
1

Multi-relation Graph Summarization
XIANGYU KE, Nanyang Technological University, Singapore

ARIJIT KHAN, Nanyang Technological University, Singapore
FRANCESCO BONCHI, ISI Foundation, Italy and Eurecat, Spain

Graph summarization is beneficial in a wide range of applications, such as visualization, interactive and

exploratory analysis, approximate query processing, reducing the on-disk storage footprint, and graph

processing in modern hardware. However, the bulk of the literature on graph summarization surprisingly

overlooks the possibility of having edges of different types. In this paper, we study the novel problem of

producing summaries of multi-relation networks, i.e., graphs where multiple edges of different types may

exist between any pair of nodes. Multi-relation graphs are an expressive model of real-world activities, in

which a relation can be a topic in social networks, an interaction type in genetic networks, or a snapshot in

temporal graphs.

The first approach that we consider for multi-relation graph summarization is a two-step method based on

summarizing each relation in isolation, and then aggregating the resulting summaries in some clever way to

produce a final unique summary. In doing this, as a side contribution, we provide the first polynomial-time

approximation algorithm based on the 𝑘-Median clustering for the classic problem of lossless single-relation

graph summarization.

Then, we demonstrate the shortcomings of these two-step methods, and propose holistic approaches,

both approximate and heuristic algorithms, to compute a summary directly for multi-relation graphs. In

particular, we prove that the approximation bound of 𝑘-Median clustering for the single relation solution

can be maintained in a multi-relation graph with proper aggregation operation over adjacency matrices

corresponding to its multiple relations. Experimental results and case studies (on co-authorship networks and

brain networks) validate the effectiveness and efficiency of the proposed algorithms.

CCS Concepts: • Information systems→ Data mining; Network data models.

Additional Key Words and Phrases: graph summarization, multi-relation graph, approximation, k-median

ACM Reference Format:
Xiangyu Ke, Arijit Khan, and Francesco Bonchi. 2021. Multi-relation Graph Summarization. ACM Trans. Knowl.
Discov. Data. 1, 1, Article 1 (January 2021), 29 pages. https://doi.org/10.1145/3494561

1 INTRODUCTION
Fueled by the unprecedented growth rate of knowledge graphs, social networks, and Internet-of-

Things
1
, the problems of storing, managing, and mining very large graph data have received an

enormous deal of attention in the data mining research community in recent years. At the current

1
The Knowledge and Action Graph of Microsoft has 21 billion facts, 18 billion action links, and over five billion relationships

between more than one billion people, places, and things [35]. Facebook has 800 million active users [49]. Graph-of-Things

(GoT), which is a live knowledge graph system for Internet-of-Things, has been adding millions of records per hour, and

roughly about 10 billion RDF triples per month [59].

Authors’ addresses: Xiangyu Ke, xiangyu001@ntu.edu.sg, Nanyang Technological University, Singapore; Arijit Khan,

arijit.khan@ntu.edu.sg, Nanyang Technological University, Singapore; Francesco Bonchi, francesco.bonchi@isi.it, ISI

Foundation, Italy and Eurecat, Spain.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1556-4681/2021/1-ART1 $15.00

https://doi.org/10.1145/3494561

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3494561
https://doi.org/10.1145/3494561

1:2 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

rate of data volume increase, in fact, it is becoming highly impractical to store, manage, process,

and visualize such big graphs. Graph summarization alleviates these issues by producing a concise

graph representation (i.e., summary) that still can be meaningfully explored and queried. Graph

summarization has shown to be beneficial in a wide range of applications, such as visualization,

interactive and exploratory analysis, approximate query processing, reducing the on-disk storage

footprint, graph embedding, and graph processing in modern hardware [7, 44, 48, 53, 83].

Surprisingly, little attention has been paid to the problem of summarizing multi-relation graphs.

In real-world, entities are often correlated in multiple ways, either explicitly or implicitly. For

instance, BioGRID (thebiogrid.org) describes seven different types of genetic interactions between

genes in Homo Sapiens. STRING (string-db.org) models protein-to-protein interactions with six

types of correlations statistically learned from existing protein databases, revealing that most

protein interactions are associated with at least two types of correlations. Other applications where

multiple relations exist between entities include social and financial networks [28], urban and

transportation systems [14], ecology research [72], and recommender systems [36, 54, 81].

When multiple relations exist between entities, data is modeled as multi-relation networks (also
known as multi-layer, multiplex, or multi-dimensional networks) [25]. This graph model has been

attracting increasing research interest in graph analytics, such as in shortest path finding [85], core

decomposition and densest subgraph discovery [28, 29], node clustering [8], frequent subgraphs

mining [82], and in social networks analysis [23], just to mention a few.

In this paper, we study, for the first time, the problem of multi-relation graph summarization.

Before discussing the contributions of our work and how they collocate in the state of the art, we

need to provide some background notions and formally define the problems.

1.1 Background and related work
We consider graph summarization obtained by aggregating nodes into supernodes. In particular, we

adopt lossless summarization as introduced by Navlakha et al. [57], for simple undirected single-

relation graphs. Given a graph 𝐺 = (𝑉 , 𝐸), a lossless summary S = ⟨𝐺𝑆 , C𝑆 ⟩ consists of a summary
graph 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆) and a set of edge corrections C𝑆 = ⟨C+

𝑆
, C−
𝑆
⟩, where:

• 𝑉𝑆 = {𝑆1, . . . , 𝑆𝑘 } is the set of supernodes inducing a partition of 𝑉 , i.e.,
⋃𝑘
𝑖=1 𝑆𝑖 = 𝑉 and⋂𝑘

𝑖=1 𝑆𝑖 = ∅;
• 𝐸𝑆 ⊆ 𝑉𝑆 ×𝑉𝑆 is a set of superedges between supernodes (possibly including self-loops);

• C+
𝑆
⊆ 𝐸 is the set of edges to be inserted to reconstruct𝐺 , while C−

𝑆
⊆ (𝑉 ×𝑉) \ 𝐸 is the set of

edges to be deleted.

The summarization is lossless because given the summary S, we can reconstruct the original graph

exactly, by (1) “exploding” each superedge (𝑈 ,𝑊) ∈ 𝐸𝑆 , i.e., creating an edge (𝑢,𝑤) for each pair of

nodes 𝑢,𝑤 ∈ 𝑈 ×𝑊 , (2) adding each edge in C+
𝑆
, and (3) removing the edges in C−

𝑆
. More formally:

𝐸 = {(𝑢,𝑤) | 𝑢 ∈ 𝑈 ,𝑤 ∈𝑊, (𝑈 ,𝑊) ∈ 𝐸𝑆 } ∪ C+
𝑆
\ C−

𝑆
. An example of lossless summary is provided

in Figure 1.

The problem studied by Navlakha et al. [57] is to find the smallest possible summary of an input

graph.

Problem 1 (Lossless-Sum [57]). Given a simple, undirected, graph𝐺 = (𝑉 , 𝐸), find its smallest
lossless summary S = ⟨𝐺𝑆 , C𝑆 ⟩, i.e., the one that minimizes |𝐸𝑆 | + |C𝑆 |.
The cost of storing the mapping from nodes in 𝑉 to supernodes in 𝑉𝑆 is disregarded in the

objective function [57], since it remains constant across different summaries, i.e., O(|𝑉 |). The
problem can be seen through the lenses of the Minimum Description Length (MDL) principle [65],

which states that the best theory to infer from a set of data is the one which minimizes the sum of

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

thebiogrid.org
string-db.org

Multi-relation Graph Summarization 1:3

� �

� �

�

�

� � � �
− (� �)	

	

Fig. 1. A simple graph and its summary.

the size of the theory and the size of the data when encoded through the theory. Here, the data is

the input graph 𝐺 , the theory is the summary graph represented by supernodes 𝑉𝑆 and superedges

𝐸𝑆 , and the correction list C𝑆 is the encoding of the data with regards to the theory. For instance, in

the example in Figure 1 the cost of the summary is 2 (1 superedge + 1 correction), against a cost of

5 of the original graph (i.e., 5 edges).

As observed in [57], a summary is entirely defined by the partitioning of nodes into supernodes.

In fact, once provided such partitioning, superedges can be deterministically decided by simply

checking whether they induces advantages w.r.t. the summary cost or not. Finally, once decided

the superedges, the corrections are straightforwardly identified. Therefore, Problem 1 is essentially

a graph partitioning problem: given a single-relation graph 𝐺 with𝑚 nodes and 𝑛 edges, there are∑𝑛
𝑘=1

(
𝑛
𝑘

)
= O(2𝑛) possibilities to partition these 𝑛 nodes into supernodes 𝑉𝑆 . To solve it, Navlakha

et al. [57] proposed a simple greedy agglomerative heuristic without quality guarantee. They also

studied a lossy version of the problem. To the best of our knowledge, the computational complexity

of Problem 1 has not been addressed in the literature [57, 71]. We keep the problem of investigating

the computational complexity of Problem 1 open here, and consider it as an interesting future work.

A similar approach is followed by LeFevre and Terzi [50] who study summaries obtained by

aggregating nodes into supernodes. However, they keep on each superedge the information about

how many original edges it represents (but not which ones): this is clearly a lossy summarization.

Their objective is then to find the summary minimizing the loss for a given number 𝑘 of allowed

supernodes (which implicitly controls the compression rate). The loss is represented by the recon-
struction error, i.e., the difference between the original graph and the probabilistic graph that one

can reconstruct form the summary. Similar to [57], [50] propose a simple greedy agglomerative

heuristic with no quality guarantee. Later Riondato et al. [63, 64] propose the first polynomial-time
approximation algorithm for the problem of [50]. In this paper we show that, following a similar

intuition, we can achieve the first polynomial-time approximation algorithm for the classic lossless

summarization problem of [57].

1.2 Multi-relation graph summarization
In this work, we extend the notion of lossless summarization over multi-relation graphs. An

undirected, multi-relation graph 𝐺 is a triplet (𝑉 , 𝐸, 𝑅), where 𝑉 is a set of 𝑛 nodes, 𝑅 is a set of 𝑞

relations, and 𝐸 ⊆ 𝑉 ×𝑉 × 𝑅 is a set of𝑚 undirected edges. Therefore, in a multi-relation graph,

each edge is a triplet: e.g., an edge between nodes 𝑢 and 𝑣 in relation 𝑟 ∈ 𝑅 is represented by (𝑢, 𝑣, 𝑟).
A summary S = ⟨𝐺𝑆 , C𝑆 ⟩ is defined as in the single-relation case, the only difference is that the

correction edges in C𝑆 are triplets and also superedges are now triplets, i.e., 𝐸𝑆 ⊆ 𝑉𝑆 ×𝑉𝑆 × 𝑅.

Example 1. Figure 2 provides an example of a multi-relation graph and its summary. The graph
on the left-hand side is defined over 3 relations, contains 5 nodes and 16 edges. The summary on the
right-hand side is obtained by grouping {𝑎, 𝑐} and {𝑏, 𝑑} as two supernodes and keeping {𝑒} as a

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

� �

�

�

�

�

�

r�

r�

r	

� �
�

�� ��

������

� �

Fig. 2. A multi-relation graph and its summary.

