
2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Query-Friendly Compression of Graph Streams
Arijit Khan

Nanyang Technological University, Singapore
Charu Aggarwal

IBM T. J. Watson Research Center, NY, USA

Abstract—We study the problem of synopsis construction of
massive graph streams arriving in real-time. Many graphs such as
those formed by the activity on social networks, communication
networks, and telephone networks are defined dynamically as
rapid edge streams on a massive domain of nodes. In these
rapid and massive graph streams, it is often not possible to
estimate the frequency of individual items (e.g., edges, nodes) with
complete accuracy. Nevertheless, sketch-based stream summaries
such asCount-Min can preserve frequency information of high-
frequency items with a reasonable accuracy. However, these
sketch summaries lose the underlying graph structure unless one
keeps information about start and end nodes of all edges, which
is prohibitively expensive. For example, the existing methods can
identify the high-frequency nodes and edges, but they are unable
to answer more complex structural queries such as reachability
defined by high-frequency edges.

To this end, we design a3-dimensional sketch,gMatrix that
summarizes massive graph streams in real-time, while also retain-
ing information about the structural behavior of the underl ying
graph dataset. We demonstrate howgMatrix, coupled with a one-
time reverse hash mapping, is able to estimate important struc-
tural properties, e.g., reachability over high frequency edges in
an online manner and with theoretical performance guarantees.
Our experimental results using large-scale graph streams attest
that gMatrix is capable of answering both frequency-based and
structural queries with high accuracy and efficiency.

I. I NTRODUCTION

In various practical settings, graphs are drawn over a mas-
sive set of nodes, and edges arrive rapidly in the form of a
graph stream. Many domains of data such as web graphs,
transportation networks, IP networks, and social networks
belong to this category. As reported in the official Twitter
blog (blog.twitter.com/2011/numbers), the average number of
tweets sent per day was140 million in 2011, which was
around1620 tweets per second. Similarly, according to Digital
Buzz statistics on Facebook (digitalbuzzblog.com/facebook-
statistics-stats-facts-2011/), there are about2 million new
friend requests and3 million messages sent every20 minutes.

In order to process fast streaming data, a growing number of
applications relies on devices such as network interface cards,
routers, switches, cell processors,FPGAs, andGPUs [19];
and usually these devices have very small on-chip memory.
Whether in specialized hardware or in conventional architec-
tures, efficient processing of rapid and massive stream data
requires creation of a succinct synopsis in a single pass over
that stream [7]. Such synopsis must be updated incrementally
with new incoming items. The synopsis should also support
online query answering. Due to its smaller size compared to
the original stream, it is often not possible to answer queries

with complete accuracy — reducing synopsis size increases
the efficiency, but also reduces the accuracy.

In the literature, there are various synopsis structures for
massive and rapid data streams, such assketch [9], [7],
[23] and space-saving [15]. These synopsis structures are
suitable for frequency estimation, heavy-hitter, and top-k
queries. However, a direct adaptation of the aforementioned
stream compressing techniques over graph-edge or graph-node
streams lose the underlying structural information in the graph
data. Hence, these techniques cannot answer structural queries
such as finding the aggregated frequency of all edges in a
subgraph induced by a given set of nodes, or reachability
queries defined over high-frequency edges.

In this paper, we develop a method for real-time synopsis
construction of massive graph streams, which retains informa-
tion about the structural and frequency behavior of the graph
dataset. Our synopsis structure,gMatrix is general-purposein
the sense that it can answer all the above-mentioned frequency-
based queries such as edge (or, node) frequency estimation,
heavy-hitter, and top-k queries. In addition, it can process a
diverse set of structural queries including aggregated subgraph
edge frequency and reachability queries. Clearly, this is the
problem of interest for most practical scenarios.

II. RELATED WORK

The problem of synopsis construction has been studied
extensively in data stream literature in the context of a variety
of techniques such as wavelets, histograms, and sketches [7].
However, these techniques cannot be used for applications
which utilize the structural properties of the graph data.

The problem of graph synopsis construction has found
increasing interest because of its relevance to the web, XML,
biological data, transportation, and social networks [18]. The
graph stream model has also been explored for various
analytical queries, such as clustering, classification, pattern
mining, and matching [2], [5]. Techniques for compressing
static graphs have been discussed in [16], [17], though these
methods cannot be easily generalized to graph streams. Various
query-specific graph compression methods are proposed for
static graphs, such as [11] considers pattern matching and
reachability queries.

Recently, the synopsis construction of graph streams has
been considered ingSketch [23] when a stream sample is
available. Clearly, such an approach will not work if eithera
workload is not available, or the stream evolves over time. Be-
sides,gSketch was designed to answer only edge-frequency
based queries, and it cannot answer more complex graphIEEE/ACM ASONAM 2016, August 18-21, 2016, San Francisco,

CA, USA
978-1-5090-2846-7/16/$31.00c©2016 IEEE

structural queries. The method in [10] constructs synopsisof
graph streams for estimating the degree distributions of the
nodes. Ahn et. al. [3] studied graph sketch for answering
structural queries such as connectivity, minimum-cost span-
ning tree, maximum weighted matching, and subgraph pattern
matching. Feigenbaum et al. also considered various structural
graph queries, e.g., graph matching and shortest path queries
with the semi-streaming model [12]. For a detailed survey,
see [14]. Different from the aforementioned classical structural
queries [10], [12], [3], we study novel graph structural queries
that couple graph structure with edge frequencies. We design
a more general-purposesynopsis, gMatrix that maintains
structural and frequency properties of the underlying graph
data; and hence, it can answer both frequency-based as well
as structural queries over rapid graph streams. In addition,
gMatrix does not require anyapriori stream sample.

