
On Flow Authority Discovery in Social Networks

Charu C. Aggarwal∗ Arijit Khan† Xifeng Yan‡

Abstract

A central characteristic of social networks is that it facil-

itates rapid dissemination of information between large

groups of individuals. This paper will examine the problem

of determination of information flow representatives, a small

group of authoritative representatives to whom the dissem-

ination of a piece of information leads to the maximum

spread. Clearly, information flow is affected by a number

of different structural factors such as the node degree,

connectivity, intensity of information flow interaction and

the global structural behavior of the underlying network.

We will propose a stochastic information flow model, and

use it to determine the authoritative representatives in

the underlying social network. We will first design an

accurate RankedReplace algorithm, and then use a Bayes

probabilistic model in order to approximate the effectiveness

of this algorithm with the use of a fast algorithm. We will

examine the results on a number of real social network

data sets, and show that the method is more effective than

state-of-the-art methods.
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1 Introduction

In recent years, social networks have found increasing
popularity because of their ability to connect geograph-
ically disparate groups of individuals. Social networks
are well known to enjoy the benefits of the network ef-
fect, wherein the increase in the size of the social net-
work also increases the perceived benefits of using it.
Much of this benefit is embedded in the information
flows in the social network. These information flows
arise as a result of the communication between the dif-
ferent entities in the social network. The information
flow is also impacted by the network topology and the
intensity of information flow interactions between differ-
ent nodes. Since information flows play such a key role
in the popularity of social networks, significant research
has been performed in recent years to characterize im-
portant characteristics of such flows [13, 14, 22].

A key question which arises in the context of social
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networks is to determine the information flow authori-
ties in the social network. Information flow authorities
are defined as a very small group of members at which
the dissemination of information leads to the most rapid
spread throughout the social network. The concept of
information authorities is peripherally related to that of
the concept of hubs and authorities in web networks [10].
The concept of hubs and authorities is used in order to
find central points of influence in web networks. How-
ever, the concept of information flow authorities is quite
different from that of the hub-authority framework, in
that it is more critically dependent upon the structure of
the flows along the underlying network. This is depen-
dent both upon the structural characteristics of the net-
work and the flow intensity along different edges (which
can be measured in many applications). In the experi-
mental section, we will see that the use of a purely struc-
tural method (called PeerInfluence) is not sufficient for
effective determination of flow authorities. The use of
an information flow model is critical in determining the
best nodes for information dissemination. Furthermore,
our model also allows for the development of particular
variants which can target specific nodes for influence.
This is interesting in a number of applications in which
only a subset of the nodes may be relevant for dissemi-
nation of information.

Clearly, the flow authorities in the social network
are likely to be central and well connected entities in
the network. This is related to the concept of deter-
mining central nodes [8] in graphs and social networks.
However, the local structural measures alone do not pro-
vide a global view of the centrality of flows in the social
network. Rather, the flow centrality is defined by the
global topology, and the pattern of interactions between
different nodes. A related problem is that of virus prop-
agation in computer networks and epidemic spreading
[4, 16, 19]. It has been observed in earlier work [4], that
the flow of information in social networks, blogs, and
network-based product-recommendation systems is very
similar to that of virus spread in computer networks. It
has been observed in this work that the structure of the
network and the interaction intensities between nodes
can play a critical role in the information dissemination
process.

We will design a stochastic approach in order to



model the flow behavior in social networks. We will
leverage this flow model in order to design an approach
(called RankedReplace) for determining flow authorities
in social networks. Then, we will approximate the flow
model with a random-walk based model in conjunction
with a probabilistic Bayes algorithm. We will refer to
this algorithm as the BayesTraceback algorithm. This
approximation is very efficient, and turns out to be
almost equally effective in practice. We will show
that our techniques are much more effective than state-
of-the-art techniques which can be adapted to this
problem.

1.1 Related Work The problem of epidemic spread
in computer networks has been studied extensively
in [4, 12, 11, 16, 19, 20, 22]. Much of this work
studies patterns of information flows and conditions
under which such flows becoming epidemics. Some
recent research [22] studies the information propagation
problem in context of similar models for computer
virus and epidemic spreading [16, 19]. The work in
[4, 18, 17, 22] studies the information flows in the
context of social networks and other kinds of computer
networks. However, none of these papers explore the
concept of flow authorities in social networks. This
problem is much more relevant in applications such as
social networks, in which such transmission is desirable
rather than undesirable. In this context, a method for
mining the network value of customers in the context
of a viral marketing model was proposed in [7]. While
this body of work provides an excellent study of the flow
behavior, it does not study the most influential points
for optimal release.

Intuitively, flow authorities are likely to be present
at highly connected and central regions in graphs. Cen-
trality in graphs is typically defined either in terms of
structural diameter or the betweenness centrality [1, 2].
Many algorithms have been designed for determining
clusters and communities [1, 2] in massive graphs. An-
other such concept of centrality in the context of social
networks is discussed in [8]. While such techniques pro-
vide a good structural idea of the main regions of the
network, they fail to relate to the relationship between
these regions and flows in the network.