� � � �

�

��	

�
− (� �)

� � � �

��

�

� �

� �

���

(�) (�) (�)

− (� �)
�� ����������

Fig. 3. The individual summary for each relation in Figure 2(a).

supernode over all 3 relations. No correction is required here. The cost of such summary is thus 6 (given
by 6 superedges + 0 correction), while the cost of the original graph was 16 (i.e., 16 edges).

The problem we study in this article is formally defined as follows.

Problem 2 (Lossless-Sum-Multi). Given a multi-relation graph 𝐺 = (𝑉 , 𝐸, 𝑅), find its smallest
lossless summary S = ⟨𝐺𝑆 , C𝑆 ⟩, i.e., the one that minimizes |𝐸𝑠 | + |C𝑆 |.

In many applications one might be interested in a summary with a predefined number 𝑘 of

supernodes. Moreover, one might solve Problem 2 by using an algorithm which takes in input the

number of supernodes 𝑘 , with a wrapper for selecting the optimal value of 𝑘 . Therefore, in this

article we also tackle the following problem.

Problem 3 (𝑘-Lossless-Sum-Multi). Given a multi-relation graph 𝐺 = (𝑉 , 𝐸, 𝑅) and 𝑘 ∈ N,
find the lossless summary S = ⟨𝐺𝑆 , C𝑆 ⟩, such that 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 , 𝑅) and |𝑉𝑆 | = 𝑘 , that minimizes
|𝐸𝑆 | + |C𝑆 |.

1.3 Why not keeping an individual summary for each relation?
Figure 3 shows the optimal summary for each relation of the multi-relation graph in Figure 2(a).

One could argue that storing these three individual summaries would also serve as a lossless

summarization for the given multi-relation graph. However, this is not a good option due to two

reasons: (1) The optimal multi-relation summary in Figure 2(b) provides us more insights about the

input network. For example, by only looking at the individual summaries in Figure 3, we cannot

easily determine the fact that the nodes in set {𝑎, 𝑐} are fully connected with the nodes in set

{𝑏, 𝑑} via all relations. However, the nodes within each of these sets interact with themselves in

different ways. Thus, it is better to characterize them as two strongly connected supernodes with

different self-loops as in the multi-relation summary in Figure 2(b). (2)More storage is required for

maintaining all individual summaries, because each individual summary might require storing of a

different nodemapping (i.e., the mapping from nodes in𝑉 to supernodes in𝑉𝑆). This is demonstrated

in our experiments (§ 8.2).

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:5

1.4 Contributions and roadmap
The considerations above also suggest a natural two-step approach to multi-relation graph sum-

marization: first summarize the input graph one relation at a time, then aggregate the various

summary graphs into a single summary. We follow this intuition and, as a first solution, we develop

such a two-step approach. For both steps we compare different methods, producing several baseline

two-step algorithms.

Among the algorithms we design for the first step, we also consider a 𝑘-median algorithm to

produce single-relation summary, inspired by [63]. For this algorithm we prove approximation

guarantees: this is, to the best of our knowledge, the first polynomial-time approximation algorithm
for the classic lossless graph summarization problem of [57].

Finally we show, by means of an example, an effectiveness limitation suffered by the two-

steps approach. Therefore, following the intuition behind the example, we move on to design

holistic approaches, which are experimentally shown to be faster and more accurate than the two-

step approaches. Moreover, our holistic 𝑘-Median+ algorithm maintains the same approximation

guarantee for multi-relation graph summarization (§ 5). Our final Hybrid algorithm combines

the Greedy method [57] and the approximate solution 𝑘-Median, to provide the most compact

summary in practice (§7).

Our main contribution is to initiate investigation into multi-relation graph summarization.

Besides, this paper achieves the following contributions:

• We revise the classic single-relation graph lossless summarization problem, and provide the

first polynomial-time approximation algorithm (§3).

• We design basic two-step algorithms, which first generate a lossless summary for each

relation, then properly aggregate them to obtain one uniform summary. We also highlight

the limits of this approach (§4).

• We propose holistic algorithms for more compact and efficient summary generation. Our

holistic 𝑘-Median+ algorithm maintains the same approximation guarantee for multi-relation

graph summarization (§5).

• We combine the traditional Greedy method [57] and the approximation soluton 𝑘-Median as

the final proposed algorithm Hybrid, which empirically produces the most compact summary

(§7).

• Our empirical evaluation on four real-world networks confirms that our holistic algorithms

can produce more compact summaries and are faster than the two-step approaches (§8).

• Real-world applications on visualization, classification, and query processing demonstrate

the effectiveness and efficiency of our proposal (§9).

Next section cover additional related literature. Section 10 concludes the paper and discusses

future work.

2 OTHER RELATEDWORK
Graph summarization has been used for a wider range of problems related to static plain graphs

[9–11, 19, 20, 39, 47, 62], static attributed graphs [18, 68, 75, 84], dynamic and stream graphs

[1–3, 22, 27, 32, 43, 67, 69, 73, 78, 86], probabilistic and distributed graph summarization [33, 52].

We refer the reader to excellent surveys and tutorials [7, 17, 44, 48, 51, 53, 76]. Regardless this

wide literature, no prior work has tackled graph summarization in the multi-relation graph setting.
Therefore, the rest of this section covers the literature about single-relation graph summarization. In

Section 1.1, we already reviewed the most important related papers which constitute the background

for our work. Table 1 collocates our contribution within the most important related work.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

Table 1. Characterization of the most related papers.

Paper Lossless Multi-Relation Approx. Guarantees
[57] ✓
[50]

[63] ✓
[5] ✓
[71] ✓

this work ✓ ✓ ✓

Aggregation-based graph summary. Notable techniques under this category are pattern mining

and community based summarization [13, 46, 66], supernode and edge-correction (thus lossless)

[57, 71], supernode and reconstruction-error (thus lossy) [5, 50, 63]. Supernode based aggregation

methods [5, 50, 57, 63, 71] are most similar to ours and are summarised in Table 1.

Very recently, SSumM [38] proposes lossy graph summarization to minimize the reconstruction

error, however the constraint is on size of the summary graph in bits (and not on the number

of supernodes as in [50, 63]). Notice that our focus in this work is lossless summarization over

multi-relation graphs, which is different from [38]. We experimentally demonstrate the summary

cost in bits based on various storage formats in § 8.

Web graph and social networks compression. Boldi and Vigna [10] show that web graphs are

compressible down to almost two bits per edge. Chierichetti et al. [19] use shingle ordering instead

of lexicographical ordering of web pages, in order to tackle social networks. Finding an order of

nodes, which captures the “regularity” of the network, is a challenging problem. Boldi et al. [9]

introduce a layered label propagation algorithm for reordering very large graphs. Other interesting

works include [11, 20, 39, 47, 62]. These methods focus on reducing the number of bits needed to

encode an edge, and none compute graph summaries.

Attribute-based graph summary. Nodes and edges of many real-world graphs are annotated

with attributes. Hence, there exist graph summarization works considering both topology and

semantics of the node and edge attributes [45]. FUSE [68] is a functional summarization technique

for protein interaction networks, and this helps comprehending high-level functional relationships

in disease-related PPI networks such as Alzheimer’s disease network. SNAP [75] and OLAP [18]

allow interactive summarization at various resolutions over heterogeneous networks. Topology

and attribute-based summarization of a large collection of small graphs (e.g., chemical compounds)

and its application in constructing data-driven visual graph query interfaces are discussed in [84].

These methods are not directly comparable to ours, since our summarization deals with the graph

structure. For example, a superedge in [75] exists between a pair of supernodes if any node in a

supernode has at least one edge to the nodes in the other supernodes. However, in our problem

formulation, we consider the exact number of edges between them.

Application-oriented graph summary. These are graph summarization techniques for efficient

query answering and pattern mining, such as reachability, shortest path, and pattern matching

queries [26, 77, 87], eigenvector centrality, degree, and adjacency queries [50], neighborhood

query [55], keyword search [80], distributed graph computation [40], graph mining [16, 21, 49, 56],

information cascade and influential node discovery [60, 61, 70]. We demonstrate applications of

our multi-relation graph summary in efficient query processing in §9.

Other related graph computation. Related graph analytics problems include sampling [34],

sparsification [6], clustering and community detection [4, 58, 79], graph embedding [37], partitioning

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:7

[41], and dense subgraph mining [31]. As discussed in [37, 44, 51], these problems are different

from graph summarization.

3 SINGLE-RELATION GRAPH SUMMARIZATION: 𝐾-MEDIAN CLUSTERING
In this section, we provide an approximation algorithm for single-relation graph summarization

problem based on 𝑘-Median clustering. The 𝑘-Median clustering is performed on the rows of the

adjacencymatrix𝐴𝐺 of the input graph𝐺 , to create𝑘 supernodes. In particular, the goal of𝑘-Median
clustering is to find a set of 𝑘 centers x = {𝑥1, 𝑥2, . . . , 𝑥𝑘 } that minimizes the 𝑘-Median cost for

the node set 𝑉 ⊆ R𝑛 . The 𝑘-median cost is defined as

∑
𝑣∈𝑉 𝑑 (𝑣, x), where 𝑑 (𝑣, x) = min𝑥 ∈x 𝑑 (𝑣, 𝑥).

Here, 𝑑 (𝑣, 𝑥) denotes the Euclidean distance between two points (i.e., nodes) 𝑣, 𝑥 ∈ R𝑛 . The nodes
are then grouped into 𝑘 supernodes based on their nearest cluster center. Notice that the 𝑘-summary

is a graph summary with exactly 𝑘 supernodes. After obtaining the supernode partitioning, we

include superedges and correction list as discussed in § 1.1. The time complexity of 𝑘-Median is

O(𝑚 + 𝑛𝑘 log𝑛) [63].
We prove that the 𝑘-Median algorithm guarantees 16-approximation to the optimal solution for

the Lossless-Sum problem with 𝑘 supernodes. In the previous study [63], the 𝑘-Median clustering

based technique was applied to generate approximated lossy summary. We bridge the gap between

the reconstruction error (Equation 1) in lossy summary and the correction list size (Equation 3) in

lossless summary, which is our problem. This enables reusing the same technique in a different

problem setting (i.e., our problem), and it achieves a different approximation factor from that in

[63]. Here, we only consider the number of correction edges |C𝑆 |, since the number of superedges

|𝐸𝑠 | can be bounded with O(𝑘2) for a 𝑘-summary. Our proof is built on top of a theoretical result by

Riondato et al. [63], that establishes 8-approximation guarantee for a similar 𝑘-Median algorithm,

with respect to the quality of a lossy summarization, known as the 𝑙𝑝 reconstruction error as below. For
a lossy summarization [5, 50, 63], only the graph summary 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆) is created; no additional

correction list is stored. The summary𝐺𝑆 is a complete graph in this case, including all self-loops, i.e.,

𝐸𝑆 = 𝑉𝑆 ×𝑉𝑆 . Given a summary, the graph is approximately reconstructed by the expected adjacency

matrix, 𝐴
↑
𝐺𝑆

, which is an (𝑛 × 𝑛) matrix with 𝐴
↑
𝐺𝑆

(𝑢,𝑤) = |𝐸𝑈𝑊 |
|𝑈 | |𝑊 | . Here,𝑈 ,𝑊 are supernodes in 𝑉𝑆

such that 𝑢 ∈ 𝑈 and𝑤 ∈𝑊 , and 𝐸𝑈𝑊 is the set of edges that actually exist between 𝑈 and𝑊 in

the original graph 𝐺 . The quality of the summary, called the 𝑙𝑝 reconstruction error, is measured

by a norm of difference between the input adjacency matrix 𝐴𝐺 and the reconstructed adjacency

matrix 𝐴
↑
𝐺𝑆

.

