is the cardinality of the dataset
andr is the number of binary constraints in the query.

5.2 Algorithm Description
Initialization: Our first step consists of aone-time sequential scan-
ning of the datasetD. For each data pointd ∈ D, we eval-
uatef(d), and verify how many of the user-defined constraints
{p1, p2, . . . , pr} are satisfied byd. While scanning the dataset, we
perform two additional tasks.(1) We insert the data pointsd ∈ D
into a priority queueL that stores its elements in descending order
of theirf(d) scores.(2) We build the query latticeQ. At the end of
the sequential scanning, we also compute the count values〈E,S〉
for each lattice node. All the skyline bitsB(v) are initialized to0.

Skyline Finding: Next, we access the data points from the top of
the priority queueL. Thus, we process all pointsd ∈ D in descend-
ing order of theirf(d) scores. Based on our invariant condition on
the skyline bitB, a pointd is a skyline point only ifB(v) = 0,

4

wherev = Ψ(d). If we find a pointd as a skyline point, we com-
pute its dominance numberN(d), which will be discussed shortly.

If d is a skyline point, we also set the following skyline bits:
B(v) = 1; andB(v′) = 1 for all v′ ∈ succ(v). This setting
of skyline bits ensures that, if we process some data pointd′ at a
later stage, whereΨ(d′) = v′ andB(v′) = 1, thend′ cannot be a
skyline point.

Compute Dominance Number: We recall that the subset count
S(v) is the number of points inD that are dominated by (or equiv-
alent to) some data pointd ∈ D, Ψ(d) = v, based on the satiated
constraints set. Hence, to determine the dominance numberN(d)
of a skyline pointd, with Ψ(d) = v, we subtract fromS(v) the
number of points that are not dominated byd in terms of its score
f(). We keep track of dominance onf() scores using atraversal
variable, T (v), associated with each lattice nodev.

DEFINITION 6. [Traversal Variable]Assume we are currently
processing some data pointd with scoref(d), and Ψ(d) = v.
Then, the traversal variableT (v) for lattice nodev stores the num-
ber of pointsd′ ∈ D, such thatΨ(d′) = v andf(d′) > f(d).

The traversal variable of a lattice nodev is incremented by1
after we finish processing of the data pointd such thatΨ(d) =
v. Now, to compute the dominance number of a skyline pointd
with Ψ(d) = v, we traverse each successor nodev′ of v in the
query lattice. Then, we aggregateT (v) with T (v′) for all such
v′. Finally, the dominance number of the skyline pointd, where
Ψ(d) = v, is given by:

N(d) = S(v)− [1 + T (v) +
∑

v′∈succ(v)

T (v′)] (5)

One may verify that the expression[1+T (v)+
∑

v′∈succ(v) T (v
′)]

in the above equation denotes the number of data points that are
not dominated byd in terms of its scoref(), but dominated by
(or equivalent to)d in terms of satiated constraints. Note that we
include1 in the expression[1 + T (v) +

∑
v′∈succ(v) T (v

′)] to re-
flect the fact that a data point is not dominated by itself. Therefore,
subtracting this expression fromS(v), which denotes the number
of data points that are dominated by (or equivalent to)d only in
terms of satiated constraints, provides the actual dominance num-
berN(d) of that data pointd. A complete description to find all
the skyline points, along with their dominance numbers, is given in
Algorithm 2.

EXAMPLE 4. We provide an example of dominance number com-
putation using our run-through example in Table 1. We access the
data points in descending order of theirf() scores. Assume, we
have already processed data pointsd1, d2, d3. Note thatΨ(d1) =
v5, Ψ(d2) = v6, Ψ(d3) = v7. Therefore, the traversal variable for
each lattice node will be as follows:T (v1) = T (v2) = T (v3) =
T (v4) = 0, and T (v5) = T (v6) = T (v7) = 1. The skyline
bits, on the other hand, will be as follows:B(v1) = B(v2) =
B(v3) = B(v4) = 0, andB(v5) = B(v6) = B(v7) = 1. Next,
we shall process the data pointd4. SinceΨ(d4) = v2 and the cor-
responding skyline bitB(v2)=0, d4 is a skyline point. To compute
its dominance number, we consider all the nodes of the sub-lattice
rooted atv2 and find their traversal variables. More specifically,
the dominance number ofd4 is given as:S(v2) − [1 + T (v2) +
T (v5) + T (v6)] = 3. Finally, we increment the traversal variable
of v2 by1, that is,T (v2) becomes1. We also set the skyline bits of
v2 and that of all its descendents as1.