The most closely related techniques to our work are
discussed in [9, 5, 23], where an independent cascade
(IC) model for information spread has been introduced.
In the IC model, each active node gets a single chance to
activate each of its neighbors independently with a cer-
tain probability. In the Degree Discount heuristic of the
IC model [5], while selecting some node v as the author-
ity node, we do not count the edge vu towards its de-
gree, if u has already been selected as an authority node.

However, this model only maximizes the expected num-
ber of nodes being exposed to the information, and it
does not maximize the amount of the total flow of infor-
mation in the network. Also, these techniques cannot
be easily generalized to flows over specific portions of
the network or targeting specific nodes. Our stochastic
approach has a natural interpretation in terms of infor-
mation flows in networks. As shown in the experimental
section, this leads to the determination of much more
relevant authorities. This paper will develop a Bayes
model for constructing the flow with the use of a back-
ward model known as the BayesTraceback algorithm.
This approximation can provide an accurate determi-
nation of the flow authorities very efficiently.

2 Flow Authority Model for Social Networks

In this section, we will introduce the flow authority
model for social networks. We assume that the univer-
sal set of nodes over which the social network is defined
is denoted by U , and the edge set by A. Therefore, the
underlying graph is denoted by (U,A). The graph is
assumed to be directed, since information flows are spe-
cific to direction in the most general case. However, this
assumption is not specific to the techniques discussed in
this paper and they can easily be applied to undirected
networks. This can be achieved by replacing an undi-
rected edge with two symmetric directed edges. The set
of nodes from which an incoming edge is incident into
node i is denoted by N(i). In other words, we have
N(i) = {k : (k, i) ∈ A}. The set of nodes on which the
outgoing edges of i are incident are denoted by O(i).
Therefore, we have O(i) = {k : (i, k) ∈ A}. We assume
a model of information transmissibility, in which a node
i which is exposed to information can transmit it to one
of its neighbors. Information transmission can take on
many forms in practical settings:
(1) In a social network, information may be forwarded
to any of the friends of a given user in the form of pub-
licly visible text posts, hyperlinks, videos or messages.
This user may or may not choose to adopt this piece of
information and transmit it further.
(2) In a peer-to-peer recommendation or viral market-
ing system, a user may send a recommendation to any
neighbor. The neighbor may or may not make a buying
decision based on this recommendation. Furthermore,
this recommendation may be forwarded to one of the
neighbors of the node. In general, it has been observed
[7] that customers in a network-marketing system have
a certain value in terms of their being able to influence
other members of the network. The determination of
flow authorities will help us in identifying key points in
the network which lead to the greatest spread of infor-
mation.



(3) The above dynamic is generally true for a variety
of network-based epidemic outbreaks, and may be gen-
eralized to social networks, blog posts [14], water moni-
toring systems, or any general network infection system
which has structural similarity to epidemic outbreaks
[4].

We will formally define the concept of information
exposure.

Definition 1. A node is said to be exposed to infor-
mation bits I, if at least one of its neighbors contains
the information I.

It is important to note that the concept of neighbor-
hood information exposure (as defined in this paper)
only entails the presence of the information at one of
its neighbors, rather than any further explanation of
what is done with it. The default assumption is that
if a node contains some information bits, then all of its
neighbors are automatically exposed to those bits. The
probability that such an exposure results in eventual in-
formation assimilation is determined by a transmission
matrix, which we will discuss shortly. We denote the
transmission probability along edge (i, j) by pij . Note
that this transmission probability simply indicates the
probability that an exposure of node i also results in the
information being assimilated by node j. Node j then
automatically becomes eligible to transmit to its neigh-
bors. We denote the corresponding matrix of transmis-
sion probabilities by P = [pij ]. We note that this matrix
is extremely sparse, because it is often overlaid on very
sparse graphs such as social networks. We note that if
ri be the probability that a given node i contains infor-
mation I, then it eventually transmits the information
I to adjacent node j with probability ri · pij . The value
of pij can often be estimated from the underlying data.

In this paper, we will examine the problem of
picking a set of k points in the network which maximizes
the aggregate probability of information assimilation
over all nodes in the graph. We refer to these k nodes as
the information authorities in the underlying network.
We summarize the problem as follows:

Problem 1. Determine the set S of k data points at
which release of the information bits I would maximize
the expected number of nodes over which I is assimi-
lated.

We note that this is a particularly difficult problem,
because the probability of the spread of the information
at any particular node cannot be expressed easily in
closed form. Rather, it is described in the form of
a non-linear system of equations. We define π(i) to
be the steady-state probability that node i assimilates
the information. Then, the expected steady state

number of nodes which assimilate the information are
given by

∑
i∈U π(i). In order for node i to assimilate

the information, it must receive the transmission from
at least one of its neighbors. The flip side of this
argument is that in order for node i to not assimilate
the information, it must not receive the transmission
from any of its neighbors. The probability that none
of the neighbors of node i transmit to it is given by∏

l∈N(i)(1− π(l) · pli). Therefore, we have:

(2.1) 1− π(i) =
∏

l∈N(i)

(1− π(l) · pli)

