2016 IEEE/ACM International Conference on Advances in Soal Networks Analysis and Mining (ASONAM)

Query-Friendly Compression of Graph Streams

Arijit Khan
Nanyang Technological University, Singapore

Charu Aggarwal
IBM T. J. Watson Research Center, NY, USA

Abstract—We study the problem of synopsis construction of with complete accuracy — reducing synopsis size increases

massive graph streams arriving in real-time. Many graphs sch as
those formed by the activity on social networks, communicabn
networks, and telephone networks are defined dynamically as

rapid edge streams on a massive domain of nodes. In these

rapid and massive graph streams, it is often not possible to
estimate the frequency of individual items (e.g., edges, des) with
complete accuracy. Nevertheless, sketch-based stream suaries
such asCount-Min can preserve frequency information of high-

frequency items with a reasonable accuracy. However, these

sketch summaries lose the underlying graph structure unlesone
keeps information about start and end nodes of all edges, wth
is prohibitively expensive. For example, the existing metbds can
identify the high-frequency nodes and edges, but they are wable
to answer more complex structural queries such as reachaliiy
defined by high-frequency edges.

To this end, we design a3-dimensional sketch,gMatrix that
summarizes massive graph streams in real-time, while als@tain-
ing information about the structural behavior of the underlying
graph dataset. We demonstrate hovwgMatrix, coupled with a one-
time reverse hash mapping, is able to estimate important strc-
tural properties, e.g., reachability over high frequency elges in
an online manner and with theoretical performance guarantes.
Our experimental results using large-scale graph streamsttest
that gMatrix is capable of answering both frequency-based and
structural queries with high accuracy and efficiency.

|. INTRODUCTION

In various practical settings, graphs are drawn over a mas- T
sive set of nodes, and edges arrive rapidly in the form of a
graph stream Many domains of data such as web graphs
transportation networks, IP networks, and social network
belong to this category. As reported in the official TwitteL|

blog (blog.twitter.com/2011/numbers), the average nunatbe
tweets sent per day wabsi0 million in 2011, which was

around1620 tweets per second. Similarly, according to Digital
Buzz statistics on Facebook (digitalbuzzblog.com/facébo

statistics-stats-facts-2011/), there are ab@umillion new
friend requests an8 million messages sent eve2y) minutes.

the efficiency, but also reduces the accuracy.

In the literature, there are various synopsis structures fo
massive and rapid data streams, suchskstch [9], [7],

[23] and space-saving [15]. These synopsis structures are
suitable for frequency estimation, heavy-hitter, and kop-
gueries. However, a direct adaptation of the aforementione
stream compressing techniques over graph-edge or grage-no
streams lose the underlying structural information in thegpb
data. Hence, these techniques cannot answer structurésjue
such as finding the aggregated frequency of all edges in a
subgraph induced by a given set of nodes, or reachability
queries defined over high-frequency edges.

In this paper, we develop a method for real-time synopsis
construction of massive graph streams, which retains finéer
tion about the structural and frequency behavior of the lyrap
dataset. Our synopsis structugd/atrix is general-purposén
the sense that it can answer all the above-mentioned freguen
based queries such as edge (or, node) frequency estimation,
heavy-hitter, and to@- queries. In addition, it can process a
diverse set of structural queries including aggregatedrsyith
edge frequency and reachability queries. Clearly, thishés t
problem of interest for most practical scenarios.

. RELATED WORK

The problem of synopsis construction has been studied
Xtensively in data stream literature in the context of aear
techniques such as wavelets, histograms, and sketches [7
owever, these techniques cannot be used for applications
which utilize the structural properties of the graph data.

The problem of graph synopsis construction has found
increasing interest because of its relevance to the web, XML
biological data, transportation, and social networks [T8]e
graph stream model has also been explored for various
analytical queries, such as clustering, classificatiortepa

0

In order to process fast streaming data, a growing numberrﬁfning, and matching [2], [5]. Techniques for compressing

applications_ relies on devices such as network interfamias.ca static graphs have been discussed in [16], [17], though these
routers, switches, cell processofPGAs, andGPUs [19]; methods cannot be easily generalized to graph streamsuéari
and usually these devices have very small on-chip memogy,ey-specific graph compression methods are proposed for
Whether in specialized hardware or in conventional architegtatic graphs, such as [11] considers pattern matching and
tures, efficient processing of rapid and massive stream d?é%chability queries.

requires creation of a succingt synopsis in a single pass OVeRrecently, the synopsis construction of graph streams has
that stream [7]. Such synopsis must be updated incremgnigjben considered igSketch [23] when a stream sample is
with new incoming items. The synopsis should also suppefyajlaple. Clearly, such an approach will not work if eitter
online query answering. Due to its smaller size compared {ig,rkjoad is not available, or the stream evolves over time. B
the original stream, it is often not possible to answer ®Lrigiges gSketch was designed to answer only edge-frequency
IEEE/ACM ASONAM 2016, August 18-21, 2016, San Francisco, based queries, and it cannot answer more complex graph