Early Termination: While Algorithm 2 terminates after process-
ing all the data points (see line 4, Algorithm 2), we further propose

Algorithm 2 Finding All Skyline Points and Their Dominance
Numbers
Require: Database pointsD, query〈f, P 〉, integerk
Ensure: Skyline setM
1: compute query latticeQ, equivalence countsE, and subset countsS
2: set traversal variableT (v)← 0, skyline bitB(v) ← 0 for each lattice

node
3: L ← data items in descending order off() score
4: while L not emptydo
5: d← remove top-item fromL
6: v ← Ψ(d)
7: if B(v) 6= 1 then
8: insertd in skyline setM /* d is a skyline point */
9: dominance no.N(d) = S(v)− [1+T (v) +

∑

v′∈succ(v)

T (v′)]

10: B(v) = 1 /* set skyline bit of v */
11: for all v′ ∈ succ(v) do
12: B(v′) = 1 /* set skyline bits of all successors of v */
13: end for
14: end if
15: T (v)← T (v) + 1 /* update traversal variable T(v) */
16: end while
17: outputM

an early termination criteria for our method. Each time we finda
skyline point, we also verify whether one of the following condi-
tions is true for every lattice nodev: (i) its skyline bitB(v) = 1 or,
(ii) its equivalence countE(v) = 0. If one of the aforementioned
conditions is true for all lattice nodes, then the remaining points in
the priority queueL, which are not processed yet, cannot be skyline
points. Hence, we terminate our algorithm.

Multiple Data Points with Samef() Scores:Our skyline set find-
ing algorithm (Algorithm 2) can be adapted if there are multiple
data points with the samef() score. In such cases, data points with
the samef() scores are processed in batches (inside lines 5 to 15
in Algorithm 2). In particular, let us assume thatd1, d2, . . . , dk are
the data points retrieved from the top ofL and having the samef()
score. We further sortd1, d2, . . . , dk in descending order of their
satiated constraint set sizes|P (d)|, and process them in that order.
If multiple data points have the samef() score, they satisfy exactly
the same set of constraints, and if the corresponding skyline bit
in the query lattice is also set as0, then all of them are reported as
skyline points. Otherwise, a data point — whose satiated constraint
set is a superset of the satiated constraint set of another data point
— would be processed earlier, and the later would no longer be
considered as a skyline point based on our algorithm. Equation 5,
which computes the dominance number of a skyline point (line 9,
Algorithm 2), is modified as follows:

N(d) = S(v)− [k′ + T (v) +
∑

v′∈succ(v)

T (v′)] (6)

Here,k′ ≤ k is the number of data points in the current batch
that map to the same lattice nodev. Finally, we update the corre-
sponding traversal variables (line 15 of Algorithm 2) at the end of
processing the current batch of data pointsdi1 , di2 , . . . , dik . Spe-
cially, we increment the traversal variableT (v) by k′, wherek′, as
specified earlier, is the number of data points in the current batch
that also map to the lattice nodev.

5.3 Time Complexity
Let us denote the number of data points inD asn. Also, we

assume that the number of query constraints isr, and the number
of skyline points ism.

5

Sorting Data Points: The sorting of all data points in the priority
queue based on theirf() scores requiresO(n log n) time.

Query Lattice Construction: The complexity of formulating the
query lattice isO(2r). One also needs to compute the equivalence
countE(v) and the subset countS(v) for each lattice nodev. In
order to compute all the equivalence counts, we identify for each
data pointd ∈ D, its corresponding lattice node:v = Ψ(d). This
requiresO(nr) time. Now, for computing the subset count of each
lattice nodev, we aggregate the equivalence count of that node
and that of all its descendants. Therefore, the computation of all
subset counts requires anotherO(22r) time. Hence, the overall
time complexity to compute the query lattice and associated data
structures isO(nr + 4r).

Finding Skylines and Dominance Numbers:We access data points
from the top of priority queueL in descending order of theirf()
scores. For each data point, we verify if it is a skyline point. This
can be done by first looking at the mapping of that point to its cor-
responding lattice node, and then checking the skyline bit for that
lattice node. This requires totalO(nr) time for alln data points.