In addition, for each of the k nodes in S at which the
information is released, we set the corresponding value
of π(·) to 1. Therefore, we have:

(2.2) π(i) = 1 ∀i ∈ S

The above system of equations is nonlinear, since it
uses a product of the probability of (non-)exposure from
different neighbors. This is a difficult set of equations to
solve, and the corresponding result can only be obtained
via numerical estimation. Furthermore, it is required
to determine the set S optimally. The optimization
problem is even more challenging. We will now restate
Problem 1 more formally in terms of the relationships
discussed above:

Definition 2. Determine the set S of nodes which
maximizes

∑
i∈U π(i) subject to the following con-

straints:

• 1− π(i) =
∏

l∈N(i)(1− π(l) · pli) ∀i ̸∈ S

• π(i) = 1 ∀i ∈ S

Next, we will describe a simple algorithm to determine
the information authorities with the use of an iterative
numerical method. Later, we will present a much
faster probabilistic method for the same problem. This
method uses a Bayes model in order to determine the
optimal flow authorities.

3 Determining Optimal Information Flow
Authorities

In this section, we will present algorithms for determin-
ing optimal information flow authorities. In order to de-
termine optimal flow authorities, we also need to have
a way to evaluate the (aggregate) steady state assimi-
lation probability of all nodes, when the information is
released at a particular set of nodes S. In order to de-
sign this algorithm, we will use an iterative algorithm in
which qt(i) denotes the estimation of π(i) in the tth it-
eration. This iterative approach is natural to solve the



Algorithm SteadyStateSpread(Initial Set: S,
Transmission Matrix: P )

begin
for each i ∈ S set q0(i) = 1;

for each i ̸∈ S set q0(i) = 0;
t = 0;
repeat

for each i ∈ S set qt+1(i) = 1;

for each i ̸∈ S do
begin

qt+1(i) = 1−
∏

l∈N(i)(1− pli · qt(i));
end
Ct+1 =

∑
i ̸∈S |qt+1(i)− qt(i)|;

t = t+ 1;
until(Ct < 0.01 · C1);

return(
∑

i̸∈S qt(i));

end

Figure 1: Determining the expected information spread
for a given starting set of nodes

non-linear system of equations. In each iteration, we
update the value of qt(i) from the value of qt−1(i) with
the use of the equations in Definition 2. The overall
algorithm is denoted by SteadyStateSpread in Figure
1. The input to the algorithm is the set S at which the
information is released.

The algorithm initializes q0(i) = 1 for each node i ∈
S and 0 for nodes which are not in S. Subsequently, an
iterative approach is used to update the value of qt+1(·)
is updated from qt(·) with the use of the equations in
Definition 2. In each iteration, we track Ct, which is
the aggregate change in the absolute probabilities from
qt(·) to qt+1(·). The algorithm is terminated when the
change in a given iteration is less than 1% of the change
in the first iteration. At this point, it is assumed that
the probability values have converged to values which
are close to their true values.

The above method for determining the steady-state
probabilities can be leveraged in order to determine the
optimum set of k nodes at which the information should
be released. We make use of a greedy approach which
maximizes the expected increase in the information
spread as calculated by Figure 1. The algorithm works
with the use of an iterative approach in which we start
off with a candidate set of k nodes and continually
increase its maximum flow value. We first pick the top
k nodes with the largest individual steady state spread
as the initial candidate set of flow authorities. Of course
this way of picking the candidates ignores the structural
relationships between these nodes. In general, we would
like our flow authorities to be reasonably well separated
from one another in order to maximize the probability
of propagation of information throughout the social
network. In order to achieve this goal, we use a ranked

Algorithm RankedReplace(Transmission
Matrix: P , NumberOfAuthorities: k);

begin
Determine SteadyStateSpread({i}, P ) for

each node i in the universal set U ;
S =Initial set of k authority nodes with the

highest value of SteadyStateSpread({i}, P );
Sort nodes in U − S in descending order of

SteadyStateSpread(·);
for each node i in U − S in

descending order do
begin

Sort the list S in ascending order
of SteadyStateSpread({j}, P );

Pick the first element (if it exists) of
sorted list S which is such that

replacing i with it increases value of
SteadyStateSpread(S, P )
if no replacement has occurred in the last

r consecutive iterations, then
return(S) and terminate;

end
return(S);

end

Figure 2: The RankedReplace Algorithm

replace algorithm in which the nodes in U − S are tried
as possible replacements for nodes in S in decreasing
order of their flow value.

The iterative portion of the algorithm proceeds as
follows. We sort the nodes in U − S in descending
order of the steady state flow. In each iteration,
we pick the next node i from U − S and use it to
replace a node in S, if such a replacement increases
the total flow of S. Even though the flow value of i
is typically less than that of the node it replaces, the
total flow value may increase because of the nature of
the network location of the two nodes. For this purpose,
the nodes in S are tried as candidates for replacement
in ascending value of SteadyStateSpread(·). The first
replacement in this order which increases the objective
function for the steady state information spread is
executed. It is possible that no such replacement may
exist. We continue to try different nodes in U − S for
replacement, until such attempts are unsuccessful for
r consecutive iterations. At this point, the algorithm
terminates, and the set of nodes S are reported as the
flow authorities. The overall algorithm is illustrated in
Figure 2. The algorithm is referred to as RankedReplace,
which corresponds to the broad approach of ranking the
nodes and iterative replacement based on the steady
state flow impact.