CA, USA
978-1-5090-2846-7/16/$31.082016 |IEEE

structural queries. The method in [10] constructs synopkis 4) Heavy-hitter Node Query: Determine all nodes with
graph streams for estimating the degree distributions ef th aggregated-frequency (based on all its incoming/ outgo-
nodes. Ahn et. al. [3] studied graph sketch for answering ing edges) larger than a given threshaéld

structural queries such as connectivity, minimum-cosinspa 5) Subgraph Aggregated-Frequency Query:Determine
ning tree, maximum weighted matching, and subgraph pattern * ¢ aggregated frequency of all edges in a subgraph
matching. Feigenbaum et al. also considered various stalct corresponding to a given subset of nodés

graph queries, e.g., graph matching and shortest pathegueri
with the semi-streaming model [12]. For a detailed survey,
see [14]. Different from the aforementioned classicalcitral
queries [10], [12], [3], we study novel graph structural Gege . T)
that couple graph structure with edge frequencies. We desi% The first two queries involve only edge frequencies; and
a more general-purposesynopsis, gMatrix that maintains * erefore, could be an_swered with existing sketc_h—_based ap
structural and frequency properties of the underlying graproaches, e.g.Count-Min [9], or gSketch [23]. Similarly,
data; and hence, it can answer both frequency-based as \hg third and fourth queries involve o_nly node frequencies;
as structural queries over rapid graph streams. In additiéd hence, could be answered by using a sketch over node
gMatrix does not require angipriori stream sample. frequencies. However, the last two queries attempt to deter
Very recently, TCM [22] sketch was proposed, which is thdnine the structural behavior of the graph stream based on
most relevant to our work. Although they aim at preservirgy tfdge frequencies. Hence, these queries could not be ambwere
graph structure, unlike ours they did not consider reveasih using existing sketches unless one keeps start and end nodes
ing queries, e.g., find all heavy-hitter edges, which wowgd for all edges, which is prohibitively expensive. Therefore
critical for community detection over graph streams. Besjd Our contribution lies in designing one general-purposetstke
they did not consider alternative options to extend sketah asyno_psingatrix, which is capable of answering all the above
space-saving synopses, such as concatenating end-noige i@8!eries over graph streams
construct an edge id, that we shall discuss in this paper. Applications. The aforementioned queries are useful in a
variety of applications. For example, in an email networtks i
useful to determine frequent sender-receiver pairs (hbéter
; X) > edge query), most active receivers (heavy-hitter nodeyjuer
received in the form of aedge streamEach node € V IS orgcognec)t%d components of the (grapti/ that commygnicate
dra_wn fro_m the selV = {1,2, "”}'_ and every edgei, j) € frequently with one another (reachability query). Conedct
E is a directed edge. The incoming graph stream contaif§yonents formed by high-frequency edges, in fact, iienti
elements(is, ji, fiji)s (i2, 2, fizjo)s -+ (it Jes fiig)s -+ the communities in the network. As it will be evident from the
nge, (it, e, fit,jt) denotes the arrival of theth e_dgg-stream reachability query defined over high-frequency edges, ame ¢
with an assom_ated frequendy, ;.. In many applications, the reconstruct the approximate structure of the high-frequen
Vall_Je of fij. 1S natgrally set to 1, _though Wwe assume EEiEortion of the graph withgMatrix. Once the approximate
arbitrary frequency n order to retain _the_general_|ty of o tructure of the high frequency portion of the graph has been
results. For example, in a telecommunication applicatib®, o.onsirycted, it is possible to use a clustering algoritm

frequencyf;, ;, may denote the number of seconds in a phong,, iher graph mining algorithms such as frequent subgraph
conversation from a persoi to another person, starting pattern mining over graph streams [2].

at tme—s\;\r;\rr]npt. An_edge can appear rr}glzplﬁ tn]:nes in th fOur designedgMatrix is a 3- dimensional matrix sketch.
stream. en we issue a query, e.g., find the frequency gt gioo4 of g radically different solutiorgMatrix is built

an edge(i, j), we are looking for the aggregated frequenc%llowin - : -

1 i g the principle ofCount-Min [9], thereby retaining all
,Of that_ edge in the stream so far. Wh|le ?kemh'bas?d methqﬁié properties and benefits of it, such as (1) ensuring afedsi
including ours can be alldapFed for time-window queries [H, Yerror guarantee, i.e., the estimated edge-frequency &syalan
do not cons_|der them N this work: Also note that our resulEJQ\/erestimatiom)f its true frequency. (2) The accuracy improves
can be easny' ggn_erahzed 0 u_nd|recteq graphs by assumjgg high-frequency items in a skewed stream. For ease in
that the edgd, j) is always lexicographically ordered. further discussion, we first introdud@ount-Min, which was
A. Queries proposed for frequency estimation.

6) Reachability Query: Find if a source node is reachable
to a destination node via edges having frequency larger
than a given threshold'.

[1l. PRELIMINARIES
We assume that the data from the graph= (V, E) is

We introduce our queries over graph streams as foIIows.B' Count-Min Sketch

1) Edge Frequency Query:Determine the frequency of |, Count-Min, a hashing approach is utilized to approxi-

an edge(.z', 9)- . _ mately maintain the frequency counts of a large number of dis
2) Heavy-hitter Edge Query: Determine all edges with tinct items in a data stream (Figure 1). We use-= [In(1/4)]
frequency larger than a given threshdid pairwise independent hash functions, each of which mags ont

3) Node Aggregated-Frequency Query:Determine the uniformly random integers in the range= [0, e/¢], wheree
aggregated frequency of all incoming/ outgoing edges the base of the natural logarithm. The data structurdf itse
for a query node. consists of &-dimensional array witth x w cells of length