If a point d, with Ψ(d) = v, is evaluated to be a skyline, we
need to traverse all successors ofv in the query lattice, in order
to determine the dominance number ofd. Finally, each time we
find a skyline point, we also verify all lattice nodes for the early
termination criteria. All these processes requireO(m2r) time for
totalm skyline points. We note thatm ≤ 2r, and usually,m <<
n.

Therefore, the overall time complexity to identify all the sky-
line points and their dominance numbers isO(n log n+ nr+4r).
Thus, we improve the asymptotic complexity of skyline computa-
tion to log-linear time in the number of data points, when all di-
mensions except one are binary in nature. In reality, our method
is even more efficient due to the two following reasons: (1) we ef-
fectively prune all the non-skyline points using skyline bits, and
(2) we achieve early termination by verifying the skyline bits and
equivalence count values.

6. FINDING DOMINANCE NUMBER OF A
SKYLINE SET

In order to solve theKREP problem (Problem 1), we note that it
is not sufficient to find the dominance numbers of individual sky-
line points. We also require to compute the dominance number
of a skyline set. More specifically, since we use the iterative hill-
climbing technique (Algorithm 1) to solve theKREP problem, it is
necessary to find theresidual dominancenumber of a skyline point
with respect to a skyline set, which is defined below.

DEFINITION 7. [Residual Dominance]Given a skyline setS,
the residual dominanceR(s, S) of a skyline points 6∈ S is defined
as the number of data points dominated bys, but not by any data
point inS.

Clearly, the problem that we need to solve at this point is: how
do we compute the residual dominance valuesR(s, S) at each it-
eration of our iterative hill-climbing algorithm? If the intersection
between the satiated constraint set ofs and that of all previously
selected skyline points inS is empty, then the residual dominance
number ofs is same as its individual dominance number. How-
ever, complexity arises when the intersection is non-empty. In such
cases, we need to consider all the nodes of the sub-lattice rooted at
v, wherev = Ψ(s). Now, for each lattice nodev′ ∈ succ(v), we
not only count how many data pointsd, such thatψ(d) = v′, are
dominated bys based onf() scores; additionally, we also need to

s d s´

f(s) f(d) f(s´)

I(s)=i I(d)=i I(s´)=i+1

˃ ˃

Decrease

Increase

Figure 2: Interpretation of Traversal List:s ands′ are skylines with
time stampsi and i + 1, respectively.d is a data point also with
time stampi. Then,f(s) > f(d) > f(s′).

count how many of such data points are not dominated by any of
the previously selected skyline points fromS. In order to evaluate
both these criteria effectively, we perform some modifications in
our earlier data structure, which are addressed below.

6.1 Modification in Data Structure
We construct the query latticeQ as before. However, there are

some updates in our data structure.

SkyCount Variable: The skycount variableJ is initialized as0. It
is incremented by1 when we find a skyline point while processing
data points from the priority queueL. We recall thatL stores data
points in descending order of theirf() scores.

Time Stamp: We dynamically associate a time stampI(d) with
each data pointd ∈ D. While processing a data pointd from the
priority queueL, d’s time stampI(d) is assigned to the current
value of the skycount variable.

Table 2:Time Stamps for Data Points

Database Time Stamp
Points I(d)

d1 1
d2 2
d3 3
d4 4
d5 4
d6 4
d7 4
d8 4

Traversal List: We dynamically allocate a traversal listT(v) with
each lattice nodev. Thei-th entry of the traversal listTi(v) counts
the number of data pointsd ∈ D, which are mapped tov, and
which has its time stampI(d) = i. Formally,

Ti(v) = |{d ∈ D : ψ(d) = v, I(d) = i}| (7)

The traversal lists are updated incrementally while we process
data points from the priority queueL.

Note thatTi(v) denotes the number of data pointsd, such that
Ψ(d) = v andf(s) > f(d) > f(s′), wheres ands′ are skylines
with time stampsI(s) = i andI(s′) = i + 1, respectively. For
a pictorial interpretation, see Figure 2. In other words, data points
corresponding toTi(v) are not dominated by any skyline point with
time stamp higher thani. However, they could be dominated by
some skyline point with time stamp lower than or equal toi. We
utilize this property to compute the residual dominance numbers in
our algorithm discussed in Section 6.2.