The 𝑙𝑝 reconstruction error (𝑅𝐸𝑝) of a summary 𝐺𝑆 for a graph 𝐺 is:

𝑅𝐸𝑝 (𝐺,𝐺𝑆) =
𝑝

√√√ |𝑉 |∑︁
𝑢=1

|𝑉 |∑︁
𝑤=1

(|𝐴𝐺 (𝑢,𝑤) −𝐴↑
𝐺𝑆

(𝑢,𝑤) |)𝑝 (1)

In this paper, we use 𝑝 = 1, that is, the 𝑙1 reconstruction error. From [63], we have the following

theorem.

Theorem 1. Let 𝐺𝑆# be the 𝑘-summary induced by the 𝑘-Median partitioning of the rows of
𝐴𝐺 , and let 𝐺𝑆+ be the optimal 𝑘-summary for 𝐺 with respect to the 𝑙1-reconstruction error. The
𝑙1-reconstruction error of 𝐺𝑆# is an 8-approximation to the best 𝑙1-reconstruction error. Formally:
𝑅𝐸1 (𝐺,𝐺𝑆#) ≤ 8 · 𝑅𝐸1 (𝐺,𝐺𝑆+).

Lemma 1. Let𝐺𝑆+ be the optimal 𝑘-summary for𝐺 with respect to the 𝑙1-reconstruction error, and let
𝐺𝑆∗ be the optimal 𝑘-summary for𝐺 with respect to the number of correction edges. The correction list
size, |C𝑆+ | of𝐺𝑆+ is a 2-approximation to the best size of correction list, |C𝑆∗ |. Formally: |C𝑆+ | ≤ 2 · |C𝑆∗ |.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

Proof. Let us denote by 𝛼𝑈𝑊 =
|𝐸𝑈𝑊 |
|𝑈 | |𝑊 | . From the definition of 𝑙1 reconstruction error in Equa-

tion 1, we get:

𝑅𝐸1 (𝐺,𝐺𝑆) =
|𝑉 |∑︁
𝑢=1

|𝑉 |∑︁
𝑤=1

|𝐴𝐺 (𝑢,𝑤) −𝐴↑
𝐺𝑆

(𝑢,𝑤) |

= 2 ·
∑︁

(𝑈 ,𝑊) ∈𝑉𝑆×𝑉𝑆

|𝑈 | |𝑊 |𝛼𝑈𝑊 (1 − 𝛼𝑈𝑊) (2)

The intuition behind this derivation is that there are |𝑈 | |𝑊 | cells corresponding to each supernode
pair (𝑈 ,𝑊) in both the original adjacency matrix 𝐴𝐺 and the reconstructed adjacency matrix

𝐴
↑
𝐺𝑆
. In 𝐴

↑
𝐺𝑆
, all such cells are filled with 𝛼𝑈𝑊 . In 𝐴𝐺 , there are 𝛼𝑈𝑊 proportion of cells having

value 1, and the rest (1 − 𝛼𝑈𝑊) proportion of cells having value 0. The subtraction results of

|𝐴𝐺 (𝑢,𝑤) −𝐴↑
𝐺𝑆

(𝑢,𝑤) | for the first group are all (1 − 𝛼𝑈𝑊), and those for the second group are all

𝛼𝑈𝑊 . Thus, we derive the second line in Equation 2.

Now in the context of lossless summary, we decide whether to keep a superedge between a pair

of supernodes (𝑈 ,𝑊) by the edge density between them. If 𝛼𝑈𝑊 > 0.5, maintaining a superedge

can result in less storage overhead of C−
𝑆
, than that of C+

𝑆
without this superedge. Suppose C𝑆 is

the correction list, then its size can be calculated as below.

|C𝑆 | =
1

2

∑︁
(𝑈 ,𝑊) ∈𝑉𝑆×𝑉𝑆

|𝑈 | |𝑊 |
{
(1 − 𝛼𝑈𝑊), 𝑖 𝑓 𝛼𝑈𝑊 > 0.5

𝛼𝑈𝑊 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3)

From Equations 2 and 3, we have:

𝑅𝐸1 (𝐺,𝐺𝑆)
|C𝑆 |

=

{
4𝛼𝑈𝑉 , 𝑖 𝑓 𝛼𝑈𝑉 > 0.5

4(1 − 𝛼𝑈𝑉), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4)

Clearly, 2 ≤ 𝑅𝐸1 (𝐺,𝐺𝑆)
|C𝑆 | ≤ 4, since 𝛼𝑈𝑉 ∈ [0, 1]. In other words,

1

4

𝑅𝐸1 (𝐺,𝐺𝑆) ≤ |C𝑆 | ≤
1

2

𝑅𝐸1 (𝐺,𝐺𝑆) (5)

Suppose 𝐺𝑆+ be the optimal 𝑘-summary for 𝐺 with respect to the 𝑙1-reconstruction error, and let

𝐺𝑆∗ be the optimal 𝑘-summary for 𝐺 with respect to the number of correction edges. Thus, we get:

|C𝑆+ | ≤
1

2

𝑅𝐸1 (𝐺,𝐺𝑆+) ⊲ by the r.h.s of Equation 5

≤ 1

2

𝑅𝐸1 (𝐺,𝐺𝑆∗) ⊲ since𝐺𝑆+ is optimal wrt 𝑅𝐸1

≤ 2 · |C𝑆∗ | ⊲ by the l.h.s of Equation 5 (6)

This completes the proof. □

Theorem 2. Let 𝐺𝑆# be the 𝑘-summary induced by the 𝑘-Median partitioning of the rows of 𝐴𝐺 ,
and let 𝐺𝑆∗ be the optimal 𝑘-summary for 𝐺 with respect to the number of correction edges. The
correction list size, |C𝑆# | of𝐺𝑆# is a 16-approximation to the best size of correction list, |C𝑆∗ |. Formally:
|C𝑆# | ≤ 16 · |C𝑆∗ |

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:9

Proof. We denote by 𝐺𝑆+ the optimal 𝑘-summary for 𝐺 with respect to the 𝑙1-reconstruction

error. Next, we derive the follows.

|C𝑆# | ≤
1

2

𝑅𝐸1 (𝐺,𝐺𝑆#) ⊲ by the r.h.s of Equation 5

≤ 4 · 𝑅𝐸1 (𝐺,𝐺𝑆+) ⊲ by Theorem 1

≤ 4 · 𝑅𝐸1 (𝐺,𝐺𝑆∗) ⊲ since𝐺𝑆+ is optimal wrt 𝑅𝐸1

≤ 16 · |C𝑆∗ | ⊲ by the l.h.s of Equation 5 (7)

Hence, the proof is completed. □

Note that in §6, we discuss several empirical methods for finding a suitable 𝑘 for the 𝑘-Median
method, which helps it adapt to the general Lossless-Sum problem.

4 MULTI-RELATION GRAPH SUMMARY: BASELINE METHODS
In this section, we first present several straightforward baselines for the lossless summarization of

multi-relational graphs, then demonstrate how they suffer from effectiveness issues, which will be

instrumental in developing a more accurate and scalable solution in §5.

Our baseline algorithms follow a two-step approach:

(1)We explore the input graph for one relation at a time, and generate a lossless summary for

each of them.

(2) The summaries across relations are properly aggregated to obtain one uniform summary.

In the first step, our problem is same as the Lossless-Sum problem. Given a set of summaries

{S1,S2, ...,S𝑞}, each for a specific relation, our next target is to find a single summary, i.e., a

partition into supernodes, that agrees as much as possible with the 𝑞 individual summaries.

In addition to the 𝑘-Median approach introduced in §3, we briefly revisit some widely-used

graph summarization techniques for the Lossless-Sum problem. To the best of our knowledge,

all existing algorithms [57, 71] for the Lossless-Sum problem are heuristic in nature, without any

theoretical guarantee on the summary size. In §4.2, we tackle the problem of summary aggregation

and provide several methods to aggregate the individual summaries across relations. Finally, in

§4.3 we discuss potential limitations of these two-step baseline algorithms.

4.1 Single-relation graph summarization algorithms
We first revisit Greedy and Randomized algorithms from [57]. Then, we discuss an advanced

algorithm, SWeG, with similar idea in recent literature [71]. An example is provided to demonstrate

these algorithms.

Greedy algorithm. TheGreedy algorithm [57] is a heuristic, bottom-up approach. It first considers

every node in the input graph as a supernode, and iteratively merges the best pair {𝑢,𝑤} with the

maximum reduction in summary cost. The general workflow of Greedy algorithm is given below:

(1) It computes the potential cost reduction for all pairs of nodes in the input graph 𝐺 which are

2-hops apart, and records those pairs which are positive. (2) The best pair of nodes {𝑈 ,𝑊 } with
highest cost reduction is merged into a new node𝑊 . (3) Delete cost reduction records about 𝑈

or𝑊 for all the nodes which is within 2-hops to 𝑈 or𝑊 , and compute their cost reduction to the

new supernode 𝐻 . (4) Update the cost reduction between nodes which are neighbors of 𝐻 (𝐼 is a

neighbor of 𝐻 if there exists any edge {𝑎, 𝑏} ∈ 𝐸, 𝑎 ∈ 𝐻 , 𝑏 ∈ 𝐼). (5) Repeat (2)-(4) until no positive

cost reduction exists.

Notice that Greedy directly works with the Lossless-Sum problem. It can easily handle the

additional input 𝑘 for the number of supernodes by (a) terminating earlier when the number of

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

� � � �

���

− (� �)

� �

� �

��

� �

�

�
(�) (�) (�)

� � � �
0 1 0 1
1 0 1 1

1 1 1 0
0 1 0 1

�
�
�
�

Fig. 4. Example for single-relation graph summary methods.

supernodes becomes 𝑘 (even before satisfying condition (5)), or (b) force to merge the pairs with

less “sacrifice" in summary quality (i.e., negative cost reduction) after (5), if a smaller 𝑘 is required.

Let 𝑑𝑎𝑣 be the average degree for each node, the time complexity of Greedy is O(𝑑3𝑎𝑣 (𝑑𝑎𝑣 + log𝑛 +
log𝑑𝑎𝑣)) [57].
Randomized algorithm. Comparing with the basic Greedy algorithm, the Randomized approach

reduces the high computation overhead, by sacrificing the compression quality. It, in fact, has

the worst performance in compression based on our experimental results in § 8. In each step, it

randomly selects an unexplored supernode𝑈 , and computes cost reduction with all its unexplored

neighbors. If no positive reduction exists, 𝑈 is marked explored, and the algorithm continues.