9"
93(‘) W,
gz("
k-th HASH 9i() “ I
FUNCTION — w
HASHES INTO ‘
gde) \
aul) | h
Fig. 1. Count-Min sketch for data streams
k-th HASH
)) i FUNCTION
h and widthw. Each hash function corresponds to oneuof % HASHES INTO
1-dimensional arrays witth cells each. Next, consider & @0 9@ " (9. ad)
dimensional data stream with elements drawn from a massive Fig. 2. gMatrix sketch for graph streams

set of domain values. When a new element of the data stream

is received, we apply each of the hash functions to map is the index of the hash function being used for the mapping.
onto a number irf0...h — 1]. The count of each of these The value of the cell-coordinatg, ¢, r) is the integer counter
cells is incremented by. In order toestimatethe count of an V(p, ¢,r) and it maintains a hash frequency of the hash-edge
item, we determine the set af cells to which each of th@ (p, ¢) for the case of the-th hash function. Figure 2 provides
hash-functions map, and compute the minimum value amoag example ofjMatrix synopsis’.

all these cells. Let; be the true value of the count being The value of is typically much smaller than the number
estimated. We note that the estimated count is at least eqofahodes, and this is the key to the compression realized with
to ¢;, since we are dealing with non-negative counts only, agMMatrix. For example, let us consider a graph containing
there may be an over-estimation because of collisions amafgdes. In such a case, if we use= 10° andw = 10, the
hash cells. It has been shown in [9] that for a data stream wiketch would contai07 cells, which corresponds to abotit

L arrivals, the estimate is at most+ ¢ - L with probability MB. This is quite modest and can even be stored in the on-
at leastl — 4. In the event that the items have frequenciaship memory of most modern hardware, e.g., FPGA (Xilinx
associated with them, we increment the corresponding co@partan-6 LX with1 28MB memory), and GPU units (NVIDIA
with the appropriate frequency. The same bounds hold in ti®Force GT 640 witl2048MB memory).

case, except that we defire as the sum of the frequencie
of the items received so far.

To identify the topk frequent items from sketches, several The process of updatingMatrix is fairly straightforward.
efficient techniques were also proposed, such as the rblersiWe start by initializing each cell in the sketch structuredto
hashing [21], which we use in this work, as well as heap [4For each incoming edgg, j) with frequencyf;;, we compute
hierarchical sketches, and group testing [8]. the hash-edg€ g (), gx(j)) for each value ofc € {1...w}.

We note that it is easy to adapt the sketches to estimate Tteen, we increment the frequency of each of theseells by
frequencies of graph-edges by assigning each distinct ed@e This process is repeated for each incoming edge.

a gniqqe edge-id and hashing it into the sketch StrUCtu'§pace and Time ComplexityThe size ogMatrix is O(h?w).
This is indeed the same approach proposegSketch [23]. The time complexity to update an incoming edge stream in

However, such an approach loses the structural behavior @fiatrix is O(2w). Our complexity results show thgMatrix

the underlying graph data, because it cannot discern be built in one pass over the graph stream, and can also be

connectivity relationships between nodes. In order 0@ | yated incrementally with the arrival of a new edge stream.
important structural relationshipg, is important to at least

approximately maintain the incidence behavior of edges & Hash Function and Reverse Hashing

nodes.To this end, we desiggMatrix. For gMatrix to be effective, the hash functions are required
C. gMatrix Sketch to be pairwise independent [9]. In addition, for processihg
o . . heavy-hitter and structural queries as mentioned in Sea, I|
gMatrix is a 3-dimensional sketch of the graph data. The . 0.4 to compute theverse hash mappin@1]. Given a

two dimensions in the sketch correspond to the source aﬁ‘gsh functiony, we define its reverse hash mappinig as:
destination nodes. Each hash function defines a mapping of ' '

the node setV to an integer in the rang@®, h — 1]. Thus, if .]]
the k-th hash function igj, (-), then the edgéi, j) is mapped 9~ (p) =iz g(i) = p} 1)
to (g1 (7),9x(4)). As in the previous case, we usepairwise-
independent hash functions, and therefloreay range from
tow. Our hash table is 2&-dimensional construct withx h xw
cells. Correspondingly, we define a cell-coordinatéasg, r),
wherep and ¢ are indices of thehash-mapped nodesnd r

S'D. Updating the gMatrix Synopsis

Thus, we select a hash function such that (1) one can quickly
compute the corresponding reverse hash mapping, and (2) the
reverse hash mapping sizg *(p)| is relatively small.

In our implementation ofgMatrix, we assume that the
graph-nodes have integer identifiers, and we select the laodu
3As one may realizegMatrix is not the only way how sketches can be extendeé’]aSh function as givenin Equatlon 2.

to preserve edge connectivity information. We shall disciese alternative options in . .
Sec. llI-F, and also highlight their disadvantages so toleasjze our design ajMatrix. g(l) = ((a X 1+ b) mod P) mod h (2)

P is a prime larger than the maximum value of any —h
node identifier. We select and b uniformly from the in- e=Gj) —w— h2
terval (1, P — 1). Note that the range of our hash function

g is (0,h — 1), where h is the length ofgMatrix. The 94(i) ‘

reason for selecting the modular hash function is two-fold: h (9400, 9400 \ w
(1) our hash functions for different values af and b are e gu(ii) !

pairwise independent [9], and (2) the reverse hash mapping (a) gMatrix (b) Count-Min with concatenated
size is only| P/h|, and it can be computed efficiently using end-node ids

the extended Euclidean algorithm [6] with time complexityig. 3. gMatrix vs. alternative design options witBount-Min: The end-
(’)(LP/hJ log P) We emphasize that the origin@lount-Min nodes are concatenated to form the edge-ids in Figure (bhwik more