3.1 The BayesTraceback Algorithm The main
problem with the solutions presented in the previous
sections is that the algorithms require iterative deter-
mination of the steady-state probabilities. This can be
rather slow in practice. In this subsection, we will dis-
cuss how to speed up the algorithms for determination of
the information authorities. This algorithm provides an
an approximation of the information authorities. The
core-idea is to use a random walk based approach in
which an information packet is viewed as a token, and
it is assumed that the token at a given node j is inher-
ited from one of its incoming nodes i with probability
proportional to pij . Random walk modeling is used for
the page rank problem, though this approach is differ-
ent in the sense that we use it for trace back of the best
source of information, rather than those nodes which
will be visited often by a random surfer. Thus, the
algorithm tends to be backward looking from a desired
result, rather than forward looking to determine the re-
sult. In the experimental section, we will show that a
direct application of the page rank model does not yield
as accurate results as the BayesTraceback method.

The random walk model is a relaxation of the
original model for two reasons:
(1) In the original model, a node can be infected only
once, whereas a random walk can visit a node multiple
times.
(2) In the original model, a given node may infect
multiple nodes at once, whereas in this case, we are
trying to trace the behavior of a single token, which is
(stochastically) present only at one node at a time.

We note that this simplification of the model allows
us a trace-back of the steady-state probabilities with the
use of a Bayes model. We will see that this approach is
extremely efficient and provides a good approximation
to the exact algorithm.

In the case of the random walk model, our aim is to
pick k nodes in the data which are such that by releas-
ing the information at these k points, the information
spreads as evenly over the entire network as possible. In-
tuitively, this corresponds to release points which results
in as much of the network being disseminated with the
information as possible. We note that the even spread of
information may not be possible in steady-state, since
the steady-state probabilities in a random-walk model
are dependent upon the structure of the network and the
transition probabilities, and are independent of the ini-
tial starting point probabilities. Nevertheless, our goal
is to create an evenly spread probability distribution as
an intermediate transient after a small number of iter-
ations of the walk model. The goal is to find a set of
k starting points which will create such an intermedi-
ate transient at some point. Therefore, for a network

Algorithm BayesTraceback(Transmission Matrix: P
Discard Fraction: f , NumberOfAuthorities: k);

begin
t = 0;

for each node i set q0(i) = 1/n;
repeat

q−(t+1)(j) =
∑

i q
−t(i) · pji∑

l∈N(i) pli

t = t+ 1;
Remove a fraction f of the nodes
from the graph with the least value of

q−(t+1)(·), with the restriction
that at least k nodes should remain;

Scale up probabilities q(−(t+1)(·) of
all remaining nodes by the same factor
so that the remaining probabilities sum to 1;

until(k nodes remain);

return remaining nodes;
end

Figure 3: The BayesTraceback Algorithm

containing n nodes, we will start off with a final tran-
sient probability distribution of 1/n for each node, and
then use the Bayes theorem repeatedly to trace back the
initial probabilities for a certain number of iterations,
and pick the k nodes with the largest apriori probabil-
ity with the use of this traceback technique. Therefore,
we start off with the probabilities for n nodes which
are denoted by q0(·) = q0(1) . . . q0(n). As noted ear-
lier, each of these values is equal to 1/n. In subsequent
iterations, we will use the Bayes formula to determine
the values of q−1(·), q−2(·) . . . q−r(·). Note that we use
negative superscripts for the time component in order
to denote the traceback starting from the 0th step of
the walk. The vector q−t(·) indicates the probabilities
after tracing the walk back for t steps.

Next, we will examine how the values of q−(t+1)(·)
can be determined from q−t(·). For any particular
node i, let us examine all the incoming edges from the
corresponding node set N(i). We note that the a-priori
probability P (j → i|−tth node = i) that an information
token at node i came from node j in the previous step
of the random walk is given by the Bayes formula over
all possible nodes incoming into node i. Therefore, we
have:

(3.3) P (j → i| − tth node = i) =
pji∑

l∈N(i) pli

In order to trace back the values of q−(t+1)(·) from
q−t(·), we can examine the different cases over which
the −tth node is i and sum up the values of P (j →



i| − tth node = i) over these cases. Therefore, we have:

q(−(t+1)(j) =
∑
i

q−t(i) · P (j → i| − tth node = i)

=
∑
i

q−t(i) · pji∑
l∈N(i) pli

The second equation above simply traces back for the
probability distribution of the position of the informa-
tion token at time stamp −(t+1) using the probability
distribution of the token at time stamp −t. Therefore,
we can start off with the evenly distributed probabil-
ity vector q0(·) and start tracing back the probabilities.
The nature of the above probabilities suggest that nodes
with high outdegree and outgoing probabilities will see
increased probability during the traceback process. The
process above is repeated for r iterations, and then the
k nodes with the largest value of q−r(i) are picked as the
correct candidates. It remains to describe the termina-
tion criterion. Furthermore, we need to design the al-
gorithm in such a way, so that the algorithm converges.