Very recently,TCM [22] sketch was proposed, which is the
most relevant to our work. Although they aim at preserving the
graph structure, unlike ours they did not consider reverse hash-
ing queries, e.g., find all heavy-hitter edges, which would be
critical for community detection over graph streams. Besides,
they did not consider alternative options to extend sketch and
space-saving synopses, such as concatenating end-node idsto
construct an edge id, that we shall discuss in this paper.

III. PRELIMINARIES

We assume that the data from the graphG = (V,E) is
received in the form of anedge stream. Each nodei ∈ V is
drawn from the setN = {1, 2, . . . , n}, and every edge(i, j) ∈
E is a directed edge. The incoming graph stream contains
elements(i1, j1, fi1j1), (i2, j2, fi2j2), . . ., (it, jt, fitjt),
Here,(it, jt, fitjt) denotes the arrival of thet-th edge-stream
with an associated frequencyfitjt . In many applications, the
value of fitjt is naturally set to 1, though we assume an
arbitrary frequency in order to retain the generality of our
results. For example, in a telecommunication application,the
frequencyfitjt may denote the number of seconds in a phone
conversation from a personit to another personjt starting
at time-stampt. An edge can appear multiple times in the
stream. When we issue a query, e.g., find the frequency of
an edge(i, j), we are looking for the aggregated frequency
of that edge in the stream so far. While sketch-based methods
including ours can be adapted for time-window queries [1], we
do not consider them in this work. Also note that our results
can be easily generalized to undirected graphs by assuming
that the edge(i, j) is always lexicographically ordered.

A. Queries

We introduce our queries over graph streams as follows.

1) Edge Frequency Query: Determine the frequency of
an edge(i, j).

2) Heavy-hitter Edge Query: Determine all edges with
frequency larger than a given thresholdF .

3) Node Aggregated-Frequency Query:Determine the
aggregated frequency of all incoming/ outgoing edges
for a query nodei.

4) Heavy-hitter Node Query: Determine all nodes with
aggregated-frequency (based on all its incoming/ outgo-
ing edges) larger than a given thresholdF .

5) Subgraph Aggregated-Frequency Query:Determine
the aggregated frequency of all edges in a subgraph
corresponding to a given subset of nodesS.

6) Reachability Query: Find if a source node is reachable
to a destination node via edges having frequency larger
than a given thresholdF .

The first two queries involve only edge frequencies; and
therefore, could be answered with existing sketch-based ap-
proaches, e.g.,Count-Min [9], or gSketch [23]. Similarly,
the third and fourth queries involve only node frequencies;
and hence, could be answered by using a sketch over node
frequencies. However, the last two queries attempt to deter-
mine the structural behavior of the graph stream based on
edge frequencies. Hence, these queries could not be answered
using existing sketches unless one keeps start and end nodes
for all edges, which is prohibitively expensive. Therefore,
our contribution lies in designing one general-purpose sketch
synopsis,gMatrix, which is capable of answering all the above
queries over graph streams.

Applications. The aforementioned queries are useful in a
variety of applications. For example, in an email network, it is
useful to determine frequent sender-receiver pairs (heavy-hitter
edge query), most active receivers (heavy-hitter node query),
or connected components of the graph that communicate
frequently with one another (reachability query). Connected
components formed by high-frequency edges, in fact, identify
the communities in the network. As it will be evident from the
reachability query defined over high-frequency edges, one can
reconstruct the approximate structure of the high-frequency
portion of the graph withgMatrix. Once the approximate
structure of the high frequency portion of the graph has been
reconstructed, it is possible to use a clustering algorithm, or
any other graph mining algorithms such as frequent subgraph
pattern mining over graph streams [2].

Our designedgMatrix is a 3- dimensional matrix sketch.
In stead of a radically different solution,gMatrix is built
following the principle ofCount-Min [9], thereby retaining all
the properties and benefits of it, such as (1) ensuring one-sided
error guarantee, i.e., the estimated edge-frequency is always an
overestimationof its true frequency. (2) The accuracy improves
for high-frequency items in a skewed stream. For ease in
further discussion, we first introduceCount-Min, which was
proposed for frequency estimation.

B. Count-Min Sketch

In Count-Min, a hashing approach is utilized to approxi-
mately maintain the frequency counts of a large number of dis-
tinct items in a data stream (Figure 1). We usew = ⌈ln(1/δ)⌉
pairwise independent hash functions, each of which maps onto
uniformly random integers in the rangeh = [0, e/ǫ], wheree
is the base of the natural logarithm. The data structure itself
consists of a2-dimensional array withh × w cells of length

h

w

g1(.)

gw(.)

k-th HASH

FUNCTION

HASHES INTO

gk(e)

Fig. 1. Count-Min sketch for data streams

h and widthw. Each hash function corresponds to one ofw
1-dimensional arrays withh cells each. Next, consider a1-
dimensional data stream with elements drawn from a massive
set of domain values. When a new element of the data stream
is received, we apply each of thew hash functions to map
onto a number in[0 . . . h− 1]. The count of each of thesew
cells is incremented by1. In order toestimatethe count of an
item, we determine the set ofw cells to which each of thew
hash-functions map, and compute the minimum value among
all these cells. Letct be the true value of the count being
estimated. We note that the estimated count is at least equal
to ct, since we are dealing with non-negative counts only, and
there may be an over-estimation because of collisions among
hash cells. It has been shown in [9] that for a data stream with
L arrivals, the estimate is at mostct + ǫ · L with probability
at least1 − δ. In the event that the items have frequencies
associated with them, we increment the corresponding count
with the appropriate frequency. The same bounds hold in this
case, except that we defineL as the sum of the frequencies
of the items received so far.