. . . expensive for reverse hash mapping.
sketch implementation also uses modular hash functionsa Fo

more sophisticated hashing scheme, one may apply the Gateigjuency more than the threshold, and we want to identify
Extension Field operations [21]. the actual graph edges that are hashed to those cells. In case
Reverse Hash Mapping ComputationWe next discuss how of Count-Min skegch with the setting as discussed above, this
the extended Euclidean algorithm can be applied to compuwyeuld requirew (3=) intersection computations, wherés the

our reverse hash mapping. number o2f nodes in the graph. This is because each cell would
1 .) produce; candidate edges via reverse hash mapping, and the
9 (p)={i:g(i) =p} (3) potential answer set would be an intersection of those edge

Recall that we used the modular hash function, i.e., sets. However, in case gMatrix, the source and destination
nodes for each edge are hashed with two hash functions, each

g9(i) = ((ai +b) mod P) mod h (4) having a range ofi. Therefore, the intersections could be

. . . dpomputed over the node sets than over the edge sets, and this
P is a prime larger than the maximum value of any node

. e)) would require2w(%) intersection computations for finding
52232?:0(#]%’]532:\:2?{] ;[Dhe ga%(;gl:;gzlg?g:musﬂig; the potential answer set. This shows the benefigdiatrix

. L : .~ 'compared toCount-Min with concatenation of source and
denoted by, is smaller tharP. Therefore, we essentially find P

. destination node-ids.
-/
all'i" such that the following holds for sore Another possibility to retrieve the high-frequency edges

(ai’ +b) mod P =p+kh (5) along with their start and end nodes will be to directly apply
the space-saving synopsis [15]. However, space saving has
Here,k > 0 can be any integer satisfying + kh) < P. nigh storage overhead per data item, and it only monitors the
Therefore, the reverse hash mapping siz¢ i§%]. Eachi’ pigh-frequency data items. Hence, it is not very effective t
can be computed efficiently using the extended Euclideg8timate the frequency of those items which are not stored
algorithm [6] with time complexity O(log P). Thus, the iy space saving [20]. Therefore, we do not consider the

overall time complexity of our reverse hash mapping igforementioned alternative design options.
O(| P/h|log P). Since P is a prime number larger than the

total number of nodes, the complexity of our reverse hasising IV. GMATRIX APPLICATIONS

log-linear to the number of nodes. However, as discussed lat |n the following, we introduce our techniques for resolving
in gMatrix applications (Sec. IV) and experiments (Sec. Vihe aforementioned queries (Sec. I11-A) wighatrix.

reverse hashing is applied only once before a series of @mpl

structural queries (e.g., reachability) can be answerednin A. Edge Frequency Queries

online manner. Hence, we believe that one-time computationtg determine the frequency of edge j) using gMatrix,
of reverse hash mapping is tolerable in our approach [21]. \we compute the frequencies of different cells which corre-
spond to the coordinatésy (:), gx(j), k) and valued/ (g (i),
gx(4), k) for w different values ofc. The minimum of these
Before discussingMatrix applicationswe consider some yajyes is returned as the estimate of the frequepey j) of
alternative options to extend sketch and space-saving®®g® the edge(i, j). We denote this frequency estimate @&, /).

for achieving similar functionalities agMatrix. _ Next, we shall illustrate the accuracy of our approach.
As an example, to preserve edge connectivity mformatloBr

. L babilistic Accuracy Guarantee.We show that the proba-
one may construct an edge-id by concatenating its source %'?Iﬁy of incurring an error beyond a pre-defined limit is dna
destination node-ids (Figure 3(b)), and then uggoaint-Min
sketch withw hash functions, each having a rangeéf This Theorem 1. Let the total frequency of edges received so far
technique would work well for subgraph aggregated-fregyenin the graph stream be denoted By Let Q(4, j) be the true
query (query 5, Sec. lll-A). However, such an approach véll bfrequency of the edgg, j) over the course of the entire data
inefficient for reverse hash mapping (required for readitgbi stream, and letO(i, j) be the sum of the frequencies of the
query: query 6, Sec. llI-A) compared gMatrix. As explained edges incident onor j. Lete € (0, 1) be a very small fraction.
in [21], assume that one cell of each hash function h&onsider agMatrix structure with node-compression lendth

F. Alternative Design Options

and widthw. Then, with probability at least —1/(h?-¢/2)",

nodesWith gMatrix, we can retrieve not only the heavy hitter

the estimated frequency(i, j) is related to the true frequencyedges, but also their start and end nod@&sis provides an

by the following relationship:

example of how we can reconstruct the approximate structure
of the high-frequency portion of the graph usighlatrix.
SincegMatrix is a probabilistic synopsis, we cannot deter-

Proof. We note thatQ(i, ;) is always an over-estimate onministically finc_i all the heavy-hitte_rs. Therefore, we dgsi
Q(i,4) since all frequencies are assumed to be non-negatigeethod to retrieve no false negatives, but an edge may be a

Any incoming edge, for which both end points are neitheor

false positive. Correspondingly, we return the probapilitat

j, is equally likely to map onto one @f cells in the data. The the edge is a false positive. We design a two-step approach.
probability that any incoming edge maps onto a particuliir ce « In the first phase, we scagMatrix and determine all

is given by1/h2. Therefore, the expected numbersplurious
edges for which the end points are neitlienor j, yet they
get mapped onto the celyx (i), gx(j), k) is given by at most
L/h?. Let the number of such spurious edges for théh

hash function be denoted by the random variallje Then,
by using the Markov inequality, we have:

P(Ry > L-¢) < E[Rg]/(L-€) <1/(h*-¢) 7)

Next, we examine the case of spurious edges for which at

least one end point is eithéror j. The number of such edges

hash-edgedor which the frequency is at leadt under
different hash functions.