It turns out that both of the above issues can be
solved by making a heuristic change to the algorithm.
This heuristic change speeds up the convergence and
also provides a natural termination criterion to the al-
gorithm. Note that since we only wish to determine
the high probability nodes after the traceback, we can
start removing the nodes, whose influence to this is min-
imal. After each iteration of updating q−(t+1)(·) from
q−t(·), we conceptually discard a fraction f of nodes
with the least probability (least value of q−(t+1)(·)), by
setting the corresponding values of q−(t+1)(·) to zero.
We also delete the corresponding nodes and edges from
the graph. At the same time, we scale up the proba-
bilities of the remaining nodes (by the same factor), so
that they continue to sum to 1. This process is repeated
iteratively until exactly k nodes are remaining. Note
that the last iteration is special in the sense that less
than a fraction f of the nodes may need to be dropped
in order to ensure that we continue to have k nodes
remaining. These k nodes are reported as the informa-
tion authorities. The overall algorithm is illustrated in
Figure 3. The input to the algorithm is the discard frac-
tion f and the transition matrix P . The choice of the
discard fraction f determines the speed of termination
of the algorithm. A larger choice of f leads to faster
convergence, but somewhat more inaccurate results. In
practice, we chose f to be about 5% of the total number
of nodes. We note that this algorithm is extremely ef-
ficient, since each iteration is a straightforward update
step on the different nodes. Furthermore, for a graph
containing n nodes, the maximum number of iterations
is log(n/k)/log(1/(1− f)). This is because the number
of nodes reduces by a factor of (1− f) in each iteration,

and the number of nodes need to be reduced from n to
k in all iterations. Because of the logarithmic variation,
this turns out to be quite modest. For example, for a
network containing 106 nodes, k = 10 and f = 0.05, the
total number of iterations is less than 180.

We note that successive removal of nodes and edges
from the graph will eventually lead to the underlying
graph becoming disconnected. This does not change
the overall algorithm, since the iterative transition
relationships continue to hold within each connected
component. Conceptually, the algorithm will eventually
find the “most significant nodes” in the k highest
probability components.

3.2 Restricting Source and Target Nodes In the
previous discussion, we picked the most relevant flow au-
thorities for the entire set of nodes. In this section, we
will examine the case when we wish to determine the
flow authorities for a particular set T of target nodes.
Such situations may arise in a number of scenarios in
which a user may target a particular subset of nodes
on which the information flow needs to be maximized.
This problem can be achieved by simple modifications
to each of the above algorithms:
(1) For the case of the RankedReplace algorithm, the
only change is to modify the SteadyStateSpread algo-
rithm. In the modified algorithm, we add the set T
to the input parameters. The actual state probabilities
on the nodes are computed using the same algorithm
as before, except that the final information flow value
which is returned is determined by summing up these
probability only over T rather than the entire set of
nodes. When the RankedReplace algorithm is executed
with this new method of determining the steady state
flow, it automatically picks the set of flow authorities
which maximize the flow to the target set T .
(2) For the case of the BayesTraceback algorithm, we
consider the nodes within target set as the sink nodes.
Note that, the nodes that have the maximum influence
over a set of target nodes intuitively correspond to the
nodes that can evenly spread the information within the
target nodes as quickly as possible. However, to achieve
the maximum flow within target nodes, we are free to
take help of non-target nodes. Now, in this modified
BayesTraceback approach, the algorithm still remains
the same inside the subgraph imposed by the target
nodes. For the subgraph imposed by the non-target
nodes, we do not care the total flow that could be ag-
gregated there by the whole process, as this is used only
for the flow propagation within the target nodes. There-
fore, the only change to the method is that we do not
propagate the flow from target node to non-target node,
but we propagate flow from non-target to target sets.



It is further possible to restrict the set of influential
nodes to a particular set S. This situation can arise in
cases, where the information can be released only at spe-
cific nodes. This generalization can be solved by adding
this as an input parameter in case of RankedReplace al-
gorithm. We only use the nodes in S for the ranking
process in this case. For the case of the BayesTraceback
algorithm, we run the algorithm in the same way as the
previous case, except that the top-k nodes from the set
S are picked as the final solution.

4 Experimental Results

We will present experimental results which illustrate the
effectiveness, efficiency and robustness of our techniques
on a number of real data sets. To compare our results,
we consider some of the structural and random walk
based algorithms as natural baselines. For example, we
implemented the Recursive Neighbor Mean (RNM) Al-
gorithm [15], which determines the peer influence groups
and thereby identifies the dense clusters in a large net-
work. The node with the highest degree centrality [6]
in each cluster is considered the authority node in each
cluster using this baseline approach. We refer to this al-
gorithm as Peer-Influence in the experimental section.
We also implemented the Degree Discount IC heuris-
tic [5] discussed earlier. In the IC model, each active
node gets a single chance to activate each of its neigh-
bors independently with a certain probability. In the
Degree Discount heuristic of the IC model, while select-
ing some node v as the authority node, we do not count
the edge vu towards its degree, if u has already been
selected as an authority node. Finally, we compare our
top-k flow authority nodes with the top-k nodes having
the highest PageRank [24] values.
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Figure 4: Effectiveness Results (DBLP)