To identify the top-k frequent items from sketches, several
efficient techniques were also proposed, such as the reversible
hashing [21], which we use in this work, as well as heap [4],
hierarchical sketches, and group testing [8].

We note that it is easy to adapt the sketches to estimate the
frequencies of graph-edges by assigning each distinct edge
a unique edge-id and hashing it into the sketch structure.
This is indeed the same approach proposed ingSketch [23].
However, such an approach loses the structural behavior of
the underlying graph data, because it cannot discern the
connectivity relationships between nodes. In order to preserve
important structural relationships,it is important to at least
approximately maintain the incidence behavior of edges on
nodes.To this end, we designgMatrix.

C. gMatrix Sketch

gMatrix is a 3-dimensional sketch of the graph data. The
two dimensions in the sketch correspond to the source and
destination nodes. Each hash function defines a mapping of
the node setN to an integer in the range[0, h− 1]. Thus, if
thek-th hash function isgk(·), then the edge(i, j) is mapped
to (gk(i), gk(j)). As in the previous case, we usew pairwise-
independent hash functions, and thereforek may range from1
tow. Our hash table is a3-dimensional construct withh×h×w
cells. Correspondingly, we define a cell-coordinate as(p, q, r),
wherep and q are indices of thehash-mapped nodesand r

3As one may realize,gMatrix is not the only way how sketches can be extended
to preserve edge connectivity information. We shall discuss these alternative options in
Sec. III-F, and also highlight their disadvantages so to emphasize our design ofgMatrix.

�

�

���� �����

	ABCDEFB�

�������EBDF�

���������������

�

��������������

��
���

��
���

��
���

��
���

Fig. 2. gMatrix sketch for graph streams

is the index of the hash function being used for the mapping.
The value of the cell-coordinate(p, q, r) is the integer counter
V (p, q, r) and it maintains a hash frequency of the hash-edge
(p, q) for the case of ther-th hash function. Figure 2 provides
an example ofgMatrix synopsis3.

The value ofh is typically much smaller than the number
of nodes, and this is the key to the compression realized with
gMatrix. For example, let us consider a graph containing107

nodes. In such a case, if we useh = 103 andw = 10, the
sketch would contain107 cells, which corresponds to about40
MB. This is quite modest and can even be stored in the on-
chip memory of most modern hardware, e.g., FPGA (Xilinx
Spartan-6 LX with128MB memory), and GPU units (NVIDIA
GeForce GT 640 with2048MB memory).

D. Updating the gMatrix Synopsis

The process of updatinggMatrix is fairly straightforward.
We start by initializing each cell in the sketch structure to0.
For each incoming edge(i, j) with frequencyfij , we compute
the hash-edge(gk(i), gk(j)) for each value ofk ∈ {1 . . . w}.
Then, we increment the frequency of each of thesew cells by
fij . This process is repeated for each incoming edge.

Space and Time Complexity.The size ofgMatrix isO(h2w).
The time complexity to update an incoming edge stream in
gMatrix is O(2w). Our complexity results show thatgMatrix
can be built in one pass over the graph stream, and can also be
updated incrementally with the arrival of a new edge stream.

E. Hash Function and Reverse Hashing

For gMatrix to be effective, the hash functions are required
to be pairwise independent [9]. In addition, for processingof
heavy-hitter and structural queries as mentioned in Sec. III-A,
we need to compute thereverse hash mapping[21]. Given a
hash functiong, we define its reverse hash mappingg−1 as:

g−1(p) = {i : g(i) = p} (1)

Thus, we select a hash function such that (1) one can quickly
compute the corresponding reverse hash mapping, and (2) the
reverse hash mapping size|g−1(p)| is relatively small.

In our implementation ofgMatrix, we assume that the
graph-nodes have integer identifiers, and we select the modular
hash function as given in Equation 2.

g(i) = ((a× i+ b) mod P) mod h (2)

P is a prime larger than the maximum value of any
node identifier. We selecta and b uniformly from the in-
terval (1, P − 1). Note that the range of our hash function
g is (0, h − 1), where h is the length of gMatrix. The
reason for selecting the modular hash function is two-fold:
(1) our hash functions for different values ofa and b are
pairwise independent [9], and (2) the reverse hash mapping
size is only⌊P/h⌋, and it can be computed efficiently using
the extended Euclidean algorithm [6] with time complexity
O(⌊P/h⌋ logP). We emphasize that the originalCount-Min
sketch implementation also uses modular hash functions. For a
more sophisticated hashing scheme, one may apply the Galois
Extension Field operations [21].

Reverse Hash Mapping Computation.We next discuss how
the extended Euclidean algorithm can be applied to compute
our reverse hash mapping.

g−1(p) = {i : g(i) = p} (3)

Recall that we used the modular hash function, i.e.,

g(i) = ((ai+ b) mod P) mod h (4)

P is a prime larger than the maximum value of any node
identifier (i.e., larger than the maximum value ofi). We select
a andb from the interval(1, P−1). The range of hash function,
denoted byh, is smaller thanP . Therefore, we essentially find
all i′ such that the following holds for somek.

(ai′ + b) mod P = p+ kh (5)

Here,k ≥ 0 can be any integer satisfying(p + kh) < P .
Therefore, the reverse hash mapping size is⌊P/h⌋. Each i′

can be computed efficiently using the extended Euclidean
algorithm [6] with time complexityO(logP). Thus, the
overall time complexity of our reverse hash mapping is
O(⌊P/h⌋ logP). SinceP is a prime number larger than the
total number of nodes, the complexity of our reverse hashingis
log-linear to the number of nodes. However, as discussed later
in gMatrix applications (Sec. IV) and experiments (Sec. V),
reverse hashing is applied only once before a series of complex
structural queries (e.g., reachability) can be answered inan
online manner. Hence, we believe that one-time computation
of reverse hash mapping is tolerable in our approach [21].