For each frequent hash-eddg,¢) under some hash
function g, we compute the set of all possible frequent
graph-edges by applying the reverse hash mapping tech-
nique, which we described earlier in Sec. lll. Let us
denote by edge-seE;, = {(i,j) : i € g;'(p),j €
9:1(0), V(9x(p), 91(q), k) > F}. Finally, we compute
the intersection among different;, edge-sets for all

k € (1,w), and that provides us the heavy-hitter edges.

is O(i,j) and the expected number of such edges which mapwe note that the second phase is the most expensive step
onto the entry(gx (i), gx(j), k) is given byO(i, j)/h. Let U, in our method. Therefore, we propose optimization techesqu
be the random variable representing the number of such edgesmprove the efficiency of heavy-hitter edge queries.
Then, by using the Markov inequality, we have: Query Optimization for Heavy-hitter Edge Queries. Our
P(Uy > O(i, §)-h-e) < E[Ux]/(h-O(i, §)-€) < 1/(h%€) (8) aAuery _optimization technique is based on an e_fficient repre-
_ _ sentation of the edge-sel%;, and we perform our intersection
Note that Equations 7 and 8 can be combined as followssver the set of source and destination nodes rather thartlgiire
PRy +Us > L-c+0(i,j)-h-¢)<2/(h®-¢) (9) OV the set of edges. Below, we first definerass-edge

This usesP(A U B) < P(A) + P(B). For the estimate to
violate Equation 6, we require the above condition to be tr
for all k € (1, w). The probability that this is true is given by
at most1/(h? - ¢/2)*. The result follows. O

Implication of Accuracy Guarantee. We note that for the
above probability to be less than 1, we need the value i?\f
h? > ﬁ Furthermore, sincev occurs in the exponent, the

robustness of the above result can be easily magnified eY€Naken over allQ, = g7 (p) and Q> = g '(q), such
= 9 = 9k '

w2 20 i
for modest values ofv. For example, |fh_ =< a choice of_ that V(ge(p), gr(q),k) > F. The implicit representation
w = 9 ensures that the above result is true with probablllt]éc(Q1 Q) is much more convenient and compact, since the

at leastl — 10~?. This is quite acceptable for most practicav -
. . . alue of X may be much larger than eithé€}; or
scenarios. On the other hand, in Equation 6, the error term (@] > Q2| y g e

. . S o C}Sg Next, we make the following observation:
relatively small if the true frequencg (s, j) is a significant
fraction of the aggregated frequenEyFor real-world streams, Observation 1. The edge-set function and intersection func-
which often has a skew [13], this holds for the high-frequendion satisfy sequence symmetry. In other words, we have:
items. Thus,gMatrix is particularly well in estimating the
frequency for the high-frequency edges. 5(Q1,Q2) NS, Py) = SNk, QN Fy) (A1)
Time Complexity. The time to estimate the frequency of an Thus, the intersection of the edge-sets for two different
edge isO(2w), wherew is the number of hash functions. hash functions can be computed efficiently without explicit
)] enumerating the underlying edges. In order to find the inter-

B. Heavy-Hitter Edge Queries section of two edge-sets, we compute the intersection for al

We discuss our techniques for resolving heavy-hitter edgembinations of cross-edges of these two edge-sets. Here, w
queries, that is, to retrieve all edges with frequency latiggn emphasize that if eithe@; N P, or Q2 N P, is null, then
a given threshold. It is important to note that a direct applihe corresponding sef(Q, N P, Q2 N P,) is null. Because
cation of Count-Min over edge streams would only retrieveof the high selectivity of each hash-cell, the null case igequ
heavy-hitter edge-ids, but not the corresponding starteamti common when one computes the intersection of two edge-sets.

Definition 1. A cross-edgés denoted byS(Q1,Q2), where
L%l and Q- are two sets of nodes. This is also defined as the
set of all edgesi, j), such that € @, andj € Q2. Formally,

S(Q1,Q2) ={(4,4) :i € Q1,j € Qa2} (10)

We note that each of the frequent hash-edges determined
the first phase is a cross-edge. Therefore, set-edges
can be written as:E, = |JS(Q1,Q2), where the union

Nodes Edges Agg. Max. Stream Compressed

Probabilistic Accuracy Guarantee.Finally, we compute the Stream Freg. - 4§dge F’(eq'l > Size - szsa;";(izel ~
. . . 43x10° (z=1. . z=1.

probability that _each of these heavy-hitter edges as oddlain 5 3610m 1010 181x10° (z=12) 80GB 2.37 GB (z=1.2)

by our method indeed has frequency greater than 3.22x10° (z=1.4) 0.25GB (z=1.4)

Theorem 2. Let L be the total frequency of edges received so TABLE |

far. LetO(4, j) be the number of edges incident on either GRAPH STREAM CHARACTERISTICS

j. Also assume that the estimated frequency of €dgg is This is done by using the same approach, but with resetting
Q(1, 7) according to ourgMatrix structure. Then, the probabil- the threshold frequency to a higher valué=+ (L + O(, j) -

ity that the true frequency of edde ;) is at leastF, is given h)/(h?-5'/*). The probabilistic accuracy guarantee is given in

by at leastl —min{1, ((L+h-O(i,5))/(h*-(Q(i,7)—F)))*}. Theorem 3. We omit the proof as this is similar to Theorem 2.