4.1 Data Sets The algorithms were tested on a va-
riety of different kinds of interaction networks. These
interaction networks were constructed from a number of
different kinds of social network settings. We describe

 300

 800

 1300

 1800

 2300

 20  40  60  80  100E
X

PE
C

T
E

D
 A

G
G

R
E

G
A

T
E

 F
L

O
W

k

RANKED-REPLACE
BAYES TRACEBACK

PAGERANK
PEER-INFLUENCE

DEGREE DISCOUNT IC

Figure 5: Effectiveness Results(last.fm)
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Figure 6: Effectiveness Results (Twitter)

the data sets 1 in detail below.
DBLP Collaboration Network: We use the well
known DBLP collaboration graph 2 consisting of
684, 911 distinct authors and 7, 764, 604 collaboration
edges among them. We define the transmission prob-
ability of an edge to be proportional to the number of
times that the two authors publish a paper together.
The proportionality factor is the inverse of the maxi-
mum number of collaborations between any pair of au-
thors in the network.
Last.fm Social Network: We crawled a social net-
work consisting of 818, 800 users from the last.fm site.
This is a music web site where users listen to their fa-
vorite tracks and communicate with each other based
on their choice of music. There are a total of 3, 340, 954
edges among these users. In each case, an edge repre-
sents user posts which correspond to song recommen-
dations between users. The transmission probability of
an edge is proportional to the number of times a rec-
ommendation was sent from one user to another. The
proportionality factor is the inverse of the maximum
number of communications between any two users.
Twitter Social Network: We crawled a so-

1Our data and codes are available in

http://cs.ucsb.edu/∼arijitkhan/Gflow.zip
2http://www.informatik.uni-trier.de/ ley/db/



Rank Ranked-Replace Bayes Traceback Peer-Influence Degree Discount IC

1 Wen Gao Wen Gao Luigi Fortuna Wei Li

2 Francky Catthor Philip S. Yu Dipanwita Roy Chowdhury Wei Wang

3 Philip S. Yu Mahmut T. Kandemir Timothy D. Sullivan Li Zhang

4 Mahmut T. Kandemir Francky Catthoor Wei Li Ian T. Foster

5 A. L. S. Vincentelli A. L. S. Vincentelli S. C. Lin Wei Zhang

6 Elisa Bertino Thomas S. Huang E. K. Zavadskas Ming Li

7 Thomas S. Huang Elisa Bertino Kellie J. Archer Lei Zhang

8 Ian T. Foster Wei-Ying Ma Herman Van Keulen Lei Wang

9 Luca Benini Donald F. Towsley Weichung Wang A. L. S. Vincentelli

10 Hans-Peter Seidel Ian T. Foster Roman Andrushkiw Jun Wang

11 Wei-Ying Ma Erik D. Demaine Apinunt Thanachayanont Wei Liu

12 Erik D. Demaine Hans-Peter Seidel Horst Zimmermann Jun Zhang

13 Ming Li Ming Li S. P. Perone Jing Wang

14 Donald F. Towsley Van Keulen Cndido Lpez-Garca Li Li

15 Wei Wang Jiawei Han M. McCormick Francky Catthoor

16 Wei Li HongJiang Zhang Chao Jiang Ying Zhang

17 Mario Piattini P. Nagley Leon F. Osborne Elisa Bertino

18 Hsinchun Chen Joel H. Saltz Jack Dongarra Xin Li

19 Li Zhang Mary Jane Irwin John P. Woodruff Wen Gao

20 Hector Garcia-Molina Gerhard Weikum Aarne Halme Hui Zhang

Table 1: Examples of Results Obtained by Different Methods
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Figure 7: Efficiency Results (DBLP)

cial network consisting of 1, 994, 092 users from
http://twitter.com. Twitter is a free social networking
and micro-blogging service that enables its users to send
and read messages There are a total of 6, 450, 193 edges
among these users. In each case, an edge represents mes-
sages sent from one user to another. The transmission
probability of an edge is proportional to the number of
times the users have communicated. As in the previ-
ous case, the proportionality factor is the inverse of the
maximum number of communications between any pair
of users.