F. Alternative Design Options

Before discussinggMatrix applications,we consider some
alternative options to extend sketch and space-saving synopses
for achieving similar functionalities asgMatrix.

As an example, to preserve edge connectivity information,
one may construct an edge-id by concatenating its source and
destination node-ids (Figure 3(b)), and then use aCount-Min
sketch withw hash functions, each having a range ofh2. This
technique would work well for subgraph aggregated-frequency
query (query 5, Sec. III-A). However, such an approach will be
inefficient for reverse hash mapping (required for reachability
query: query 6, Sec. III-A) compared togMatrix. As explained
in [21], assume that one cell of each hash function has

h

h

w

(g1(i), g1(j))

e = (i, j)

(a) gMatrix

h2

w

g1(ij)

gw(ij)

(b) Count-Min with concatenated
end-node ids

Fig. 3. gMatrix vs. alternative design options withCount-Min: The end-
nodes are concatenated to form the edge-ids in Figure (b), which is more
expensive for reverse hash mapping.

frequency more than the threshold, and we want to identify
the actual graph edges that are hashed to those cells. In case
of Count-Min sketch with the setting as discussed above, this
would requirew(n

2

h2) intersection computations, wheren is the
number of nodes in the graph. This is because each cell would
producen2

h2 candidate edges via reverse hash mapping, and the
potential answer set would be an intersection of those edge
sets. However, in case ofgMatrix, the source and destination
nodes for each edge are hashed with two hash functions, each
having a range ofh. Therefore, the intersections could be
computed over the node sets than over the edge sets, and this
would require2w(nh) intersection computations for finding
the potential answer set. This shows the benefit ofgMatrix
compared toCount-Min with concatenation of source and
destination node-ids.

Another possibility to retrieve the high-frequency edges
along with their start and end nodes will be to directly apply
the space-saving synopsis [15]. However, space saving has
high storage overhead per data item, and it only monitors the
high-frequency data items. Hence, it is not very effective to
estimate the frequency of those items which are not stored
in space saving [20]. Therefore, we do not consider the
aforementioned alternative design options.

IV. GM ATRIX APPLICATIONS

In the following, we introduce our techniques for resolving
the aforementioned queries (Sec. III-A) withgMatrix.

A. Edge Frequency Queries

To determine the frequency of edge(i, j) using gMatrix,
we compute the frequencies ofw different cells which corre-
spond to the coordinates(gk(i), gk(j), k) and valuesV (gk(i),
gk(j), k) for w different values ofk. The minimum of these
values is returned as the estimate of the frequencyQ(i, j) of
the edge(i, j). We denote this frequency estimate asQ(i, j).
Next, we shall illustrate the accuracy of our approach.

Probabilistic Accuracy Guarantee.We show that the proba-
bility of incurring an error beyond a pre-defined limit is small.

Theorem 1. Let the total frequency of edges received so far
in the graph stream be denoted byL. Let Q(i, j) be the true
frequency of the edge(i, j) over the course of the entire data
stream, and letO(i, j) be the sum of the frequencies of the
edges incident oni or j. Letǫ ∈ (0, 1) be a very small fraction.
Consider agMatrix structure with node-compression lengthh

and widthw. Then, with probability at least1−1/(h2 ·ǫ/2)w,
the estimated frequencyQ(i, j) is related to the true frequency
by the following relationship:

Q(i, j) ≤ Q(i, j) ≤ Q(i, j) + L · ǫ+ h · O(i, j) · ǫ (6)

Proof. We note thatQ(i, j) is always an over-estimate on
Q(i, j) since all frequencies are assumed to be non-negative.
Any incoming edge, for which both end points are neitheri nor
j, is equally likely to map onto one ofh2 cells in the data. The
probability that any incoming edge maps onto a particular cell
is given by1/h2. Therefore, the expected number ofspurious
edges for which the end points are neitheri nor j, yet they
get mapped onto the cell(gk(i), gk(j), k) is given by at most
L/h2. Let the number of such spurious edges for thek-th
hash function be denoted by the random variableRk. Then,
by using the Markov inequality, we have:

P (Rk > L · ǫ) ≤ E[Rk]/(L · ǫ) ≤ 1/(h2 · ǫ) (7)

Next, we examine the case of spurious edges for which at
least one end point is eitheri or j. The number of such edges
is O(i, j) and the expected number of such edges which map
onto the entry(gk(i), gk(j), k) is given byO(i, j)/h. Let Uk

be the random variable representing the number of such edges.
Then, by using the Markov inequality, we have:

P (Uk > O(i, j)·h·ǫ) ≤ E[Uk]/(h·O(i, j)·ǫ) ≤ 1/(h2·ǫ) (8)

Note that Equations 7 and 8 can be combined as follows:

P (Rk + Uk > L · ǫ +O(i, j) · h · ǫ) ≤ 2/(h2 · ǫ) (9)

This usesP (A ∪ B) ≤ P (A) + P (B). For the estimate to
violate Equation 6, we require the above condition to be true
for all k ∈ (1, w). The probability that this is true is given by
at most1/(h2 · ǫ/2)w. The result follows.