EXAMPLE 5. We show the time stamp value for each data point
in Table 2, while the traversal lists for all lattice nodes are given in
Table 3.

Space Complexity:We now report the additional space complex-
ity incurred by our modified data structures. The size of a traversal

6

Table 3:Traversal Lists for Lattice Nodes

Lattice nodes Traversal Lists
i = 1 i = 2 i = 3 i = 4

v1 0 0 0 0
v2 0 0 0 2
v3 0 0 0 0
v4 0 0 0 0
v5 1 0 0 1
v6 0 1 0 1
v7 0 0 1 1

list associated with some lattice node isΘ(m), wherem is the
number of skyline points. Sincem ≤ 2r, the overall space com-
plexity due to all traversal lists isO(4r). In addition, the time
stamp values incur an additionalΘ(n) space complexity. There-
fore, the overall space consumed by our main-memory data struc-
ture in order to find the top-k representative points isO(n+ 4r).

6.2 Finding Residual Dominance
In this section, we shall describe our algorithm to compute the

residual dominance number. Assume,S = {s1, s2, . . . , sj−1}
have already been selected as the top(j−1) skyline points in our it-
erative hill-climbing algorithm (Algorithm 1). Now, given another
skyline points, we shall compute the residual dominance number
R(s, S) as follows. Specifically, we consider all the nodes of the
sub-lattice rooted atv, wherev = Ψ(s), and aggregate their con-
tributions inR(s, S). Let us consider a lattice nodev′ ∈ succ(v).
Observe that

∑m

i=I(s) Ti(v
′) is the number of pointsd ∈ D, such

thatΨ(d) = v′, ands dominatesd. Here,m is the maximum value
of the SkyCount variable, which is equivalent to the total number
of skyline points. Recall that, for simplicity of description, we as-
sume no two data points have the samef() score. Now, there can
be two distinct cases.

• If L(v′) 6⊂ P (st), for all st ∈ S, thenst does not dominate
d, for all st ∈ S, whereΨ(d) = v′. Thus,

∑m

i=I(s) Ti(v
′)

gives the number of pointsd, with Ψ(d) = v′, ands domi-
natesd, butst does not dominated, for all st ∈ S.

• Otherwise, we first identify allst ∈ S for which P (st) ⊇
L(v′). Now, we need to verify ifs dominatesd and none
of thesest dominatesd, for some data pointd with ψ(d) =
v′. As boths andst dominated in terms of satiated query
constraints, we need to consider theirf() scores. Thus, we
find Imin — the minimum time stamp of allst ∈ S for which
P (st) ⊇ L(v′). Again, two distinct cases may occur as
shown in Figure 3.

– Case (a).If the time stamp ofs is greater thanImin, it
implies thatf(s) is smaller thanf(st) for somest ∈ S.
Hence, for all pointsd with Ψ(d) = v′, if s dominates
d, it follows that there exists somest ∈ S such thatst
also dominatesd. Therefore, in such cases,v′ does not
contribute anything inR(s,S).

– Case (b).On the other hand, if the time stamp ofs is
lower thanImin, then

∑Imin−1
i=I(s) Ti(v

′) gives the num-
ber of pointsd with Ψ(d) = v′, such thats dominates
d, butst does not dominated, for all st ∈ S.

st

s

d

Imin

I(s)

f(st)

f(s)

f(d)

Increase

Decrease
s

st

d

Imin

I(s)

f(st)

f(s)

f(d)

Increase

Decrease

Figure 3: Computation of Residual Dominance:st already selected
in the top-k skyline set,s a candidate for the top-k skylines in the
current round,d a data point such thatψ(d) is a descendent ofψ(s)
in the query lattice.

6.3 Time Complexity
The time complexity to construct the priority queueL, query

latticeQ, and then finding all them skyline points along with their
dominance numbers isO(n log n+ nr + 4r).

Next, to identify the top-k skyline set, we requirek iterations of
the hill-climbing method. As an initialization phase of the iterative
hill-climbing, we also need to sort the skyline points based on their
dominance numbers, which has complexityO(m logm). At the
j-th iteration of hill-climbing method (Algorithm 1),1 ≤ j ≤
k, we might need to consider all the remaining(m − j) skyline
points to identify the topj-th skyline pointsj . Now, computing
the residual dominance for one skyline point at thej-th iteration
requiresO(m2r) time. Therefore, our hill-climbing method with
totalk iterations have time complexityO(m2k2r).