4.2 Case Studies Before more concrete presentation
of the effectiveness results with quantitative measures
on the information spread, we will provide an intu-
itive exploration of the results obtained with the dif-
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Figure 8: Efficiency Results (last.fm)

ferent algorithms for the DBLP data set. This pro-
vides an intuitive understanding of the nature of the
results obtained by the different methods. We provide
the name of authority nodes for k = 20 in Table 1. It
is evident that the authority nodes determined by the
Ranked-Replace and BayesTraceback algorithms mostly
contain well-known and influential researchers from dif-
ferent fields of computer science. Furthermore, we note
that even though the algorithms are quite different from
one another, the authority nodes determined are quite
similar. Furthermore, these researchers are structurally
placed in such a way so as to maximize the interaction
with other researchers. All these factors contribute to
the total aggregate flow across the entire network. The
Peer-Influence method is particularly poor in determin-
ing good authority nodes, because it does not properly
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Figure 9: Efficiency Results (Twitter)

compute the flows on the basis of random walk behav-
ior, and pure structural diameters simply do not en-
code enough information to ensure robustness. This re-
sults in lower aggregate flow across the whole graph.
We also tested the Degree Discount IC algorithm. The
Degree Discount IC algorithm determines better qual-
ity results than the Peer-Influence algorithm, because
it uses a weighted version of random-walk, where the
weight is determined by the degree of a node and the
corresponding transmission probabilities; however, the
determined authority nodes are quite different from the
RankedReplace and BayesTraceback algorithms, because
it performs a forward calculation as opposed to Bayes-
based backward measures. This difference is quite sig-
nificant; in the next section, we will use quantitative
measures on the information spread to show that the
RankedReplace and BayesTraceback algorithms are more
effective than the Degree Discount IC algorithm in many
cases.

4.3 Effectiveness Results In order to measure the
effectiveness of a set of authority nodes S, we used ex-
pected value of the steady state flow from the deter-
mined set S to the remaining set of nodes. We deter-
mine the expected aggregate flow for different values
of k, the number of authority nodes. Figure 4 illus-
trates the effectiveness result for the DBLP data set.
The value of k is illustrated on the X-axis, whereas the
flow value is illustrated on the Y -axis. The expected
aggregate flow increases with the number of author-
ity nodes, since the release of information at a larger
number of nodes leads to greater spread of informa-
tion. The Ranked-Replace method slightly outperforms
the BayesTraceback algorithm. We will see that the
BayesTraceback method is also extremely efficient, and
therefore it is the most practical alternative among the
different methods. Furthermore, both techniques per-
form significantly better than the three baseline tech-
niques. For example, when we set k = 60, the expected

aggregate flow using the Ranked-Replace, BayesTrace-
back, PageRank, Degree Discount IC and the Peer-
Influence methods are 296.70, 275.42, 211.67, 250.28
and 111.48 respectively.

Figure 5 illustrates the effectiveness results of our
method for the last.fm data set. Both the Ranked-
Replace and BayesTraceback algorithms perform very
similarly, and also significantly outperform the three
baseline methods. For k = 60, the expected aggregate
flow using the Ranked-Replace, BayesTraceback, PageR-
ank, Degree Discount IC and the Peer-Influence meth-
ods are 1682.62, 1692.21, 1450.62, 1523.50 and 527.27
respectively. In Figure 6, we illustrate the results for the
Twitter data set. In this case, the Degree Discount IC
heuristic performs slightly better than the BayesTrace-
back method. For example, for k = 80, the expected ag-
gregate flow using the RankedReplace, BayesTraceback,
PageRank, Degree Discount IC and the Peer-Influence
methods are 933.64, 851.47, 258.76, 891.24 and 222.34
respectively.
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Figure 10: Effectiveness vs. Network Size (DBLP)
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Figure 11: Effectiveness vs. Network Size (last.fm)
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Figure 12: Effectiveness vs. Network Size (Twitter)
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Figure 13: Efficiency vs. Network Size (DBLP)

4.4 Efficiency Results We compare the running
time of the RankedReplace and BayesTracebackmethods
with that of the three baseline methods. Figure 7
shows the efficiency result for the DBLP data set.
The number of authority nodes k is varied from 20
to 100 on the X-axis, whereas the running time is
illustrated on the Y -axis. The Peer-Influence approach
is the most inefficient, and its running time increases
rapidly with the number of authority nodes. The
BayesTraceback algorithm, on the other hand, is very
efficient, though the Degree Discount IC algorithm
is the fastest. For k = 60, the running time of
the RankedReplace, BayesTraceback, PageRank, Degree
Discount IC and Peer-Influence methods are 3904,
343, 104, 71 and 50743 seconds respectively. The
running times for the last.fm data set are illustrated in
Figure 8. For k = 60, the running time of the Ranked-
Replace, BayesTraceback, PageRank, Degree Discount
IC and the Peer-Influence method are 29265, 628, 301,
105 and 98930 seconds respectively.Thus, the Peer-
Influence method is two orders of magnitude slower
than our two methods. Also, the BayesTraceback
method is an effective alternative to the RankedReplace

 5

 50
 100

 1000
 2000
 4000

 10000

 200000 300000 400000 500000 600000 700000 800000

R
U

N
N

IN
G

 T
IM

E
 (

SE
C

)

n

RANKED-REPLACE
BAYES TRACEBACK

PAGERANK
PEER-INFLUENCE

DEGREE DISCOUNT IC

Figure 14: Efficiency vs. Network Size (last.fm)
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Figure 15: Efficiency vs. Network Size (Twitter)

method, while maintaining a significantly high level of
effectiveness.