Otherwise, 𝑈 is merged with its best neighbor𝑊 (i.e., having the highest reduction) into a new

node 𝐻 . 𝑈 and𝑊 are removed, and 𝐻 is now unexplored. The algorithm stops when all nodes are

explored. The complexity of the Randomized algorithm is O(𝑑3𝑎𝑣) [57].
SWeG. The most recent algorithm, SWeG [71], is an advanced version of the Randomized algorithm
with further efficiency improvement. It first divides the graph into smaller disjoint groups. Each

node group contains supernodes with similar connectivity, based on the concept of the shingle

of a node 𝑢, which is defined as: 𝑓 (𝑢) = min𝑤∈𝑁𝑢 𝑜𝑟 𝑤=𝑢 ℎ(𝑤). ℎ is a bijective hash function

ℎ : 𝑉 → {1, ..., |𝑉 |}, and 𝑁𝑣 is the set of neighbors of node 𝑣 in the input graph 𝐺 . Two nodes have

the same shingle with probability equal to the Jaccard similarity of their neighbor sets [12]. The

shingle of a supernode 𝑈 is extended to be: 𝐹 (𝑈) = min𝑢∈𝑈 {𝑓 (𝑢)}. Two supernode 𝑈 ≠𝑊 ∈ 𝑉𝑆
are more likely to have the same shingle if the nodes in𝑈 and those in𝑊 share similar connectivity.

After the nodes are partitioned into groups, a similar procedure as Randomized is conducted within

each group to merge supernodes. Moreover, this allows distributed implementation. The whole

pipeline (grouping nodes, and merging nodes within each group) repeats 𝑇 times, each time with a

different, randomly generated hash function ℎ. ℎ can be easily produced by shuffling {1, ..., |𝑉 |}.
The dividing step takes O(|𝐸 |) running time. The cost of the merging step is same as that of the

Randomized algorithm: O(𝑑3𝑎𝑣), but here 𝑑𝑎𝑣 may be smaller since it operates on a smaller graph. If

we only allow sequential implementation and repeat 𝑇 times, it becomes O(𝑝𝑇𝑑3𝑎𝑣), where 𝑝 is the

number of disjoint groups.

Example 2. Figure 4 provides an example for single-relation graph summarization algorithms.
Given the example graph on the left, Greedy produces the summary 𝑆𝐺𝐷 . At the beginning, the cost of
each node equals to the number of edges incident to this node. Merging node 𝑎 with 𝑐 , or merging node
𝑏 with 𝑑 both lead to 50% cost reduction, regardless of order. Then we achieve an intermediate result,
which is the same as 𝑆𝐾𝑀 . The cost of the superedge between supernodes 𝑎𝑐 and 𝑏𝑑 are counted twice
from both side, which encourages Greedy to continue merging. This demonstrates that Greedy tends

to result in bigger-size supernodes. Though, this will not cause any issue in this simple example, we
later demonstrate in §4.3 that this may create trouble in aggregated summary finding (i.e., the second

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:11

step of baseline approaches). 𝑆𝐾𝑀 is the summary for 𝑘-Median when 𝑘 = 2, which can be easily
obtained with the provided adjacency matrix. If 𝑘 is set to be 1, 𝑘-Median will return same result as
𝑆𝐺𝐷 . The result of the Randomized algorithm depends on the random order of node selection. In this
example, however, the final result of Randomized would also be 𝑆𝐺𝐷 . The costs of these two summaries
are same: 𝑆𝐺𝐷 has 1 superedge and 1 correction edge, while 𝑆𝐾𝑀 has 2 superedges.

4.2 Summary aggregation
The second phase of our baseline approach is aggregating summaries across individual relations to

obtain one uniform summary for the entire multi-relation graph. We formally define this problem

following the well-known clustering aggregation problem [30]. Both summary and clustering

techniques partition the nodes (objects) into groups, and the aggregation operation further aims at

finding a new uniform partition with minimum total disagreements to the current partitions.

A summary S corresponds to a partition of 𝑛 nodes. The partition size 𝑘 can either be given as

an input (§ 3), or can be automatically decided by the algorithm (§ 4.1). For any pair of nodes (𝑢, 𝑣),
the indicator function 𝐼S (𝑢, 𝑣) returns 1 if and only if 𝑢 and 𝑣 are located in the same supernode

under summary S (0 otherwise). Then, we have 𝐷𝑢,𝑣 (S𝑖 ,S𝑗) (𝑖, 𝑗 ∈ [1, 𝑞]) to characterize if two

summaries S𝑖 and S𝑗 disagree to each other on the partitioning of 𝑢 and 𝑣 . Formally,

𝐷𝑢,𝑣 (S𝑖 ,S𝑗) =
{
1, 𝑖 𝑓 𝐼S𝑖

(𝑢, 𝑣) ≠ 𝐼S𝑗
(𝑢, 𝑣)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

The total disagreement between summaries S𝑖 and S𝑗 is:

𝐷𝑉 (S𝑖 ,S𝑗) =
∑︁

(𝑢,𝑣) ∈𝑉×𝑉
𝐷𝑢,𝑣 (S𝑖 ,S𝑗) (9)

In general, this metric counts the number of node pairs on which the two summaries disagree to

each other. Therefore, the summary aggregation problem is given as follows.

Problem 4 (Sum-Agg). Given a set of 𝑞 summaries (i.e., node partitions) {S1,S2, ...,S𝑞} on a set
of nodes 𝑉 , compute a new summary S that minimizes the total disagreements with all the given
summaries, that is, it minimizes

∑𝑞

𝑖=1
𝐷𝑉 (S,S𝑖).

We now show that the Sum-Agg problem can be reduced to the well-studied correlation clustering

problem [4], thus standard procedures for solving correlation clustering can be employed. For

any pair of nodes (𝑢, 𝑣) ∈ 𝑉 ×𝑉 , we define the distance between them as D(𝑢, 𝑣) = 1

𝑞
· |{𝑖 : 1 ≤

𝑖 ≤ 𝑞 𝑎𝑛𝑑 𝐼S𝑖
(𝑢, 𝑣) = 0}|, which means the fraction of summaries that assign the pair (𝑢, 𝑣) into

different supernodes. The correlation clustering objective is to find a node partitioning P that

minimizes DP =
∑

(𝑢,𝑣), 𝐼P (𝑢,𝑣)=1 D(𝑢, 𝑣) +∑
(𝑢,𝑣), 𝐼P (𝑢,𝑣)=0 (1 − D(𝑢, 𝑣)). If the solution P places 𝑢,

𝑣 in the same group, it will disagree with 𝑞 · D(𝑢, 𝑣) of the original partitionings due to individual

relations. In contrast, it will disagree with 𝑞(1 − D(𝑢, 𝑣)) remaining partitionings if the solution

keeps 𝑢, 𝑣 separate. Thus, for any partitioning P, we have 𝑞 · DP =
∑𝑞

𝑖=1
𝐷𝑉 (P,S𝑖), which is our

objective of Sum-Agg (i.e., Problem 4). Due to this reduction, the following algorithms for solving

correlation clustering can be employed to solve our problem. Notice that some of them also come

with provable approximation guarantees.

The BEST algorithm. The most simple algorithm, BEST, is to find one of the input summaries, S𝑖 ,
that minimizes the total number of disagreements to others. It can be computed in time O(𝑞2𝑛),
where 𝑞 is the number of input summaries (also the number of relations), and 𝑛 the number of

nodes in the input graph. Though simple, it yields a solution with an approximation ratio at most

2 · (1 − 1/𝑞) [30].

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

BEST Ball Agglo. Furthest L.S.

Algorithms

0.35

0.40

0.45

0.50

0.55

R
e
la

ti
v
e
 S

iz
e

(a) Compactness

BEST Ball Agglo. Furthest L.S.

Algorithms

500

550

600

650

700

750

800

850

R
u
n
n
in

g
 T

im
e
 (

S
e
c)

(b) Efficiency

Fig. 5. Empirical comparison among five summary aggregation algorithms over DBLP_10.

The Balls algorithm. The Balls algorithm [15] first sorts the nodes in an increasing order of the

total distance to all other nodes. Recall that for any pair of nodes (𝑢, 𝑣) ∈ 𝑉 × 𝑉 , we define the
distance between them as D(𝑢, 𝑣) = 1

𝑞
· |{𝑖 : 1 ≤ 𝑖 ≤ 𝑞 𝑎𝑛𝑑 𝐼S𝑖

(𝑢, 𝑣) = 0}|, that is, the fraction of

summaries that assign the pair (𝑢, 𝑣) into different supernodes. The algorithm is defined with an

input parameter 𝛼 . The intuition of the algorithm is to find a set of nodes that are close to each

other, and far from other nodes. In order to find a good cluster, we take all nodes that are close

(within a ball) to a node 𝑢. The triangle inequality guarantees that if two nodes are close to 𝑢, then

they are also relatively close to each other. Once such a cluster is found, we remove it from the

graph, and proceed with the rest of the nodes. The Balls algorithm consumes O(𝑛2) running time,

while ensuring𝑚𝑎𝑥{ 1−𝛼
𝛼
, 1+2𝛼
1−2𝛼 ,

2−2𝛼
1−2𝛼 } approximation guarantee [30]. The additional time cost for

pre-computing distances between all pairs of nodes is O(𝑞𝑛2).
TheAgglomerative algorithm. It follows the standard bottom-up procedure. The distanceD(𝑢, 𝑣)
between nodes 𝑢, 𝑣 is the same as in the Balls algorithm. The agglomerative algorithm first creates

a singleton group for each node. Then, in each step, it picks the pair of groups 𝐴 and 𝐵 with the

smallest average distance, which is defined as the average distance of all pair of nodes (𝑎, 𝑏), such
that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. If it is less than 1/2, the two selected groups are merged into a single one.

The algorithm terminates when no merging is possible. The time complexity of this algorithm is

O(𝑛2 log𝑛).
The Furthest algorithm. The Furthest algorithm is a top-down method. At the beginning, all

nodes are placed in one group. Then, the pair of nodes which are furthest apart are found, and kept

in two different groups. All remaining nodes are assigned to the center that incurs the least cost. In

the following steps, each time a new center is found to be furthest from the current centers, and

the node assignment changes accordingly. The procedure continue until the new solution induces

a worse cost. Suppose that at the end we have 𝑘 centers, then total running time will be O(𝑘2𝑛).
The LocalSearch algorithm. The LocalSearch algorithm starts with some partition of nodes. It

can be a randomly generated one, or the result of any aforementioned algorithm. The algorithm

goes through each node, and decides to keep it still, move it to other group, or make it a singleton,

by comparing various costs. An efficient way to compute the cost of assigning a node 𝑣 to the

cluster 𝐶𝑖 is as follows:

𝑐𝑜𝑠𝑡 (𝑣,𝐶𝑖) = 𝑀 (𝑣,𝐶𝑖) +
∑︁
𝑗≠𝑖

(|𝐶 𝑗 | −𝑀 (𝑣,𝐶 𝑗)) (10)

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:13

(�) (�) (�)

�

�

�
��. 		

�. 		

�. 		

�. 		