Considering the initial data-structure-construction time and since
m ≤ 2r, the overall time complexity of our method isO(n log n+
nr + k8r). We note that for a relatively small number of query
constraintsr, the time complexity of our algorithm is dominated by
O(n log n + nr). In such settings, our query processing time in-
creases log-linearly with the number of data points, and it increases
linearly with the number of constraints.

7. EXPERIMENTAL RESULTS
We present experimental results to demonstrate (1) efficiency

(Sec. 7.2), (2) effectiveness (Sec. 7.3), and (2) scalability (Sec. 7.4)
of our techniques over three synthetic datasets. We also demon-
strate case studies using one real-world dataset (Sec. 7.5).

7.1 Experimental Setup

Data Sets:We used three synthetic and one real-world datasets as
summarized below.

Synthetic Datasets.We generated these synthetic datasets by us-
ing the generator obtained from [2]. In theIndependentdataset,
all attribute values are generated independently from a pre-defined
range with a uniform distribution. TheCorrelateddatabase rep-
resents an environment in which points that have higher values in
one dimension also have higher values in the other dimensions. In
theanti-correlateddataset, points which have higher values in one
dimension have lower values in one or all of the other dimensions.
The cardinality of each of our synthetic datasets is 1M, the dimen-
sionality of each data point is15. The range of each attribute lies
between (1,100).

Car Dataset.We obtained thecar dataset from [10]. The database

7

contains information about598 different models of cars — each
model has a certain number of reviews (range: 11∼ 540) and
10 various ratings (range: 0∼ 10) corresponding to fuel, interior,
exterior, build, performance, comfort, reliability, fun, and overall-
rating.

Query Selection and Parameter Setting:For our synthetic datasets,
we design our queries as follows. Each data pointd is15-dimensional,
and let us denote byDi(d) the value of thei-th dimension of a data
point d. We design our top-k representative queries with binary
constraints as given in Equation 8. We also vary the number of
query constraintsr from 2 to 14. Let us denote bypi thei-th con-
straint, which is:Di(d) ≥ 95.

max
d∈D

D15(d)

subject to Di(d) ≥ 95, ∀i ∈ (1, r) (8)

Comparing Methods: We compare the efficiency of ourKREP
framework with that ofFMG [16], which is state-of-the-art method
for finding the top-k representative skylines.FMG [16] applies the
similar notion of dominance-number-based ranking of a skyline set.
However, as the method was designed for the metric space, it is not
optimized towards our query semantics, where the constraints are
binary in nature. We compare our efficiency results and memory
usage with that ofFMG. The authors of [16] kindly provided us
the executables (compiled using gcc). Since both our approach and
FMG have the same approximation guarantee (see Theorem 3) in
terms of identifying the top-k representative skyline nodes, we only
present the effectiveness results of our method.

We implemented our codes using C++. Each experimental result
was averaged over20 runs. All experiments were run using a single
core in128GB, 2.4GHz Xeon server.

7.2 Efficiency

Comparison with FMG: In these experiments, we compare the
query processing times ofKREP andFMG. It is worthwhile to
mention that both these methods identify the top-k skyline set with
the highest dominance number. Nevertheless,FMG was designed
for the metric space; and hence, it cannot exploit the fact the our
constraints are binary in nature. For our comparison, we use the
executables provided by the authors [16]. Since their executables
can support data points with maximum dimensionality only5, we
restrict the number of query constraints as4 in these experiments.
Figure 4(a) shows that our method,KREP is one order of mag-
nitude faster thanFMG over the three synthetic datasets. In Fig-
ure 4(b), we compare the main memory usage ofKREP andFMG.
We find thatKREP outperformsFMG in terms of memory usage
in all our experiments. Particularly, for our synthetic datasets, the
memory usage ofKREP is almost half of the memory used by
FMG: 13.2MB for KREP vs. 26MB for FMG. Our results attest
that the proposed framework is more efficient than state-of-the-art
FMG technique — both in terms of running time as well as in mem-
ory usage.