Besides, the time requirement for the BayesTrace-
backmethod does not vary much with respect to k. This
is because a fixed fraction of the nodes are discarded in
each iteration, and the number of iterations for conver-
gence of this method is inversely proportional to logn.
The Ranked-Replace method is a greedy approach and
it does not follow any specific pattern with respect to
k. However, the running time of the Degree Discount
IC is proportional to k [5]. We note that, in the Twit-
ter dataset (Figure 9), the BayesTraceback approach is
more efficient than the Degree Discount IC heuristic for
higher values of k. For example, when we set k = 80, the
running times of the Ranked-Replace, BayesTraceback,
PageRank, Degree Discount IC and the Peer-Influence
methods are 40225, 275, 1001, 362 and 312345 seconds
respectively.

4.5 Robustness and Scalability with increasing
Network Size Our goal in this section is to test the
robustness and scalability of the method with increas-
ing network size. This will show the effectiveness of the
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Figure 16: Maximum Aggregate Flow for Particular
Target Nodes (DBLP)
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Figure 17: Running Time to Find Authority Set for
Particular Target Nodes (DBLP)

method with different network sizes, and also the scal-
ability of the method. In order to obtain networks of
increasing sizes, we randomly deleted nodes (and their
incident edges from the data set), and tested the algo-
rithm over networks of increasing size. We set k, the
number of authority nodes, as 20. We provide results
on the effectiveness and efficiency for increasing number
of nodes.

Figure 10 shows the variation of the maximum
information spread with increasing number of nodes
for the DBLP data set. The total flow value initially
increases with the number of nodes, because the full
benefit of multiple points of information release in
small networks is not realized. On the other hand,
if the networks are too large, then the information
spread may get sufficiently damped in a few iterations.
Therefore, the flow value increases relatively fast up
to the value of n = 300, 000 for both the Ranked-
Replace and BayesTraceback methods, and then levels
off. The Ranked-Replace and BayesTraceback method
both outperform the baseline approaches by a high
margin for all values of n. This suggests that the
method is extremely robust over networks of different

sizes. Figure 11 shows the corresponding results for
last.fm data set. As in the case of the DBLP data
set, the expected aggregate flow for the Ranked-Replace
and BayesTraceback methods are much higher than
that of Degree Discount IC, PageRank and the Peer-
Influence methods over the entire range of possible
network sizes. We plot the expected aggregate flow for
different network sizes for the case of the Twitter data
set in Figure 12. The results are similar to the case
of the other two data sets when the number of nodes
is less than 1, 000, 000. However, for n greater than
1, 000, 000, the Degree Discount IC heuristic performs
slightly better than the BayesTraceback method.

Figure 13 illustrates the running time scalability
with increasing number of nodes for the DBLP data
set. For the BayesTraceback method, the running time
does not vary much with respect to the number of nodes
since the number of iterations increases only logarithmi-
cally with the number of nodes. As observed earlier, it
is slower than the Degree Discount IC method but sig-
nificantly faster than either the RankedReplace or the
Peer-Influence methods. For small values of the num-
ber of nodes n, the Peer-Influence approach is slightly
faster than the Ranked-Replace method; however, the
former does not scale well and is much slower than
the Ranked-Replace method for larger networks. For
n = 500, 000 or higher, the Peer-Influence approach re-
quires significantly more time than the Ranked-Replace
technique. The results for the last.fm data set show
similar trends, as is evident from Figure 14. The results
for the Twitter data set are illustrated in Figure 15.
In this case, the running times of Degree Discount IC
and BayesTraceback algorithms are comparable. These
algorithms are also significantly faster than the other
two methods.

4.6 Targeted Flow Authorities We also tested our
two schemes for the case when we determined the flow
authorities for a particular set of target nodes. For
the DBLP collaboration graph, we randomly selected
a set of 1000 target nodes and determine the corre-
sponding authority nodes which will maximize the flow
within that target set. Figure 16 illustrates the ex-
pected aggregate information spread within this tar-
get set (for different number k of authority nodes) us-
ing the modified Ranked-Replace and BayesTraceback
methods. Figure 17 illustrates the corresponding run-
ning time to find the authority nodes. In this case, we
do not show the baseline methods because they can-
not be easily modified when particular nodes are tar-
geted. Thus, our scheme also provides better function-
ality than the baseline methods. It is evident that the
modified BayesTraceback method performs almost as



well as the modified Ranked-Replace technique; how-
ever it is significantly faster in terms of running time.
Unlike the RankedReplace method, the running time
of the BayesTraceback method is relatively insensitive
to the number of authority nodes k. Therefore, the
BayesTraceback method provides the best tradeoffs be-
tween quality and efficiency.

5 Conclusions and Summary

In this paper, we designed an algorithm for the deter-
mination of optimal flow authorities in social networks.
We designed two algorithms for the task, which corre-
spond to the RankedReplace and BayesTraceback algo-
rithms. We presented experimental results illustrating
the effectiveness of our methods on a number of social
networking and collaboration graphs. Our results show
that the techniques proposed in this paper are much
more effective than the currently available techniques.
While the RankedReplace technique is slightly more ef-
fective than the BayesTraceback method, the latter is
significantly more efficient. Furthermore, it is much su-
perior to the baseline methods in terms of effectiveness.
The BayesTraceback algorithm provides the best trade-
off between quality and efficiency.
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