�

�

� � � �

��

− � � ��

− � � ��

− � � �	

− � � �	

+ �
 �	

+ �
 �	

��

� �
�� ����
�����

� �

Fig. 6. (a) The graph with distances between nodes for summary aggregation computation. We omit node
𝐸 here since its distance to any other node is 1. (b) The aggregated summary of the individual summaries.
All the summary aggregation algorithms produce the same result in this example. (c) The potentially best
summary 𝑆2.

Here,𝑀 (𝑣,𝐶𝑖) =
∑
𝑢∈𝐶𝑖

D(𝑢, 𝑣). The cost of assigning a node 𝑣 as a singleton is

∑
𝑗 (|𝐶 𝑗 | −𝑀 (𝑣,𝐶 𝑗)).

The running time of LocalSearch is O(𝑇𝑛2), where 𝑇 is the number of iterations before no better

move can be found.

Empirical comparison. Figure 5 presents the experimental comparison of the five aforementioned

summary aggregation algorithms. Relative size [57, 71] is defined as
|𝐸𝑆 |+ |C |

|𝐸 | . The numerator is

our objective function (Problem 2), i.e., cost of the summary, and the denominator is constant for

a given graph, i.e., graph size. Smaller relative size indicates better compactness. All individual

summaries are generated by the Greedy algorithm. The compactness is evaluated with the relative

size of the summary to that of the original graph. For more details on the dataset and experimental

setup, we refer to §8. We observe that the compactness of Agglomerative, Furthest, and LocalSearch
are comparable, and they all outperform BEST and Ball algorithms. Considering also the running

time, the Furthest algorithm is slightly better than others, thus it is selected as the default summary

aggregation method in our following experimental section.

4.3 Limitation of baselines methods
Consider again the running example multi-relation graph in Figure 2(a) and the summaries built by

Greedy for each relation in isolation (Figure 3).

Figure 6(a) reports the distance values for the summary aggregation step. In this setting, all

the summary aggregation algorithms would return summary 𝑆1, which has 3 superedges and 6

correction edges. However, there exists another summary 𝑆2, which can represent the input graph

with 6 superedges and without any correction edge. This example demonstrates that the two-step

baselines may return a lower-quality solution.

Minimizing disagreements between the final summary and the individual summaries (obtained

via summarizing on individual relations) does not directly optimize our ultimate objective in

Lossless-Sum-Multi and 𝑘-Lossless-Sum-Multi problems. Recall that the summary aggregation

operation tends to minimize disagreements between the final summary and the input set of

summaries. Therefore, if the input has amajority population of low-quality summaries, or inherently

meaningless summaries for certain relations, the aggregation will be forced to agree to those useless

summaries.

Notice that in Figure 3, each of the individually optimal summaries 𝑆𝑟1 and 𝑆𝑟2 has two supernodes,

as opposed to three supernodes in the individually optimal summary 𝑆𝑟3 . This is because Greedy
tends to produce larger-size supernodes. Next, when we aggregate 𝑆𝑟1 , 𝑆𝑟2 , and 𝑆𝑟3 as in Figure 6(a)-

(b), the resultant summary 𝑆1 also has two supernodes, exactly same as the two supernodes in 𝑆𝑟1 and

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

𝑆𝑟2 . Unfortunately, 𝑆2 that has three supernodes (same as in 𝑆𝑟3) is the optimal summary (Figure 6(c)).

This demonstrates that: (1) if the input has a majority population of low-quality summaries, the

aggregation will be forced to agree to those useless summaries. (2) Individual summaries having

larger-size supernodes, as produced by Greedy, may cause trouble in the aggregation procedure.

5 MULTI-RELATION GRAPH SUMMARY: HOLISTIC METHODS
We next present holistic algorithms that, unlike the two-step baseline approaches, summarize the

graph in a lossless manner and considering all relations at once. In particular, we shall discuss

holistic versions of 𝑘-Median (§5.1), Greedy (§5.2), and Randomized (§5.3) algorithms, referred to

as 𝑘-Median+, Greedy+, and Randomized+, respectively.

5.1 𝑘-Median+

For a multi-relation graph, an adjacency matrix exists for each relation. We explore several op-

erations for matrix aggregation, e.g., Sum, Or, and Concatenate, and formally prove that the

Concatenate operation maintains the properties for 𝑘-Median based technique to return an ap-

proximated solution.

Our intuitive idea is whether it is possible to aggregate the adjacency matrices due to different
relations into one aggregated matrix, and then cluster the rows of this aggregated matrix. Potential
aggregation operations may include Sum,Or, andConcatenate. Let {𝐴𝐺1

, 𝐴𝐺2
, . . . , 𝐴𝐺𝑞

} be a set of 𝑞
(𝑛 ×𝑛) matrices, the Sum operation produces an aggregated matrix by 𝐴𝐺 (𝑖, 𝑗) =

∑
1≤𝑥≤𝑟 𝐴𝐺𝑥

(𝑖, 𝑗),
theOr operation produces an aggregatedmatrix by𝐴𝐺 (𝑖, 𝑗) = ∨1≤𝑥≤𝑟𝐴𝐺𝑥

(𝑖, 𝑗), and theConcatenate
operation produces an aggregated matrix 𝐴𝐺 = (𝐴𝐺1

|𝐴𝐺2
| . . . |𝐴𝐺𝑞

) by concatenating the rows.

Among them, we show below that concatenation permits 𝑘-Median+ in achieving 16-approximation

guarantee to the optimal summary size.

Theorem 3. Let 𝐴𝐺 be the concatenated matrix of the adjacency matrices for individual relations,
i.e., 𝐴𝐺 = (𝐴𝐺1

|𝐴𝐺2
| . . . | 𝐴𝐺𝑞

), where 𝐴𝐺𝑖
is the adjacency matrix for relation 𝑖 , 𝑖 ∈ (1, 𝑞). Let𝐺𝑆# be

the 𝑘-summary induced by the 𝑘-Median partitioning of the rows of 𝐴𝐺 , and let 𝐺𝑆∗ be the optimal
𝑘-summary for 𝐺 with respect to the number of correction edges. The correction list size, |C𝑆# | of 𝐺𝑆#
is a 16-approximation to the best size of correction list, |C𝑆∗ |. Formally,

|C𝑆# | ≤ 16 · |C𝑆∗ | (11)

To prove Theorem 3, we need to justify that Lemma 1 and Theorem 1 (mentioned in § 3 in the

context of 𝑘-Median algorithm over single-relation graphs) still hold with our concatenated matrix.

First, we verify the correctness of Lemma 1 in this case. To extend our objective of counting

the number of correction edges from single-relation to multi-relation, we only need to include an

additional sum operation to Equation 3.

|C| = 1

2

∑︁
𝑟 ∈𝑅

∑︁
𝑈 ,𝑊 ∈𝑉𝑆×𝑉𝑆

|𝑈 | |𝑊 |
{
𝛼𝑈𝑊 ,𝑟 , 𝑖 𝑓 𝛼𝑈𝑊 ,𝑟 ≤ 0.5

(1 − 𝛼𝑈𝑊 ,𝑟), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12)

Since we have a holistic summary corresponding to same set of supernodes across relations, the

edge density between supernodes𝑈 and𝑊 for each relation 𝑟 , denoted by 𝛼𝑈𝑊 ,𝑟 , can be calculated

in the same way. Hence, the 𝑙1 reconstruction error (Equation 2) can be modified as:

𝑅𝐸1 (𝐺,𝐺𝑆) = 2

∑︁
𝑟 ∈𝑅

∑︁
(𝑈 ,𝑊) ∈𝑉𝑆×𝑉𝑆

|𝑈 | |𝑊 |𝛼𝑈𝑊 ,𝑟 (1 − 𝛼𝑈𝑊 ,𝑟) (13)

Based on the above two equations, one can prove an equivalent lemma of our earlier Lemma 1, for

the multi-relation case. That is, |C𝑆+ | ≤ 2 · |C𝑆∗ |. Here, 𝐺𝑆+ is the optimal 𝑘-summary for 𝐺 with

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:15

respect to the 𝑙1-reconstruction error, and |C𝑆+ | is the correction list size for 𝐺𝑆+ . Clearly, Sum and

Or operations violate Equation 12.

Next, we rewrite the 𝑙1 reconstruction error in its original form (equivalent of Equation 1).

𝑅𝐸1 (𝐺,𝐺𝑆) =
∑︁
𝑟 ∈𝑅

|𝑉 |∑︁
𝑢=1

|𝑉 |∑︁
𝑤=1

���𝐴𝐺𝑟
(𝑢,𝑤) −𝐴↑

𝐺𝑆,𝑟
(𝑢,𝑤)

���
=
∑︁
𝑟 ∈𝑅

������𝐴𝐺𝑟
−𝐴↑

𝐺𝑆,𝑟

������ (14)

where 𝐴
↑
𝐺𝑆,𝑟

(𝑢,𝑤) is the edge density between the supernodes 𝑈 and𝑊 for relation 𝑟 , such that,

𝑢 ∈ 𝑈 ,𝑤 ∈𝑊 .

To prove Theorem 1, Riondato et al. [63] defined an orthogonal smoothing projection 𝑃 for

a partitioning P of 𝑛 nodes (i.e., rows) in the adjacency matrix 𝐴𝐺 . Since in our holistic sum-

mary, all relations would share the same partitioning P, the same projection 𝑃 can be applied to

each adjacency matrix 𝐴𝐺𝑟
. The 𝑙1-reconstruction matrix for each relation can be computed by

𝐴
↑
𝐺𝑆,𝑟

(𝑢,𝑤) = 𝑃𝐴𝐺𝑟
𝑃 . By definition, 𝐴𝐺𝑟

𝑃 is the 𝑘-Means matrix. And we define the 𝑘-Median
matrix of relation 𝑟 as below:

𝐵𝐺𝑟
(𝑢,𝑤) =𝑚𝑒𝑑𝑖𝑎𝑛({𝐴(𝑥,𝑦) |{𝑥,𝑦} ∈ Π𝑈𝑊) (15)

Π𝑈𝑊 is the set of all possible pairs {𝑥,𝑦}, such that 𝑥 ∈ 𝑈 and𝑦 ∈𝑊 . Lemma 1 and Lemma 4 in [63]

provide the inequalities bridging the 𝑙1-reconstruction error | |𝐴 − 𝑃𝐴𝑃 | |, 𝑘-means cost | |𝐴 −𝐴𝑃 | |
and the 𝑘-median cost | |𝐴 − 𝐵 | |. Thus, we prove Theorem 1 for multi-relation case as follows.