Varying Number of Top-k Skyline Points: In this section, we
show the effect of varying top-k values on our query processing
time. As our query processing time is dominated by the initial-
ization phase, that is, sorting of the data points according to their
optimization scores and building of the query DAG based on sati-
ated constraints sets, the effect of varying top-k values is minimal
over the entire query processing time. Therefore, to realize the
variation of running time with respect to different top-k values, we

 1

 5

 10

 30

 70

indp corr anti

qu
er

y
tim

e
(s

ec
)

KREP
FMG

(a) Query Processing Time

 13

 26

indp corr anti

m
ai

n
m

em
or

y
us

ag
e

(M
B

) KREP
FMG

(b) Main Memory Usage

Figure 4: Comparison betweenKREP andFMG: #Constraints = 4,
TopK = 10

Table 4:Query Processing Time vs. Top-k, # Constraints = 9

Datasets Initialization (sec) Hill-Climbing (sec)
topk=5 topk=10 topk=20 topk=50

indp 1.083 0.3661 0.3853 0.3953 0.4007
corr 0.766 0.0407 0.0410 0.0410 0.0410
anti 0.967 0.1954 0.1972 0.1978 0.1994

differentiate in Table 4 the initialization phase from the top-k sky-
line finding step, which corresponds to the iterative hill-climbing
algorithm. For these experiments, we set the number of query con-
straints as9, and the top-k values varied from5 to 50. We observe
that the running time for finding the top-k representative data points
increases almost linearly with increasing values ofk.

7.3 Effectiveness
We measure the effectiveness of our top-k representative points

based on how many of the relevant data points that they dominate.
We recall that a data point is relevant if it satisfies at least one of
the query constraints. We define a metric,representativenessas the
percentage of relevant data points that are dominated by our top-k
representative points. We present the representativeness of our top-
k data points, corresponding to different values ofk, in Tables 5
and 6.

Table 5 shows the representativeness of our top-k answers when
we set the number of query constraints as9. It can be observed

8

Table 5:Representative Power of Top-k Skylines, # Constraints = 9. Rep-
resentativeness is measured as the percentage of relevant data points domi-
nated by our top-k representative points.

Datasets # Relevant Points # Skylines % Representativeness
topk=3 topk=5 topk=10

indp 369 478 211 93.07% 97.53% 98.79%
corr 298 8 48.99% 69.80% 100.00%
anti 254 716 120 84.58% 97.64% 99.47%

Table 6:Representative Power of Top-k Skylines, # Constraints = 14. Rep-
resentativeness is measured as the percentage of relevant data points domi-
nated by our top-k representative points.

Datasets # Relevant Points # Skylines % Representativeness
topk=3 topk=5 topk=10

indp 512 623 1 262 82.35% 87.27% 94.88%
corr 435 14 26.44% 41.84% 76.09%
anti 363 807 595 72.72% 86.85% 92.64%

that there are more than250K relevant data points for bothinde-
pendentandanti-correlateddatasets, while the number of skyline
points is also higher than100 for each of these data points. How-
ever, only the top-5 points can represent more than97% of all rel-
evant data points. These results attest the high effectiveness of our
KREP framework, even for a small value ofk. We note that the to-
tal number of relevant points and skyline points for thecorrelated
dataset are only298 and 8, respectively. This is because of our
query setting in Equation 8 and also due to the characteristic of the
correlateddataset, that is, points that are good in one dimension
are good in the other dimensions as well.

Table 6 shows the representativeness of our top-k answers with
14 query constraints. We find that the representativeness percent-
age of our top-k answers decreases as we increase the number of
query constraints. This in indeed expected since both the number of
relevant points and the number of skyline points increase when we
have more query constraints. Nevertheless, our top-10 data points
are still representative of more than90% of the relevant data points
for both indpendentand anti-correlateddatasets, and more than
75% for thecorrelateddataset. These results attest the high useful-
ness and information content of our top-k representative answers,
even for small values ofk, such ask = 5, or 10.

7.4 Scalability

Varying Number of Data Points: We analyze the scalability of
our method with varying number of data points in Figure 5(a). We
fix the number of query constraints as9, while varying the number
of data points from0.1M to 1M. It can be observed that our query
processing time increases almost linearly with respect to the num-
ber of data points. These results illustrate the high scalability of our
algorithm for finding the top-k representative data-points.