Implication of Accuracy Guarantee. We note that for the
above probability to be less than 1, we need the value of
h2 > 1

ǫ/2 . Furthermore, sincew occurs in the exponent, the
robustness of the above result can be easily magnified even
for modest values ofw. For example, ifh2 = 20

ǫ , a choice of
w = 9 ensures that the above result is true with probability
at least1 − 10−9. This is quite acceptable for most practical
scenarios. On the other hand, in Equation 6, the error term is
relatively small if the true frequencyQ(i, j) is a significant
fraction of the aggregated frequencyL. For real-world streams,
which often has a skew [13], this holds for the high-frequency
items. Thus,gMatrix is particularly well in estimating the
frequency for the high-frequency edges.

Time Complexity. The time to estimate the frequency of an
edge isO(2w), wherew is the number of hash functions.

B. Heavy-Hitter Edge Queries

We discuss our techniques for resolving heavy-hitter edge
queries, that is, to retrieve all edges with frequency larger than
a given threshold. It is important to note that a direct appli-
cation of Count-Min over edge streams would only retrieve
heavy-hitter edge-ids, but not the corresponding start andend

nodes.With gMatrix, we can retrieve not only the heavy hitter
edges, but also their start and end nodes. This provides an
example of how we can reconstruct the approximate structure
of the high-frequency portion of the graph usinggMatrix.

SincegMatrix is a probabilistic synopsis, we cannot deter-
ministically find all the heavy-hitters. Therefore, we design a
method to retrieve no false negatives, but an edge may be a
false positive. Correspondingly, we return the probability that
the edge is a false positive. We design a two-step approach.

• In the first phase, we scangMatrix and determine all
hash-edgesfor which the frequency is at leastF under
different hash functions.

• For each frequent hash-edge(p, q) under some hash
function gk, we compute the set of all possible frequent
graph-edges by applying the reverse hash mapping tech-
nique, which we described earlier in Sec. III. Let us
denote by edge-setEk = {(i, j) : i ∈ g−1

k (p), j ∈
g−1

k (q), V (gk(p), gk(q), k) ≥ F}. Finally, we compute
the intersection among differentEk edge-sets for all
k ∈ (1, w), and that provides us the heavy-hitter edges.

We note that the second phase is the most expensive step
in our method. Therefore, we propose optimization techniques
to improve the efficiency of heavy-hitter edge queries.

Query Optimization for Heavy-hitter Edge Queries. Our
query optimization technique is based on an efficient repre-
sentation of the edge-setsEk, and we perform our intersection
over the set of source and destination nodes rather than directly
over the set of edges. Below, we first define across-edge.

Definition 1. A cross-edgeis denoted byS(Q1, Q2), where
Q1 andQ2 are two sets of nodes. This is also defined as the
set of all edges(i, j), such thati ∈ Q1 andj ∈ Q2. Formally,

S(Q1, Q2) = {(i, j) : i ∈ Q1, j ∈ Q2} (10)

We note that each of the frequent hash-edges determined
in the first phase is a cross-edge. Therefore, set-edgesEk

can be written as:Ek =
⋃
S(Q1, Q2), where the union

is taken over allQ1 = g−1

k (p) and Q2 = g−1

k (q), such
that V (gk(p), gk(q), k) ≥ F . The implicit representation
S(Q1, Q2) is much more convenient and compact, since the
value of |Q1| × |Q2| may be much larger than eitherQ1 or
Q2. Next, we make the following observation:

Observation 1. The edge-set function and intersection func-
tion satisfy sequence symmetry. In other words, we have:

S(Q1, Q2) ∩ S(P1, P2) = S(Q1 ∩ P1, Q2 ∩ P2) (11)

Thus, the intersection of the edge-sets for two different
hash functions can be computed efficiently without explicitly
enumerating the underlying edges. In order to find the inter-
section of two edge-sets, we compute the intersection for all
combinations of cross-edges of these two edge-sets. Here, we
emphasize that if eitherQ1 ∩ P1 or Q2 ∩ P2 is null, then
the corresponding setS(Q1 ∩ P1, Q2 ∩ P2) is null. Because
of the high selectivity of each hash-cell, the null case is quite
common when one computes the intersection of two edge-sets.

Probabilistic Accuracy Guarantee.Finally, we compute the
probability that each of these heavy-hitter edges as obtained
by our method indeed has frequency greater thanF .

Theorem 2. LetL be the total frequency of edges received so
far. LetO(i, j) be the number of edges incident on eitheri or
j. Also assume that the estimated frequency of edge(i, j) is
Q(i, j) according to ourgMatrix structure. Then, the probabil-
ity that the true frequency of edge(i, j) is at leastF , is given
by at least1−min{1, ((L+h·O(i, j))/(h2 ·(Q(i, j)−F)))w}.

Proof. The true frequency of edge(i, j) would also be at
leastF , if at most(Q(i, j)−F) spurious edges map onto the
hash cell(gk(i), gk(j), k). We note that the expected number
of spurious edges, which map onto the cell(gk(i), gk(j), k),
depends upon the two cases corresponding to whether or not
that edge is incident oni or j. If the edge is not incident
on any one of these nodes, the probability is1/h2 of the
total frequencyL. This is equal toL/h2. Therefore, by using
the Markov inequality, we can derive the probability that
more than(Q(i, j) − F) such spurious edges map onto that
cell, which is given by at mostL/(h2 · (Q(i, j) − F)). For
the second case, if the edge is incident on one of those
nodesi or j, the probability of this happening is given by
O(i, j)/(h · (Q(i, j)−F)). The sum of these two probabilities
gives an upper bound of this happening over all edges. There-
fore, the probability that more than(Q(i, j) − F) spurious
edges map onto cell(gk(i), gk(j), k) in all w hash functions
is given by ((L + h · O(i, j))/(h2 · (Q(i, j) − F)))w. Note
that if this bound is greater than 1, then no interesting bound
on the probability is derived. Therefore, the probability that
the frequency of edge(i, j) is at leastF is given by at least:
1− min{1, ((L+ h ·O(i, j))/(h2 · (Q(i, j)− F)))w}.