𝑅𝐸1 (𝐺,𝐺𝑆#) =
∑︁
𝑟 ∈𝑅

| |𝐴𝐺𝑟
−𝐴↑

𝐺𝑆#,𝑟
| | ⊲ by Equation 14

=
∑︁
𝑟 ∈𝑅

| |𝐴𝐺𝑟
− 𝑃𝐺𝑆#

𝐴𝐺𝑟
𝑃𝐺𝑆#

| |

≤ 2 ·
∑︁
𝑟 ∈𝑅

| |𝐴𝐺𝑟
−𝐴𝐺𝑟

𝑃𝐺𝑆#
| | ⊲ Lemma 4, [63]

≤ 4 ·
∑︁
𝑟 ∈𝑅

| |𝐴𝐺𝑟
− 𝐵𝐺𝑆#

| | ⊲ Lemma 1, [63]

≤ 4 ·
∑︁
𝑟 ∈𝑅

| |𝐴𝐺𝑟
− 𝐵𝐺𝑆+ | | ⊲ 𝐺#

𝑆 is best for 𝑘-Medain

≤ 4 ·
∑︁
𝑟 ∈𝑅

| |𝐴𝐺𝑟
−𝐴𝐺𝑟

𝑃𝐺𝑆+ | | ⊲ Lemma 1, [63]

≤ 8 ·
∑︁
𝑟 ∈𝑅

| |𝐴𝐺𝑟
− 𝑃𝐺𝑆+𝐴𝐺𝑟

𝑃𝐺𝑆+ | | ⊲ Lemma 4, [63]

= 8 · 𝑅𝐸1 (𝐺,𝐺𝑆+) (16)

Since both Theorem 1 and Lemma 1 hold for the multi-relation case, one can prove the correctness

of 16-approximation result due to 𝑘-Median on the concatenated adjacency matrix. Therefore,

Theorem 3 follows.

5.2 Greedy+

The Greedy algorithm can be generalized to a holistic algorithm, Greedy+ for the Lossless-Sum-
Multi problem without changing the workflow. Between any pair of supernodes𝑈 and𝑊 , let Π𝑈𝑊
be the set of all possible pairs {𝑎, 𝑏}, such that 𝑎 ∈ 𝑈 and 𝑏 ∈𝑊 . 𝐸𝑈𝑊 ⊆ Π𝑈𝑊 is defined as the set

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

of edges actually present in the input graph 𝐺 , i.e., 𝐸𝑈𝑊 = Π𝑈𝑊 ∩ 𝐸. Obviously, Π𝑈𝑊 is the same

no matter for which relation. Next, we define 𝐴𝑈𝑊 ,𝑟 ⊆ Π𝑈𝑊 to be the set of edges actually present

in the original graph 𝐺 for relation 𝑟 , i.e., 𝐴𝑈𝑊 ,𝑟 = Π𝑈𝑊 ∩ 𝐸𝑟 . Similarly, the cost of a supernode

pair (𝑈 ,𝑊) for relation 𝑟 can be calculated as:

𝐶 (𝑈 ,𝑊 , 𝑟) = min{|Π𝑈𝑊 | − |𝐴𝑈𝑊 ,𝑟 | + 1, |𝐴𝑈𝑊 ,𝑟 |} (17)

The neighbor set 𝑁𝑟 (𝑈) of 𝑈 in relation 𝑟 is defined to be the set of supernodes𝑊 that have

such edge {𝑎, 𝑏} ∈ 𝐴𝑈𝑊 ,𝑟 . Moreover, the cost of maintaining a supernode𝑈 would add up across

relations as follows:

𝐶 (𝑈) =
∑︁
𝑟 ∈𝑅

∑︁
𝑋 ∈𝑁𝑟 (𝑈)

𝐶 (𝑈 ,𝑋, 𝑟) (18)

The cost reduction due to merging supernodes𝑈 and𝑊 into a new supernode𝐻 can be calculated

as:

△𝐶 (𝑈 ,𝑊) = 𝐶 (𝑈) +𝐶 (𝑊) −𝐶 (𝐻)
𝐶 (𝑈) +𝐶 (𝑊) (19)

Taking fraction instead of the absolute cost reduction in the above equation is to get rid of the bias

towards nodes with higher degree.

Example 3. We use the example graph in Figure 2(a) for the demonstration of Greedy+. At the
beginning, the cost of each node equals to the number of edges incident to this node, for all relations.
Thus, node 𝑎 and 𝑐 will be selected for merging in the first round, resulting in 7+7−(3+3+1)

7+7 = 0.5 cost
reduction. Similarly, the nodes 𝑏 and 𝑑 will be merged in the second round. The cost again reduces
by 4+4−(3+1)

4+4 = 0.5. Then, it can be easily verified that no further merging can result in positive cost
reduction. Thus, it returns the optimal summary, 𝑆2 in Figure 6(c), for this example.

5.3 Randomized+

Randomized+ follows the same modification in cost computation as the holistic Greedy+. The
computation step does not change when comparing with the original Randomized algorithm. For

SWeG algorithm, it is non-trivial to extend the node set dividing step to multi-relation case. We,

therefore, leave it as a future direction.

6 FINDING OPTIMAL NUMBER OF SUPERNODES
Our 𝑘-Median-based approaches (i.e., 𝑘-Median two-step baseline and holistic 𝑘-Median+) require
𝑘 , a predefined number of supernodes, as an input. In practice, the user may not explicitly provide

the target number of supernodes. In this section, we suggest to use the number of supernodes

returned by Greedy+ algorithm as the optimal value of 𝑘 for 𝑘-Median-based approaches, and

verify its good performance via the Elbow method [74] as below.

The Elbow method. The elbow method empirically verifies the cost of the 𝑘-median clustering

when varying 𝑘 . Within each cluster, it computes the median distance between each node to its

center, and takes the sum of all median distances for all nodes, which is known as the within-
cluster sum-of-squares error (WSS). The WSS is plotted against the cluster number 𝑘 , we select

the 𝑘 for which WSS first starts to diminish. In the plot of WSS-versus-𝑘 , this is visible as an

“elbow”. Using the elbow as a cutoff point is a common heuristic
2
in optimization to choose a point

where diminishing returns are no longer worth the additional cost. In clustering, this implies that

2
Theoretically, within-cluster sum-of-squares error (WSS) monotonically decreases with larger cluster number 𝑘 , thus the

optimal 𝑘 is trivially equal to the total number of nodes in the input graph. In practice, we would like to find a clustering

where the WSS no longer decreases sharply.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:17

4000 5000 6000 7000 8000
Supernodes (k)

0.55

0.56

0.57

0.58

0.59

0.60

R
e
la

ti
v
e
 S

iz
e

KM+

(a) Amazon

9000 10000 11000 12000 13000
Supernodes (k)

0.37

0.38

0.39

0.40

0.41

R
e
la
ti
v
e
 S
iz
e

KM+

(b) DBLP230

18000 20000 21000 22000
Supernodes (k)

0.66

0.67

0.68

0.69

0.70

R
e
la

ti
v
e
 S

iz
e

KM+

(c) Twitter

Fig. 7. Compactness analysis with #supernodes 𝑘 .

one should choose a number of clusters so that adding another cluster will not give much better

modeling of the data.

First, we employ Greedy to suggest a preliminary 𝑘 ′. Then, we vary the 𝑘 in a range with 𝑘 ′ as
the center, e.g., [𝑘 ′ − 2000, 𝑘 ′ + 2000], and apply the Elbow method to verify the performance of 𝑘 ′.
In practice, we can replace the clustering cost with our exact summary cost and select the optimal

𝑘 via Equation 20, where 𝑆 (𝑘) denotes the 𝑘-Median summary having 𝑘 supernodes. The exact

summary cost is measured via relative size [57, 71], which is defined as
|𝐸𝑆 |+ |C |

|𝐸 | . The numerator

is our objective function (Problem 2), i.e., cost of the summary, and the denominator is constant

for a given graph, i.e., graph size. Smaller relative size means better compactness. We show the

relative size on 𝑦-axis and 𝑘 on 𝑥-axis, the curve becomes “valley” shape instead of “elbow” shape

(Figure 7). The vertically dashed line denotes the number of supernodes found with Greedy+, which
are always located in the "valley bottom" in all our datasets. This shows that our Greedy+ algorithm
can suggest a good 𝑘 for our 𝑘-Median+ approach.

𝑎𝑟𝑔𝑚𝑖𝑛𝑘∈[𝑘′−2000,𝑘′+2000]
|𝐸𝑆 (𝑘) | + |𝐶𝑆 (𝑘) |

|𝐸 | (20)

7 MULTI-RELATION GRAPH SUMMARY: HYBRID ALGORITHM
In this section, we discuss the shortcomings of the Greedy+ and the 𝑘-Median+ holistic algorithms,

and provide a hybrid algorithm, Hybrid, based on properly combining them, to produce the most

effective summary as shown empirically in the next section.

The shortcomings of Greedy+. The Greedy+ algorithm is a bottom-up iterative approach. The

subsequent rounds of Greedy+ highly rely on the results of previous rounds. If the previous few

rounds get trapped in some bad results, the follow-up rounds have no way to fix it.

The shortcomings of 𝑘-Median+. First, the 𝑘-Median+ algorithm requires an input number

of supernodes 𝑘 . Thus, it cannot directly solve the Lossless-Sum-Multi problem. Second, our

experimental results in § 8.2 present that the compactness of the 𝑘-Median+ summaries are worse

than those of Greedy+ summaries in practice.

Based on previous discussion, we can find that the Greedy+ algorithm and the 𝑘-Median+

algorithm are complementary: (1) Greedy+ can suggest a potentially good 𝑘 ′ for 𝑘-Median+; (2)
𝑘-Median+ is able to directly generate a summary for any 𝑘 around 𝑘 ′; (3) For any 𝑘-Median+

summary, Greedy+ can further improve its quality, if possible.

Hybrid algorithm. Based on aforementioned properties, we properly combine the Greedy+

algorithm and the 𝑘-Median+ algorithm as our ultimately proposed Hybrid algorithm, as below.

(1) As discussed in § 6, we determine the optimal 𝑘 for 𝑘-Median+, with the help of the Greedy+

method. (2)We generate a summary by 𝑘-Median+ algorithm with the best 𝑘 found by Greedy+ (3)
We conduct the Greedy+ algorithm again starting from the summary generated in (2), to further

improve its compactness, if possible.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

Table 2. Properties of datasets.

Dataset #Nodes #Edges #Relations Domain
Homo 18 222 153 923 7 genetic

Amazon 410 237 8 132 507 4 co-purchasing

DBLP6 892 531 6 045 859 6 co-authorship

DBLP230 892 531 7 207 253 230 co-authorship

Twitter 4 898 247 8 053 440 4 social

Since Hybrid applies 𝑘-Median+, followed by Greedy+ in steps 2-3 above, it also requires 𝑘 , a

predefined number of supernodes, as an input. Therefore, in step 1, we apply the same preprocessing

technique as in § 6 to determine the optimal 𝑘 for 𝑘-Median+. However, notice that since we further
apply Greedy+ to improve the compactness in the third step, the optimal number of supernodes

returned by Hybrid may eventually be reduced, in comparison with 𝑘-Median+.

8 EXPERIMENTAL RESULTS
We conduct experiments to demonstrate the effectiveness (compactness), efficiency, and scalability

of our algorithms (averaged over 10 runs). The code is implemented in C++, and is executed on a

single core, 40GB, 2.40GHz Xeon server.

8.1 Experimental setup
8.1.1 Datasets. We use five real-world, multi-relation networks, whose main characteristics are

listed in Table 2.

Homo (https://comunelab.fbk.eu/data.php) network describes different types of genetic interac-

tions between genes in Homo Sapiens. Nodes are genes and edges denote their interactions. Seven

different relations exist, which are: direct interaction, physical association, suppressive genetic

interaction defined by inequality, association, colocalization, additive genetic interaction defined

by inequality, and synthetic genetic interaction defined by inequality.