Varying Number of Query Constraints: We study the scalability
of our method with varying number of query constraints in Fig-
ure 5(b). Note that the Y-axis is logarithmic in this figure. Our
results show that the query processing time increases almost lin-
early with the number of query constraints, till the number of query
constraints is less than10. However, the query processing time in-
creases exponentially with more than10 query constraints. This
observation can be explained by our time-complexity analysis in
Section 6.3. We recall that the overall time-complexity of our algo-

 0.15

 0.5

 1

 1.5

0.1M 0.4M 0.7M 1M

qu
er

y
tim

e
(s

ec
)

data points

indp
corr
anti

(a) Varying #Data Points, #Constraints = 9, TopK = 10

 0.45

 1

 2

 95

 2 4 9 14

qu
er

y
tim

e
(s

ec
)

query constraints

indp
corr
anti

(b) Varying #Constraints, # Data Points = 1M, TopK = 10

Figure 5: Scalability over Synthetic Datasets

rithm is O(n log n + nr + k8r), wheren denotes the number of
nodes,r the number of query constraints, andk denotes the top-k
value. Whenr is small, the time-complexity is dominated by the
terms:(n log n) and(nr); and therefore the running time increases
almost linearly with the number of query constraints. However,
when we have more than a certain number of query constraints, the
query processing time increases exponentially withr, which is due
to the term(k8r) in our complexity result.

7.5 Case Studies on Real-World Dataset
For thecar dataset, we design our query as follows. We use the

number of reviews per car-models as the scoring function — recall
that the maximum number of reviews for any car model is 540. On
the other hand, ratings corresponding to 10 different attributes are
utilised in our query constraints. More specifically, each rating has
a value in (0,10); and we say that a car-model is relevant if at least
one of the ratings for that car-model is greater than or equal to 9.
Out of 598 car-models, we find that 500 of them are relevant ones,
while there are also 14 skyline car-models based on the aforemen-
tioned query setting. We present the top-5 car-models obtained by
our method in Table 7. We find that our top-5 answers are repre-
sentative of 98% of the relevant car-models, while we require only
0.09 sec to retrieve these top-5 results by using our algorithm. One
may note that each of our top-5 representative car-models satisfies
a diverse subsets of the query constraints, while they also have a
relatively large number of reviews.

Summary: We summarize our experimental results below.(1) Due
to a large number of relevant points, it is important to design an ef-

9

Table 7:Case Study: Top-5 Representative Car-Models inCarDataset

Car-Model # Reviews Satiated Constraints

Saturn Aura 216 interior, exterior, build, performance, comfort,
reliability, fun, overall-rating

Volkswagen Eos 106 fuel, interior, exterior, build, performance,
comfort, reliability, fun, overall-rating

Toyota Tundra 234 exterior, performance, comfort, reliability, fun
Toyota Camry 223 fuel, interior, exterior, build, comfort,
Hybrid reliability, fun, overall-rating
Honda Fit 358 interior, exterior, build, reliability, fun,

overall-rating

ficient and effective ranking scheme and report only the top-k most
representative points.(2) Our top-k result set is representative of
a large number of relevant data points; and therefore, provides in-
teresting insights about the underlying dataset with respect to the
given query constraints.(3) Our proposed algorithms are10 times
faster and consume up to2 times less memory than state-of-the-art
top-k representative skyline finding technique [16].(4) Our meth-
ods are very scalable with respect to the number of data points and
the number of query constraints for a reasonably lower number of
query constraints, which is often the case in real-life scenarios.

8. CONCLUSIONS
In this paper, we formulated and investigated the novel prob-

lem of answering the top-k representative queries with binary con-
straints. Our proposedKREP framework finds the top-k data points
that are representative of the maximum possible number of avail-
able options with respect to the given constraints. For identifying
such top-k representatives, we have designed efficient and scalable
algorithms which utilize the fact that the constraints present in our
queries are binary in nature. Based on detailed empirical evaluation
over various real-world and synthetic datasets, we find thatKREP

is not only one order of magnitude faster than state-of-the-art top-
k skyline-finding algorithms, it also produces highly-informative
results as well as provides interesting insights about the underly-
ing data with respect to the given query constraints. As a side-
product of our algorithm, we also improve the asymptotic com-
plexity of skyline computation to log-linear time in the number of
data points, when all dimensions except one are binary in nature. In
future work, we shall consider our framework for finding the top-k
representative points in the presence of both binary constraints as
well as multiple non-binary scoring functions.