Implication of Accuracy Guarantee. If the estimated fre-
quencyQ(i, j) > F , and alsoQ(i, j) is a significant fraction
of the aggregated frequencyL, then the above probability gets
close to 1. Thus, heavy-hitter query results would be very
accurate for those edges whose estimated frequency is higher.

Time Complexity. The complexity of scanninggMatrix syn-
opsis is O(h2w). Next, let us assume that thek-th hash
function (1 ≤ k ≤ w) of gMatrix has totalck cells with
frequency higher than or equal to thresholdF . Based on our
design of modular hash function (see Equation 2), each of
these cells maps to⌊P/h⌋ source nodes and⌊P/h⌋ destination
nodes. It requiresO(2ck⌊P/h⌋ logP) time to find all these
node sets. We recall thatP is a prime number larger than the
maximum number of nodes in the graph dataset. Finally, we
compute the intersection over the node sets as discussed in
Equation 11. Therefore, the overall time-complexity of heavy-
hitter edge query isO(h2w + 2⌊P/h⌋ logP

∏w
k=1

ck).

Asking Heavy-hitter Edge Queries Differently.We note that
the heavy-hitter edge query can be posed in a slightly different
way in which we attempt to find those edges for which the
frequency is at leastF with probability at least1− δ.

Definition 2. Determine all edges with frequency greater than
F with probability at least1− δ.

Nodes Edges Agg. Max. Stream Compressed
Stream Freq. Edge Freq. Size Stream Size

4.43×10
8 (z=1.0) 16.47 GB (z=1.0)

66M 3 612M 10
10 1.81×10

9 (z=1.2) 80GB 2.37 GB (z=1.2)
3.22×10

9 (z=1.4) 0.25GB (z=1.4)

TABLE I
GRAPH STREAM CHARACTERISTICS

This is done by using the same approach, but with resetting
the threshold frequency to a higher value:F + (L +O(i, j) ·
h)/(h2 ·δ1/w). The probabilistic accuracy guarantee is given in
Theorem 3. We omit the proof as this is similar to Theorem 2.

Theorem 3. Let L be the total frequency of received edges.
Let (i, j) be an edge with estimated frequency at leastF +
(L+h ·O(i, j))/(h2 ·δ1/w). Then, the probability that the true
frequency of the edge is at leastF is given by at least1− δ.

C. Reachability Queries

The heavy-hitter edge query processing technique can also
be used for reachability queries. This query also shows the
power of gMatrix in retaining structural information about
the graph, which is not achieved by state-of-the-art sketch
synopses. The reachability query is defined as follows:

Definition 3. Determine if a source node is reachable to a
destination node via edges that have frequency at leastF with
probability at least1− δ.

This query is fairly straightforward to resolve with the use
of the approach discussed in the previous subsection, sincewe
can retrieve not only the heavy-hitter edges, but also theirstart
and end nodes. Thus, in the first step, we determine all edges
(along with its start and end nodes) for which the frequency
is at leastF with probability at least1 − δ (see Definition
3). Then, we answer reachability queries using these edges.
When F is relatively high, due to the presence of skew in
the graph stream, there are only few edges with frequency
higher thanF . This helps us to answer reachability queries
over high-frequency edges in an online manner.

V. EXPERIMENTAL RESULTS

We present experimental results which illustrate the effec-
tiveness, efficiency, and compression rate ofgMatrix.
A. Environment Setup

Dataset: We downloaded theFriendster graph from snap.
stanford.edu (Table I). The edges (undirected) do not have
frequency information in this dataset. Hence, we assign fre-
quency to every edge with theZipf distribution, and vary the
skew from z = 1 to z = 1.4. We demonstrate our results
with Friendster, because by assigning the edge frequency
distribution synthetically, we can test our results for different
skew. It has been a standard practise in data stream literature
[9], [23] to consider theZipf frequency distribution. Indeed, as
reported in [13], [20], most real-world datasets have skew in
the range tested by ours. Due to brevity, we omit experimental
results over other datasets, since we found that they are similar
to the results withFriendster.

The stream sizein Table I represents the graph-stream size
with repetition of edges. Thecompressed stream size, on the

 1.5
 4

 16

300 5001000C
om

pr
es

si
on

 R
at

e
(%

)

h

40MB

10MB
3.6MB

z=1.4
w=10

(a)

 5
 8

 16

3 5 10C
om

pr
es

si
on

 R
at

e
(%

)

w

40MB

20MB
12MB

z=1.4
h=1000

(b)

 0.25

 1.7

 16

1.0 1.2 1.4C
om

pr
es

si
on

 R
at

e
(%

)

z

40MB

40MB

40MB
h=1000
w=10

(c)

Fig. 4. gMatrix compression rate over compressed stream

 0

 13

1 0.1 0.01

F
al

se
 P

os
iti

ve
 R

at
e

Frequency Threshold (% of Agg. Stream Freq.)