Proof. The true frequency of edgéi,;) would also be at Theorem 3. Let L be th_e total_ frequency of received edges.
leastF", if at most(Q(i, j) — F) spurious edges map onto the-€t (i,j) be an edge with estimated frequency at leAst-
hash cell(gy.(i), g (j), k). We note that the expected numbefL+h-O(i, 7))/(h*-5'/*). Then, the probability that the true
of spurious edges, which map onto the del(¢), g (4), k), frequency of the edge is at leatis given by at least — 4.
depends upon the two cases corresponding to Whgth_er or @(.)tReachability Queries

that edge is incident onm or j. If the edge is not incident
on any one of these nodes, the probability1js? of the
total frequencyL. This is equal tal./h%. Therefore, by using

The heavy-hitter edge query processing technique can also
be used for reachability queries. This query also shows the

the Markov inequality, we can derive the probability thd ower ongatrix i_n retaining structural information about
more than(Q(i, j) — F) such spurious edges map onto th e graph, which is not achieved by state-of-the-art sketch

cell, which is given by at most/(h2 - (Q(i,) — F)). For synopses. The reachability query is defined as follows:

the second case, if the edge is incident on one of thopefinition 3. Determine if a source node is reachable to a
nodesi or j, the probability of this happening is given bydestination node via edges that have frequency at [Eastth
O(i,5)/(h-(Q(i,5)— F)). The sum of these two probabilitiesprobability at leastl — &.

gives an upper bound of this happening over all edges. There-_ . L . ,
fore, the probability that more thafQ(i, j) — F) spurious This query is fairly straightforward to resolve with the use

edges map onto ce . Y k) in all w hash functions of the approach discussed in the previous subsection, siace
is given bs((L 4 h{.lgg((zi)’]%];%)h’g ?(IQ(i jz)u_ F)))Itj Nlote can retrieve not only the heavy-hitter edges, but also gtait

that if this bound is greater than 1, then no interesting Idou?nd end _“09'63- Thus, in the first step, we dgtermine all edges
on the probability is derived. Therefore, the probabiliat along with its start and end nodes) for which the frequency

the frequency of edgé, j) is at leastF is given by at least: is at leastF” with probability aF_Ieastl - 0 (se_e Definition
1—min{1, (L + h-O(,)/(h2- (Qi,J) — F)))*}. 3). Then,_ we answer r_eachab|llty queries using these edges.

- . When F' is relatively high, due to the presence of skew in
Impllcatloq (_)f Accuracy Guara.nt'eef\. If the _egtlmated f_re- the graph stream, there are only few edges with frequency
quencyQ(i,j) > F, and alsoQ(i, j) is a significant fraction

- higher thanF'. This helps us to answer reachability queries
of the aggregated frequengy then the above probability getsor high-frequency edges in an online manner.
close to1. Thus, heavy-hitter query results would be very

accurate for those edges whose estimated frequency isrhighe V. EXPERIMENTAL RESULTS

Time Complexity. The complexity of scanningMatrix syn- We present experimental results which illustrate the effec
opsis is O(h*w). Next, let us assume that theth hash tiveness, efficiency, and compression rategbfatrix.

function (I < k£ < w) of gMatrix has totalc, cells with A, Environment Setup

frequency higher than or equal to threshdéld Based on our)

design of modular hash function (see Equation 2), each gptaset: We downloaded therriendster graph from snap.

these cells maps toP/A| source nodes andP/ | destination stanford.edy (Tablg I).. Thg edges (undirected) do not have
nodes. It require®)(2¢, | P/h| log P) time to find all these frequency information in this dataset. Hence, we assign fre

node sets. We recall that is a prime number larger than thedUency to every edge with theipf distribution, and vary the

maximum number of nodes in the graph dataset. Finally, V%ew fr_omz =1ltoz =14 WE'T dgmonstrate our results
compute the intersection over the node sets as discusseé“’_‘i‘iﬁI Friendster because by assigning the edge frequency

Equation 11. Therefore, the overall time-complexity ofhea distribution synthetically, we can test our results forfeliént
hitter edge query i€ (h2w + 2| P/h|log PTT ., cx) skew. It has been a standard practise in data stream literatu
k=1 .

. . . . [9], [23] to consider theZipf frequency distribution. Indeed, as
Asking Heavy-hitter Edge Queries Differently. We note that reported in [13], [20], most real-world datasets have skew i

the heavy-hitter edge query can be posed in a slightly eifer the range tested by ours. Due to brevity, we omit experinhenta

way In Wh'.Ch we attem_pt to find _those edges for which threesults over other datasets, since we found that they aftasim
frequency is at least’ with probability at leastl — o.

to the results withFriendster
Definition 2. Determine all edges with frequency greater than The stream sizen Table | represents the graph-stream size
F with probability at leastl — ¢. with repetition of edges. Theompressed stream sjzen the

% % § Freq. Th. F Run Time Run Time Memory Use ~ Memory Use
s = s = s = % Agg. Stream Freq. Matri Count-Min Matri Count-Min
< aie aoms T helooo 4omB ERT V=10 aome 0299 d g =Ll granx =Ll
S 16 10MEl g ¥ 20MB S 20MB 1% 28 sec 1 sec 29 MB 0.8 MB
S 4136Mmy ¢ 5 13MB s 17 2oM8 0.1% 149 sec 2 sec 128 MB 5 MB
g 15 £ g 025 7=1 0.01% 771 sec 7 sec 260 MB 21 MB
8 300 5001000 8 3 5 10 8 101214
h w z TABLE Il
(@) (b) (© HEAVY-HITTER EDGE QUERY EFFICIENCY, H=1000,w=10,SKEW=1.4
Fig. 4. gMatrix compression rate over compressed stream ili
g 9 P P Freq. Th. F Reachability Skew Reagli?'“ty

@ @ (% Agg. Stream Freq.) Error

I . I _ = 1 0.012

x gMatrix e gMatrix 1% 0 12 0.008

2 1 CM 2 ¢ 0.1% 0 14 0.004

Z 40MB 40MB 40MB g 0.01% 0.012 . .

g I I I g TABLE IV

g o 8§ 8 TABLE Ill H=1000,w=10, FREQ.