Amazon (https://snap.stanford.edu/data) is a co-purchasing temporal network with four snap-

shots between March and June 2003, each as a relation. Nodes are products and edges are their

co-purchasing relationships.

DBLP (http://dblp.uni-trier.de/xml) is a well known collaboration network. We downloaded it

on Dec 31, 2020. Each node is an author and edges denote their co-authorships. We use two

versions of DBLP dataset. DBLP6 has 6 relations for 6 representative sub-areas of computer

science: data management, artificial intelligence, computer architecture, computer networks,

theory of computing, and systems & software. An edge between a node pair exists for a rela-

tion if they have published as co-authors in the top-tier venues under this sub-area. The top-

tier (i.e., rank A) conferences and journals for each sub-area are given by the CCF ranking:

https://www.ccf.org.cn/Academic_Evaluation/By_category. DBLP230 is generated based on [42]

with the latest data. It has 230 relations for 230 keywords extracted from paper titles, based on

both their frequency and how well they can represent various sub-areas of computer science, e.g.,

database systems, neural networks, FGPA, etc.

Twitter (https://ieee-dataport.org/open-access/usa-nov2020-election-20-mil-tweets-sentiment-

and-party-name-labels-dataset) dataset is generated based on 24M US election related tweets from

July 1 to November 11, 2020. Nodes are users and edges are their re-tweet relationships. The

relations stand for 4 political parties in 2020 US presidential election.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:19

8.1.2 Competing algorithms. Our basic two-step algorithms include (1) Greedy [57], (2) Random-
ized [57], (3) 𝑘-Median (proposed approximation algorithm for the Lossless-Sum problem), and (4)
SWeG [71]. For fairness, we only allow sequential execution of the SWeG algorithm. The detailed

description of these methods can be found in §3 and §4.1.

The holistic version of Greedy, Randomized, and 𝑘-Median are represented as GD+ (Greedy+),
RD+ (Randomized+), and KM+ (𝑘-Median+), respectively. Our final algorithm, Hybrid, for lossless,
multi-relation graph summarization is represented as HY. In addition, we also consider a method,

denoted as ALL, that stores individually optimal summaries (following the 𝑘-Median algorithm) for

all relations.

The optimal number of supernodes (reported in Table 3) are automatically decided by GD+ and

RD+. For 𝑘-Median, KM+, and HY, we decide the optimal number of supernodes empirically by

Greedy methods, as discussed in §6.

8.1.3 Evaluation metrics used. We adopt the following evaluation metrics:

• Relative size. We measure the compactness of the obtained summaries by relative size
[57, 71], which is defined as

|𝐸𝑆 |+ |CS |
|𝐸 | . Recall that 𝐸 denotes the set of edges in the input

graph, 𝐸𝑆 the set of superedges between supernodes, and 𝐶𝑆 the set of correction edges.

The numerator is our objective function (Problem 2), i.e., cost of the summary, and the

denominator is constant for a given graph, i.e., graph size. Smaller relative size means better

compactness.

• Running time. The total running time for generating a graph summary is reported. For two-

step methods, it contains both the time of producing summaries for all individual relations

and the time of aggregating them.

• Storage cost. We report the exact storage cost for original graphs and the corresponding

summaries. The mappings from the node set 𝑉 to the supernode set 𝑉𝑆 are included in

summaries.

8.2 Performance analyses
In Figure 8, the 𝑦-axis presents the relative size. Meanwhile, the 𝑥-axis reports the running time for

summary construction. We want the summary to be as compact as possible, and the construction

to be as fast as possible. Thus, better solution would be closer to the origin point in these plots.

The solid markers in Figure 8 stand for our proposed holistic algorithms, while the hollow

markers represent the two-step methods. We observe that the solid markers are closer to the origin

point on all datasets, which confirms the superiority of our proposed holistic algorithms, based on

both summary compactness and its construction efficiency. Our Hybrid algorithm is shown with

the shadow marker. In general, the shadow markers are below all others, demonstrating that the
Hybrid algorithm produces the most compact summaries.
For 𝑘-Median-based methods (𝑘-Median, KM+, and HY), 𝑘 must be given as an input, whereas

the optimal number of supernodes are automatically decided by Greedy, Randomized, SWeG, GD+,
and RD+. For fairness of comparison, we find the optimal 𝑘 for 𝑘-Median, KM+, and HY with an

additional preprocessing step (§6), and report our results for 𝑘-Median, KM+, and HY in Figure 8

with this optimal 𝑘 as input. This additional preprocessing time for determining the optimal 𝑘 is

provided in Table 4. The preprocessing time for 𝑘-Median is higher than that of KM+, since we
need to identify an optimal 𝑘 for each relation in 𝑘-Median, while we only require a single optimal

𝑘 for KM+. HY consumes exactly the same preprocessing time as KM+, since its preprocessing step
is same as that of KM+. However, in the third step of HY (§7), it further applies GD+ to improve

the compactness, thus the final optimal number of supernodes may reduce for HY, in comparison

with KM+ (as reported in Table 3).

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Running Time (×103 sec)

0.14

0.15

0.16

0.17

0.18

0.19

0.20

R
e
la
ti
v
e
 S
iz
e

GD

RD

KM

SWeG

GD+

RD+

KM+

HY

(a) Homo

0 10 20 30 40 50

Running Time (×103 sec)

0.54

0.56

0.58

0.60

0.62

0.64

0.66

R
e
la

ti
v
e
 S

iz
e

(b) Amazon

2 3 4 5 6

Running Time (×103 sec)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

R
e
la

ti
v
e
 S

iz
e

(c) DBLP6

5 10 15 20 25

Running Time (×103 sec)

0.35

0.37

0.39

0.41

0.43

0.45

0.47

R
e
la

ti
v
e
 S

iz
e

(d) DBLP230

20 30 40 50 60 70 80 90

Running Time (×103 sec)

0.62

0.64

0.66

0.68

0.70

0.72

0.74

R
e
la

ti
v
e
 S

iz
e

(e) Twitter

Homo DBLP6 DBLP230 Amazon Twitter

Dataset

0

20

40

60

80

100

B
re
a
kd
o
w
n
 (
%
)
o
f
#
S
u
p
e
re
d
g
e
s

 a
n
d
 #
C
o
rr
e
ct
io
n
 E
d
g
e
s

|ES|

|CS|

(f) Breakup (HY)

Fig. 8. Trade-off between relative size and running time. Sub-figure (f) presents breakup on #superedges and
#correction-edges for summaries.

Compactness. For the same kind of algorithm, the proposed holistic version can return up to 5% more
compact summary than the corresponding two-step algorithm, e.g., the KM+ summary always has at

least 3% smaller relative size than the KM summary, over all datasets. Our ultimate HY method can

result in about 1% more compact summaries than the best holistic method on all datasets.

Within each algorithm group, we find that (1) Greedy returns the most compact summaries,

while Randomized produces the worst results; (2) the compactness of the summaries by SWeG and

𝑘-Median are in the middle range. Usually, they are comparable to the summaries by Greedy. These
two observations hold both within the two-step methods and within the holistic algorithm groups.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:21

Table 3. #supernodes, and (#superedges, #correction-edges) in obtained summaries via our holistic methods.

Graph GD+ KM+ HY
Homo 440, (4.1K,18.2K) 440, (4.2K,18.7K) 428, (4.1K,18.1K)

Amazon 6.1K, (956K,3.6M) 6.1K, (959K,3.6M) 6.0K, (957K,3.6M)

DBLP6 12.2K, (399K,2.6M) 12.2K, (398K,2.8M) 12.1K, (398K,2.6M)

DBLP230 11.3K, (412K,2.3M) 11.3K, (418K,2.4M) 11.3K, (413K,2.2M)

Twitter 20.2K, (1.3M,4.2M) 20.2K, (1.3M,4.2M) 20.1K, (1.3M,4.1M)

Table 4. Additional preprocessing time (×103 sec) of determining optimal 𝑘 for 𝑘-Median-based methods.

Graph KM KM+ HY
Homo 1.0 0.4 0.4

Amazon 30 21 21

DBLP6 4.8 2.9 2.9

DBLP230 18 10 10

Twitter 51 32 32

Table 5. Actual storage cost (MB) for graphs and summaries. The actual storage cost for summaries includes
the supernode mapping(s). We also report summary storage percentage w.r.t. original graph storage.

Graph Original GD+ KM+ HY ALL
Homo 1.7 0.31 (18%) 0.32 (19%) 0.30 (18%) 0.58 (34%)

Amazon 116.9 68.8 (59%) 69.3 (59%) 68.4 (58%) 68.2 (58%)

DBLP6 74.3 36.2 (49%) 37.2 (50%) 35.1 (47%) 37.2 (50%)

DBLP230 82.5 30.3 (37%) 31.1 (38%) 30.0 (37%) 137.8 (167%)

Twitter 237.5 163.9 (69%) 165.0 (69%) 160.7 (68%) 182.9 (77%)

The objective function of our summary has two components, the number of superedges |𝐸𝑆 |
and the number of correction edges |CS |. Figure 8(f) demonstrates that the cost of correction list
dominates the total summary cost. It is always about 80% of the total cost.

Efficiency. For efficiency, we have the following observations. (1) The holistic algorithms (with solid

markers) tend to consume less running time than the two-step methods. Recalling the complexity

analysis listed in § 4.1, the two-step methods repeat the summary generation for every relation.

This multiplies the time complexity of single summary computation by 𝑞, where 𝑞 is the total

number of relations. For example, the total time cost for producing 𝑞 single-relation summaries

will be O((𝑚 + 𝑛𝑘 log𝑛) · 𝑞) for 𝑘-Median. An additional time for summary aggregation is also

required. In contrast, for KM+, the time complexity is only O(𝑚′ + 𝑛𝑘 log𝑛𝑞). The first term𝑚′
is

the total number of edges across all relations, which is similar to𝑚𝑞. However, the second term

log𝑛𝑞 is much smaller than 𝑞 log𝑛. This explains why our proposed holistic algorithms are faster

than the two-step ones. (2) Usually, KM+ is the fastest among the proposed holistic methods, and

GD+ is the slowest. (3) The running time of HY is always higher than that of KM+, since it requires
to run KM+ at first, then applies GD+ to further improve the compactness.

8.3 Exact storage cost
We empirically study the exact storage cost of the original graphs and the summaries in the memory.

Here, we further compare our uniform summary for all relations, against maintaining all the single-

relation optimal summaries, denoted as ALL. For the exact storage, in addition to our objective

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

Table 6. Actual storage cost (MB) for graphs and summaries with further compression: (super)edges between
the same set of (super)nodes over multiple relations are stored as < 𝑛𝑜𝑑𝑒_𝑖, 𝑛𝑜𝑑𝑒_ 𝑗, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑥, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑦, ...,
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑧 >. The actual storage cost for summaries includes the supernode mapping(s).