40MB40MB40MB

gMatrix
CM

(a) skew=1.4

 0.005
 0.02

 10

1 1.2 1.4

F
al

se
 P

os
iti

ve
 R

at
e

Skew z

40MB40MB40MB

gMatrix
CM

(b) Freq. Threshold=0.01%

Fig. 5. Accuracy of heavy-hitter edge queries, h=1000, w=10

contrary, is the size of all distinct edges that have non-zero
frequency, along with their frequency counts. In our system,
each integer consumes 4-bytes of memory space. Hence, for
the original stream, each (possibly repeated) edge requires 8-
bytes corresponding to its source and destination nodes. In
the compressed representation, eachdistinct edge consumes
12-bytes, for its two end nodes as well as for its frequency
count. Bothoriginal streamandcompressed streamcan answer
our queries with complete accuracy. We shall demonstrate that
gMatrix, although a small fraction of original and compressed
stream representations, achieves high accuracy.

Queries and Comparing Method: Due to lack of space, we
demonstrate our results with two representative queries: heavy-
hitter edge query and reachability via heavy-hitter edges.The
first query can be answered with existing sketches; and hence,
we compare our results withCount-Min [9] by allocating
the same amount of storage to bothCount-Min andgMatrix.
While gMatrix can identify the source and destination nodes
of those heavy-hitter edges,Count-Min only returns the cor-
responding edge-ids. Thus,gMatrix can answer our second
query, i.e., reachability over heavy-hitter edges. However,
traditional sketches cannot process such structural queries.

System Description.The code is implemented in C++ and
the experiments were performed on a single core of 10GB,
2.4GHz Xeon server. One may note thattheFriendsterstream
with skew1, even in its compressed form, cannot be entirely
loaded in the main memory of our commodity server.

B. gMatrix Compression Rate

The compression rate is defined as the ratio ofgMatrix
size to the size of thecompressed stream. We recall that the
compressed stream representation is much smaller than the
original stream, since the former does not have edge repetition.

It is evident from Figure 4 that the size ofgMatrix is usually
a small percentage of the compressed stream size; and hence,
an even smaller percentage of the original stream. In case
of skew z = 1, gMatrix with h = 1000 and w = 10 (i.e.,
40MB) is only 0.25% of the compressed stream size. We
will demonstrate later that these values ofh andw are often

Freq. Th. F Run Time Run Time Memory Use Memory Use
% Agg. Stream Freq. gMatrix Count-Min gMatrix Count-Min

1% 28 sec 1 sec 29 MB 0.8 MB
0.1% 149 sec 2 sec 128 MB 5 MB
0.01% 771 sec 7 sec 260 MB 21 MB

TABLE II
HEAVY-HITTER EDGE QUERY: EFFICIENCY, H=1000,W=10,SKEW=1.4

Freq. Th. F Reachability
(% Agg. Stream Freq.) Error

1% 0
0.1% 0
0.01% 0.012

TABLE III
H=1000,W=10, SKEW=1

Skew Reachability
Error

1 0.012
1.2 0.008
1.4 0.004

TABLE IV
H=1000,W=10, FREQ.

TH.=0.01%

sufficient to achieve reasonably high accuracy over a wide
variety of applications.
C. Query Processing: Accuracy and Efficiency

1) Heavy-Hitter Edge Queries:We performed experiments
to identify the heavy-hitter edges having frequencies above
a given threshold. We denote the value of this threshold
frequency as a percentage of the aggregate stream frequency,
since the frequency error estimate of an edge is sensitive tothe
aggregate stream frequency.gMatrix ensures that the reported
edges are a superset of the true edges. In all our figures, we
report thefalse positive ratefor heavy-hitter edge queries.

False Positive Rate=
edges incorrectly reported as heavy-hitter edges

true heavy-hitter edges

Figures 5 illustrates the accuracy of reported heavy-hitter
edges under different skew and frequency thresholds. The
results show that the false positive rate for heavy-hitter queries
is about10 times smaller forgMatrix as compared toCount-
Min (CM). This is because many high-frequency edges often
have the same source or destination nodes. In other words,
the distinct number of source nodes or the distinct number of
destination nodes over all high frequency edges is usually less
than the distinct number of high-frequency edges. Therefore,
intersection computation over the node sets ingMatrix is able
to reduce more false positives.

However, this reduced false positive rate is achieved at
the cost of higher memory and running time (Table II). We
recall that the number of node intersections forgMatrix is:
O(2n/h

∏w
k=1

ck), whereas forCount-Min, the number of
edge intersection is:O(e/h2

∏w
k=1

ck). Since, e < nh,
gMatrix performs more number of intersection operations than
that of theCount-Min. On the other hand,gMatrix returns
the end nodes of those heavy-hitter edges, which is the key
to answer more complex structural queries as illustrated later.
Besides, heavy-hitter edge queries are executed periodically
and in an off-line manner. Hence, we believe that the additional
running time cost is tolerable, and one may use the main-
memory of a connected server to satisfy the extra space
requirements due to heavy-hitter queries.

2) Reachability Queries:In these experiments, we consider
reachability via edges having frequency greater than or equal
to a threshold value.Such reachability queries defined by high-
frequency edges cannot be answered using existing sketches.

Note that the use ofgMatrix results in the addition of some
spurious edges. Such spurious edges can change the connected
components if they occur as “bridge edges” between two
components. In order to measure the accuracy of reachability
queries over high frequency edges, we first consider the
starting and ending nodes of all edges for whichgMatrix-
estimated frequency is more than a predefined thresholdF .
Then, we randomly construct500 distinct pairs of nodes from
this set and verify ifgMatrix representation and the original
graph report the same result in terms of whether or not the pair
is connected by edges with frequency more thanF . Finally, we
report thereachability errorover these500 node-pairs, which
is defined as the ratio of node-pairs incorrectly reported as
reachable over the total number of node-pairs considered.