[is i - H=1000,w=10, XEw=1 = [+

1 01 001 1 1.2 14 TH.=0.01%
Frequency Threshold (% of Agg. Stream Freq.) Skew z
(a) skew=1.4 (b) Freq. Threshold=0.01% sufficient to achieve reasonably high accuracy over a wide

Fig. 5. Accuracy of heavy-hitter edge queries, h=1000, w=10 variety of applications.
C. Query Processing: Accuracy and Efficiency

contrary, is the size of all distinct edges that have now-zer . q . ‘ d .
frequency, along with their frequency counts. In our system 1) Heavy-Hitter Edge Queriesive performed experiments

each integer consumes 4-bytes of memory space. Hence, fofdentify the heavy-hitter edges having frequencies abov
the original stream, eaclpgssibly repeatededge requires 8- & 9IVen threshold. We denote the value of this threshold
bytes corresponding to its source and destination nodes.frl?lquency as a percentage (_)f the aggregate _stream_f_r equency
the compressed representation, edtinct edge consumes since the frequency error estlmafce of an edge is sensititreesto
12-bytes, for its two end nodes as well as for its frequené&ggregate stream frequengyatrix ensures that the re_zported
count. Bothoriginal streamandcompressed streanan answer edges are a super§gt of the true edg‘?s- In all our f'QUfeS' we
our queries with complete accuracy. We shall demonstrate thePOTt thefalse positive ratéor heavy-hitter edge queries.
gMatrix, although a small fraction of original and compressed # edges incorrectly reported as heavy-hitter edges

. .) False Positive Rate= -
stream representations, achieves high accuracy. # true heavy-hitter edges

Queries and Comparing Method: Due to lack of space, we Figures 5 illustrates the accuracy of reported heavy+hitte
demonstrate our results with two representative queresmryy €dges under different skew and frequency thresholds. The
hitter edge query and reachab”ity via heavy_hitter edg'm resu|tS ShOW that the false pOSitive rate for heaVy-hittmTqES

first query can be answered with existing sketches; and hengeaboutl0 times smaller fogMatrix as compared t€ount-

we compare our results witiCount-Min [9] by allocating Min (CM). This is because many high-frequency edges often
the same amount of storage to b&@bunt-Min and gMatrix. have the same source or destination nodes. In other words,
While gMatrix can identify the source and destination nodd&e distinct number of source nodes or the distinct number of
of those heavy-hitter edge€ount-Min only returns the cor- destination nodes over all high frequency edges is usuesly |
responding edge-ids. ThugMatrix can answer our secondthan the distinct number of high-frequency edges. Theeefor
query, i.e., reachability over heavy-hitter edges. Howevdntersection computation over the node setghffiatrix is able
traditional sketches cannot process such structural epieri 0 reduce more false positives.

- . . However, this reduced false positive rate is achieved at
System Description. The code is implemented in C++ andE P

h .) ; d inal £ 10G e cost of higher memory and running time (Table II). We
€ experiments were periormed on a single core o call that the number of node intersections fMatrix is:

2.4GHz Xeon server. One may note thize Friendsterstream (2n/h["_, c), whereas forCount-Min, the number of
with skewl, even in its compressed form, cannot be entireg k=1"k/) .

loaded in th . ¢ dit dge intersection isO(e/h? [],_, cx). Since,e < nh,
oaded In the maih memory ot our commodity server gMatrix performs more number of intersection operations than

that of theCount-Min. On the other handgMatrix returns
the end nodes of those heavy-hitter edges, which is the key
The compression rate is defined as the ratiogbfatrix to answer more complex structural queries as illustratest.la
size to the size of theompressed streanWe recall that the Besides, heavy-hitter edge queries are executed perilydica
compressed stream representation is much smaller than dhe in an off-line manner. Hence, we believe that the aduio
original stream, since the former does not have edge repetit running time cost is tolerable, and one may use the main-
Itis evident from Figure 4 that the size gMatrix is usually memory of a connected server to satisfy the extra space
a small percentage of the compressed stream size; and heregirements due to heavy-hitter queries.
an even smaller percentage of the original stream. In case) Reachability Queriesin these experiments, we consider
of skew z = 1, gMatrix with h = 1000 andw = 10 (i.e., reachability via edges having frequency greater than oalequ
40MB) is only 0.25% of the compressed stream size. Wéo a threshold valueSuch reachability queries defined by high-
will demonstrate later that these valuestoindw are often frequency edges cannot be answered using existing sketches

B. gMatrix Compression Rate

Note that the use ofMatrix results in the addition of some

spurious edges. Such spurious edges can change the cahnecte
components if they occur as “bridge edges” between two

components. In order to measure the accuracy of reaclyabi
queries over high frequency edges, we first consider t
starting and ending nodes of all edges for whigklatrix-

estimated frequency is more than a predefined threshold
Then, we randomly construgb0 distinct pairs of nodes from
this set and verify ifgMatrix representation and the original
graph report the same result in terms of whether or not the p
is connected by edges with frequency more tharrinally, we

is defined as the ratio of node-pairs incorrectly reported
reachable over the total number of node-pairs considered.

node-pairs falsely reported as reachable

Reachability Error—
node-pairs queried

Tables Il and IV show our accuracy results for reachability[g]
query considering various frequency thresholds and skesv. W
observe that the reachability error is always less than).01[4]

and often zero. These results illustrate that (1) the rdalitya

via high-frequency edges does not change much by spurious

edges, and (2)gMatrix is effective at reconstructing the

underlying graph structure defined by high-frequency edges
After we identify the heavy-hitter edges, which is much(7
less than the total number of distinct edges in the graph eac

reachability query can be processed in ab6ut sec. This
shows our efficiency in answerir@nline structural queries

D. gMatrix Stream Processing Throughput

In Figure 6, we analyze the stream processing throughpyfs

of gMatrix and Count-Min. Both gMatrix and Count-Min

achieve throughput about a few hundreds of edges per raillis€]
ond. HowevergMatrix throughput is around two-times slower[lz]

than that of Count-Min. This is becausgMatrix performs
hashing twice per edge-stream, whiount-Min performs
hashing only once per edge-stream.