9. REFERENCES
[1] A. Angel and N. Koudas. Efficient Diversity-aware Search. InSIGMOD, 2011.
[2] S. Börzs̈onyi, D. Kossmann, and K. Stocker. The Skyline Operator. InICDE,

2001.

[3] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the Average
Number of Maxima in a Set of Vectors and Applications.J. ACM,
25(4):536–543, 1978.

[4] G. Capannini, F. M. Nardini, R. Perego, and F. Silvestri. Efficient
Diversification of Web Search Results. InVLDB, 2011.

[5] S. Cook. The Complexity of Theorem-proving Procedures. InSTOC, 1971.
[6] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou. Parallel Distributed

Processing of Constrained Skyline Queries by Filtering. InICDE, 2008.
[7] M. Drosou and E. Pitoura. DisC Diversity: Result Diversification Based on

Dissimilarity and Coverage. InVLDB, 2012.
[8] M. Endres and W. Kiessling. Optimization of Preference Queries with Multiple

Constraints. InPersDB, 2008.
[9] M. Endres and W. Kiessling. Semi-Skyline Optimization of Constrained

Skyline Queries. InADC, 2011.
[10] K. Ganesan, C. Zhai, and J. Han. Opinosis: A Graph-Based Approach to

Abstractive Summarization of Highly Redundant Opinions. InComputational
Linguistics, 2010.

[11] P. Godfrey, R. Shipley, and J. Gryz. Maximal Vector Computation in Large
Data Sets. InVLDB, 2005.

[12] S. Guha, D. Gunopulos, N. Koudas, D. Srivastava, and M. Vlachos. Efficient
Approximation Of Optimization Queries Under Parametric Aggregation
Constraints. InVLDB, 2003.

[13] M. Hua, J. Pei, A. W. C. Fu, X. Lin, and H.-F. Leung. Efficiently Answering
Top-k Typicality Queries on Large Databases. InVLDB, 2007.

[14] H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the Maxima of a Set of
Vectors.J. ACM, 22(4):469–476, 1975.

[15] R.-H. Li and J. X. Yu. Scalable Diversified Ranking on Large Graphs. InICDM,
2011.

[16] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting Stars: The k Most
Representative Skyline Operator. InICDE, 2007.

[17] Q. Mei, J. Guo, and D. Radev. DivRank: The Interplay of Prestige and Diversity
in Information Networks. InKDD, 2010.

[18] M. Morse, J. Patel, and H. V. Jagadish. Efficient Skyline Computation over
Low-Cardinality Domains. InVLDB, 2007.

[19] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu. Regret Minimizing
Representative Databases. InVLDB, 2010.

[20] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An Analysis of
Approximations for Maximizing Submodular Set Functions.Mathematical
Programming, 14(1):265–294, 1978.

[21] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An Optional and Progressive
Algorithm for Skyline Queries. InSIGMOD, 2003.

[22] C. H. Papadimitriou and M. Yannakakis. On the Approximability of Trade-offs
and Optimal Access of Web Sources. InFOCS, 2000.

[23] L. Qin, J. X. Yu, and L. Chang. Diversifying Top-K Results. InPVLDB, 2012.
[24] S. Ranu, M. X. Hoang, and A. Singh. Answering Top-k Representative Queries

on Graph Databases. InSIGMOD, 2014.
[25] A. D. Sarma, A. Lall, D. Nanongkai, R. J. Lipton, and J. Xu. Representative

Skylines using Threshold-based Preference Distributions. InICDE, 2011.
[26] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based Representative Skyline. In

ICDE, 2009.
[27] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. A. Yahia. Efficient

Computation of Diverse Query Results. InICDE, 2008.
[28] R. C.-W. Wong, J. Pei, A. W.-C. Fu, and K. Wang. Online Skyline Analysis

with Dynamic Preferences on Nominal Attributes.TKDE, 21(1):35–49, 2009.
[29] L. Zhang, Y. Jia, and P. Zou. A Grid Index Based Method for Continuous

Constrained Skyline Query over Data Stream. InAPWeb/WAIM Workshops,
2009.

[30] Z. Zhang, S. w. Hwang, , K. C.-C. Chang, M. Wang, C. A. Lang, and
Y. c. Chang. Boolean + Ranking: Querying a Database by K-constrained
Optimization. InSIGMOD, 2006.

10