Reachability Error=
node-pairs falsely reported as reachable

node-pairs queried

Tables III and IV show our accuracy results for reachability
query considering various frequency thresholds and skew. We
observe that the reachability error is always less than 0.015,
and often zero. These results illustrate that (1) the reachability
via high-frequency edges does not change much by spurious
edges, and (2)gMatrix is effective at reconstructing the
underlying graph structure defined by high-frequency edges.

After we identify the heavy-hitter edges, which is much
less than the total number of distinct edges in the graph, each
reachability query can be processed in about0.1 sec. This
shows our efficiency in answeringonline structural queries.

D. gMatrix Stream Processing Throughput

In Figure 6, we analyze the stream processing throughputs
of gMatrix and Count-Min. Both gMatrix and Count-Min
achieve throughput about a few hundreds of edges per millisec-
ond. However,gMatrix throughput is around two-times slower
than that ofCount-Min. This is becausegMatrix performs
hashing twice per edge-stream, whileCount-Min performs
hashing only once per edge-stream.

VI. CONCLUSIONS

We presentedgMatrix, a sketch synopsis for massive and
rapid graph streams. It is the first synopsis whichmaintains
information about the structural and frequency behavior of
the underlying network.This is achieved with the use of
a 3-dimensional sketch structure, which stores information
about the node-based structural relationships between different
edges. Thus,gMatrix is useful for a variety of structural
queries such as the determination of subgraph edge frequencies
and reachability over high-frequency edges. SincegMatrix
maintains the approximate structure of the high-frequency
regions of the underlying graph, we expect that it can be used
for a wide variety of structural queries, as long as the node
identifiers can be disambiguated with the use of different hash
functions. This will be the focus of our future work. One may
also consider how to further improve the efficiency ofgMatrix
using early aggregation techniques and specialized hardware.

 250
 350
 450
 550
 650
 750

 3 5 10

S
tr

ea
m

 P
ro

ce
ss

in
g

T
hr

ou
gh

pu
t

 (

#e
dg

e/
M

ill
is

ec
on

d)

w

gMatrix
CM

Fig. 6. Throughput of stream processing, z=1.4, h=1000

VII. ACKNOWLEDGEMENTS

Research of the second author was sponsored by the Army
Research Laboratory under Cooperative Agreement Number
W911NF-09-2-0053.

REFERENCES

[1] C. Aggarwal, J. Han, J. Wang, and P. Yu. A Framework for Clustering
Evolving Data Streams. InVLDB, 2003.

[2] C. Aggarwal, Y. Li, P. S. Yu, and R. Jin. On Dense Pattern Mining in
Graph Streams. InVLDB, 2010.

[3] K. J. Ahn, S. Guha, and A. McGregor. Graph Sketches: Sparsification,
Spanners, and Subgraphs. InPODS, 2012.

[4] M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items
in Data Streams. InICALP, 2002.

[5] S. Choudhury, L. Holder, G. Chin, A. Ray, S. Beus, and J. Feo.
StreamWorks: A System for Dynamic Graph Search. InSIGMOD, 2013.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Section
31.2: Greatest Common Divisor. InIntroduction to Algorithms, Second
Edition, pages 859–861. MIT Press and McGraw-Hill, 2001.

[7] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses
for massive data: Samples, histograms, wavelets, sketches. Foundations
and Trends in Databases, 4(1–3):1–294, 2012.

[8] G. Cormode and M. Hadjieleftheriou. Finding Frequent Items in Data
Streams. InVLDB, 2008.

[9] G. Cormode and S. Muthukrishnan. An Improved Data-Stream Sum-
mary: The Count-min Sketch and its Applications.J. of Algorithms,
55(1), 2005.

[10] G. Cormode and S. Muthukrishnan. Space Efficient Miningof Multi-
graph Streams. InPODS, 2005.

[11] W. Fan, J. Li, X. Wang, and Y. Wu. Query Preserving Graph Compres-
sion. In SIGMOD, 2012.

[12] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On
Graph Problems in a Semi-Streaming Model.Theor. Comput. Sci.,
348(2-3):207–216, 2005.

[13] N. Manerikar and T. Palpanas. Frequent Items in Streaming Data: An
Experimental Evaluation of the State-of-the-art.Data Knowl. Eng.,
68(4):415–430, 2009.

[14] A. McGregor. Graph Stream Algorithms: A Survey.SIGMOD Rec.,
43(1), 2014.

[15] A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient Computation of
Frequent and Top-k Elements in Data Streams. InICDT, 2005.

[16] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph Summarization with
Bounded Error. InSIGMOD, 2008.

[17] C. Qun, A. Lin, and K. W. Ong. D(k)-Index: An Adaptive Structural
Summary for Graph Structured Data. InSIGMOD, 2003.

[18] S. Raghavan and H. Garcia-Molina. Representing Web Graphs. InICDE,
2003.

[19] O. Rottenstreich, Y. Kanizo, and I. Keslassy. The Variable-Increment
Counting Bloom Filter. IEEE/ACM Trans. Netw., 22(4):1092–1105,
2014.

[20] P. Roy, A. Khan, and G. Alonso. Augmented Sketch: Fasterand More
Accurate Stream Processing. InSIGMOD, 2016.

[21] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. A. Dinda,
M.-Y. Kao, and G. Memik. Reversible Sketches: Enabling Monitoring
and Analysis over High-speed Data Streams.IEEE/ACM Trans. Netw.,
15(5):1059–1072, 2007.

[22] N. Tang, Q. Chen, and P. Mitra. Graph Stream Summarization: From
Big Bang to Big Crunch. InSIGMOD, 2016.

[23] P. Zhao, C. Aggarwal, and M. Wang. gSketch: On Query Estimation in
Graph Streams. InVLDB, 2012.