VI. CONCLUSIONS

We presentedyMatrix, a sketch synopsis for massive an%s]

rapid graph streams. It is the first synopsis whinhintains

information about the structural and frequency behavior df6]

the underlying networkThis is achieved with the use of

a 3-dimensional sketch structure, which stores information

about the node-based structural relationships betwetaretift
edges. ThusgMatrix is useful for a variety of structural
gueries such as the determination of subgraph edge freig@sen
and reachability over high-frequency edges. Siigdéatrix

maintains the approximate structure of the high-frequen?}?
regions of the underlying graph, we expect that it can be usgg)
for a wide variety of structural queries, as long as the node

identifiers can be disambiguated with the use of differeshha

functions. This will be the focus of our future work. One mayy;

also consider how to further improve the efficiencygdatrix

using early aggregation techniques and specialized hzﬂedwaGraloh Streams, IWLDB, 2012

750
650
550
450
350
250

gMatrix ------
CM

lit
he

(#edge/Millisecond)

Stream Processing Throughput

Fig. 6. Throughput of stream processing, z=1.4, h=1000

VIl. ACKNOWLEDGEMENTS

ai Research of the second author was sponsored by the Army

¢ _ /€ Research Laboratory under Cooperative Agreement Number
report thereachability errorover these500 node-pairs, which \y

911NF-09-2-0053.

as
REFERENCES

(1]
(2]

C. Aggarwal, J. Han, J. Wang, and P. Yu. A Framework forsi#uing
Evolving Data Streams. INLDB, 2003.

C. Aggarwal, Y. Li, P. S. Yu, and R. Jin. On Dense Pattermikfy in
Graph Streams. IVLDB, 2010.

K. J. Ahn, S. Guha, and A. McGregor. Graph Sketches: $pzaton,
Spanners, and Subgraphs. RODS 2012.

M. Charikar, K. Chen, and M. Farach-Colton. Finding Rreqt Items
in Data Streams. IMCALP, 2002.

S. Choudhury, L. Holder, G. Chin, A. Ray, S. Beus, and Jo.Fe
StreamWorks: A System for Dynamic Graph SearchSIGMOD, 2013.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Steirect®n
31.2: Greatest Common Divisor. Introduction to Algorithms, Second
Edition, pages 859-861. MIT Press and McGraw-Hill, 2001.

G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermainmojses
for massive data: Samples, histograms, wavelets, sketEbesdations
and Trends in Databased(1-3):1-294, 2012.

G. Cormode and M. Hadjieleftheriou. Finding Frequemnis in Data
Streams. InvLDB, 2008.

G. Cormode and S. Muthukrishnan. An Improved Data-S$tresum-
mary: The Count-min Sketch and its Applications. of Algorithms
55(1), 2005.

G. Cormode and S. Muthukrishnan. Space Efficient MinadgMulti-
graph Streams. IR?ODS 2005.

W. Fan, J. Li, X. Wang, and Y. Wu. Query Preserving Gragmpres-
sion. InSIGMOD, 2012.

J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and &ngh On
Graph Problems in a Semi-Streaming Modelheor. Comput. Sgi.
348(2-3):207-216, 2005.

N. Manerikar and T. Palpanas. Frequent Iltems in Stregnliata: An
Experimental Evaluation of the State-of-the-arData Knowl. Eng.
68(4):415-430, 2009.

A. McGregor. Graph Stream Algorithms: A Surve\5sIGMOD Reg.
43(1), 2014.

A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient Coratation of
Frequent and Top-k Elements in Data StreamslADT, 2005.

S. Navlakha, R. Rastogi, and N. Shrivastava. Graph Samzation with
Bounded Error. INSIGMOD, 2008.

C. Qun, A. Lin, and K. W. Ong. D(k)-Index: An Adaptive 8Sttural
Summary for Graph Structured Data. GMOD, 2003.

S. Raghavan and H. Garcia-Molina. Representing Welpl&.anICDE,
2003.

O. Rottenstreich, Y. Kanizo, and |. Keslassy. The Malgalncrement
Counting Bloom Filter. IEEE/ACM Trans. Netw.22(4):1092-1105
2014.

P. Roy, A. Khan, and G. Alonso. Augmented Sketch: Faatet More
Accurate Stream Processing. $iGMOD, 2016.

R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang A2 Dinda,
M.-Y. Kao, and G. Memik. Reversible Sketches: Enabling Manig
and Analysis over High-speed Data StreaiSEE/ACM Trans. Netw.
15(5):1059-1072, 2007.

N. Tang, Q. Chen, and P. Mitra. Graph Stream SummaoizatFrrom
Big Bang to Big Crunch. Ir'SIGMOD, 2016.

[23] P. Zhao, C. Aggarwal, and M. Wang. gSketch: On Queryniation in

[5]

(6]

(8]

El

[13]

[14]

17]
[18]

o

]

i