Graph Original GD+ KM+ HY ALL
Homo 1.3 0.17 (13%) 0.18 (14%) 0.17 (13%) 0.54 (42%)

Amazon 94.9 50.8 (54%) 51.1 (54%) 48.9 (52%) 60.6 (64%)

DBLP6 63.1 27.8 (44%) 28.2 (45%) 26.7 (42%) 29.7 (47%)

DBLP230 70.6 24.8 (35%) 25.8 (36%) 24.1 (34%) 126.0 (178%)

Twitter 211.5 137.6 (65%) 139.8 (66%) 132.9 (63%) 151.4 (72%)

Table 7. Breakup of the actual storage cost (MB) for summaries with further compression (shown in Table 6).
𝐸𝑆 denotes superedges, 𝐶 denotes correction edges, and𝑀 denotes the node mapping.

Graph
HY ALL

|𝐸𝑆 | |𝐶 | |𝑀 | |𝐸𝑆 | |𝐶 | |𝑀 |
Homo 0.02 0.10 0.05 0.05 0.15 0.34

Amazon 10.5 37.0 1.4 15.2 36.6 8.8

DBLP6 5.2 19.9 1.5 5.4 20.0 4.3

DBLP230 4.7 17.8 1.5 6.6 22.9 96.1

Twitter 29.5 128.5 1.7 25.2 114.8 11.4

of superedges and correction list, we need to store the mapping 𝑀 from the original node set 𝑉

to the supernode set 𝑉𝑆 . In the single-relation graph summary, and in our uniform summary for

all relations, this mapping𝑀 simply has the same size as the cardinality of the original node set

𝑉 . However, there exist 𝑞 mappings for the ALL method, since the supernode partitioning can

be different across relations. As shown in Table 5, in practice, the ALL summaries require more

storage overhead than our holistic GD+ or HY summary. When the relation number is large, e.g.,

on DBLP230, the ALL summaries have even larger storage cost than the original graphs. Table 7

provides more insight through decomposing the storage cost.

In the storage format so far (reported in Table 5), each entry is represented as <

𝑛𝑜𝑑𝑒_𝑖, 𝑛𝑜𝑑𝑒_ 𝑗, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 >, following our definition in § 1.1. However, the storage cost can further

reduce when there exist (super)edges between the same set of (super)nodes over multiple rela-

tions. In such scenarios, a simple way to further reduce the exact storage cost is to keep them

as < 𝑛𝑜𝑑𝑒_𝑖, 𝑛𝑜𝑑𝑒_ 𝑗, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑥, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑦, ..., 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑧 >. As shown in Table 6, our proposed

summaries, both GD+ and HY, benefit more from this type of storage format, compared to the ALL
summary.

8.4 Scalability analysis
We analyze the scalability of our methods on the larger datasets, Twitter and DBLP.
Graph size. The Twitter dataset has about 4.9 million nodes, we select 1M, 2M, 3M, 4M, and all

4.9M nodes uniformly at random to generate five graphs considering all relations, and apply our

algorithms on them. Figure 9(a) demonstrates that all our proposed holistic and hybrid algorithms
scale linearly in graph size (i.e., number of nodes).
Number of relations. DBLP_230 dataset has 230 relations. We randomly choose 50, 100, 150, 200,

and all 230 relations, and apply the algorithms on the full graphs of selected relations. Figure 9(b)

shows that the running times of all our algorithms increase linearly with more relations. In the time

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:23

(1M
,1.8
M)

(2M
,3.3
M)

(3M
,5.0
M)

(4M
,6.5
M)

(4.9
M,8
.1M
)

(# Nodes, # Edges)

5

10

15

20

25

30

35

40
R
u
n
n
in
g
 T
im
e
 (
×1

0
3
 S
e
c) GD+

KM+

HY

(a) Varying graph size (Twitter)

50 100 150 200 230
Relations

4.0

6.0

8.0

10.0

12.0

14.0

R
u
n
n
in
g
 T
im

e
 (
×1

0
3
 S
e
c)

GD+

KM+

HY

(b) Varying number of relations (DBLP_230)

Fig. 9. Scalability analysis.

Table 8. Summary and recommendation.
Method Summary Compactness Summary Construction Time Optimal 𝑘 Finding (Preprocessing) Time Approx. Guarantee

GD ⋆⋆⋆ ⋆ not required %

RD ⋆ ⋆⋆⋆ not required %

KM ⋆⋆ ⋆⋆⋆ ⋆ "

SWeG ⋆⋆ ⋆⋆⋆ not required %

GD+ ⋆⋆⋆⋆ ⋆⋆ not required %

RD+ ⋆⋆ ⋆⋆⋆⋆ not required %

KM+ ⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆ "

HY ⋆⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ "

complexity of KM+: O(𝑚′+𝑛𝑘 log𝑛𝑞),𝑚′
scales about linearly in the number (𝑞) of relations, while

the second term 𝑛𝑘 log𝑛𝑞 keeps nearly the same with increasing 𝑞.

8.5 Summary and recommendation
Table 8 summarizes the recommendation level of each method according to different performance

metrics. The scale is from 1 to 5 stars, and larger star number stands for higher ranking. Clearly, there

is no single winner. The holistic algorithms tend to produce more compact summary and consume

less running time than the corresponding two-step version. k-Median-based approaches (KM,

KM+, HY) have approximation guarantees on the summary compactness. According to empirical

evaluations, GD+ returns the most compact summary among the holistic methods. However, HY
applies GD+ to further improve the practical quality of the approximated solution returned by

KM+, and is empirically shown to produce the best quality summaries (§ 8.2). For efficiency, KM+
is the fastest one. RD+ is always faster than GD+ , and HY is always slower than KM+. The 𝑘-
Median-based methods (KM, KM+, and HY) require an additional preprocessing step to identify

the optimal 𝑘 , and KM consumes the most amount of preprocessing time.

Based on application requirements, a user can decide to adopt a specific algorithm as per our

summary in Table 8. In general case, considering various trade-offs, we recommend Hybrid method

(HY) for multi-relation graph summarization. It has good performance in summary compactness

from both theoretical and practical perspectives, and its efficiency lies in the middle range.

9 APPLICATIONS AND CASE STUDIES
9.1 Efficient query processing on graph summaries
Since our graph summary is lossless, we can always answer a graph query using the summary

as precisely as in the original graph. Thus, we focus on the efficiency analyses. We present the

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

 Low Medium High
0

5000

10000

15000

20000

25000

30000
T
h
ro
u
g
h
p
u
t
(#
q
u
e
ri
e
s/
m
in
u
te
)

Original

ALL

HY

(a) DBLP_230

 Low Medium High
0

5000

10000

15000

20000

25000

30000

T
h
ro
u
g
h
p
u
t
(#
q
u
e
ri
e
s/
m
in
u
te
)

Original

ALL

HY

(b) Twitter

Fig. 10. Throughput comparison for neighborhood query answering on original graph and on different graph
summaries.

comparison for the Neighborhood Query [50, 63]: Given a node 𝑣 and a graph𝐺 = (𝑉 , 𝐸, 𝑅), find the
set of nodes 𝑁𝑣 = {𝑢 | (𝑣,𝑢, 𝑟) ∈ 𝐸}, and return the distribution of relations in 𝑁𝑣 . Notice that the

Degree Query and the Eigenvector-Centrality Query in [50, 63] can be answered based on the results

of neighborhood query; we do not consider them in the current study.

Figure 10 presents the throughput comparison for neighborhood query on the original graph

and on the graph summaries (ALL and HY), using two larger datasets. Query nodes are divided into

three groups: low (≤ 5), medium ((5, 20]), and high (> 20), based on their out-degrees. For an hour,

we continue to answer neighborhood queries for query nodes selected uniformly at random, and

then report the average throughput (per minute). The neighborhood query can be processed more

efficiently on graph summary since we explore the superedges and corrections instead of exact

edges linked to the query node, and our objective ensures that the former tends to have smaller size

than the latter. We have the following observations: (1) the throughput on HY summary is about

2.5× of that on the original graph for low-degree query nodes. It increases to be around 5× for

high-degree nodes, since their edges are more likely to be wrapped within superedges. The benefit

of using ALL summary to answer neighborhood query is 1.5× to 3× in throughput against using

the original graph; (2) the efficiency improvement is more significant when the graph summary is

more compact, e.g., in DBLP_230. The intuition is that the edges of the query nodes are more likely

to be represented via superedges, rather than corrections; and (3) when the number of relations is

high, e.g., in DBLP_230, the efficiency improvement for answering the query with HY summary

is more significant than with ALL summary. This is because we need to repeatedly identify the

supernode containing the query node in each relation for ALL summary, and the degree of the

query node may be low in each relation, which makes the individual summaries within ALL less

beneficial for query answering.

9.2 Visualization case study on DBLP
We visualize the summary ofDBLP230 dataset, and present some interesting case studies in Figure 11.

In the first case shown in Figure 11(a), we find that all researchers in each supernode actively

collaborate with others on the topics such as “data stream” and “approximation”. They have both

self-loops and links to each other with such topics. However, a few different topics also appear

within each group. For example,Graham Cormode also has quite a few “private”-related (i.e., privacy)

joint works with Divesh Srivastava. Another interesting finding is that both the left-side and the

top supernodes contain researchers from database community, since they have more publications

in SIGMOD and VLDB, while the right-side supernode consists of theory community researchers,

who publishes more in STOC, SODA, etc.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:25

Data Stream

Approximation

Query

Reynold Cheng

Ben Kao

David Wai-Lok Cheung

Nikos Mamoulis

Eric Lo
…

(15 nodes)

Query

Algorithm

Index

Similarity

Jiawei HanKnowledge

Information Network

Learning

Extraction

Andrew McGregor

Sudipto Guha

S. Muthukrishnan
…

(19 nodes)

Data Stream

Graph

Approximation

Data Stream

Approximation

Jian Pei

Graham Cormode

Divesh Srivastava

Cecilia M. Procopiuc
…

(12 nodes)

Data Stream

Private

Distributed

Xiang Ren

Jingbo Shang

Liyuan Liu

Jiaming Shen
Xifeng Yan

Mining

Pattern

Sequential

Constrain

...

Flip Korn

Nick Koudas

Minos N. Garofalakis
…

(16 nodes)

(�)

(�) (�)

Pattern

Graph

Similarity

OLAP

...

Fig. 11. Case study on DBLP.

� ASD

�� �� ��

�� �� ��

	� 	�

�	

�
 �� ��

�� ��

 Healthy

�� �� 	�

	�

�	 �

�� ��
�� ��

�� �� ��

�� ��

��

��
�� ��

�

��

�	

��

Fig. 12. Case study on Austism. The partitioning of the same set of 14 nodes are quite different for ASD brain
networks and for healthy brain networks. The numbers on superedges denote the number of relations having
such superedges.

The second case in Figure 11(b) presents a group of people with close collaboration. One can

verify that they are all from same geographical location, i.e., Hong Kong in this example. This is a

frequent pattern in DBLP.
Figure 11(c) first shows that very senior researchers tend to be kept as a single node, since they

work on quite diverse topics and with many researchers. Here, Jiawei Han and his ex-students, Jian
Pei and Xifeng Yan, are all kept as a singleton supernode, and Jiawei Han has different collaboration

topics with them. His recently graduated student, Xiang Ren (in 2018), and some other current

students are grouped together, since they collaborate frequently with each other on topics related

to knowledge extraction. Such correlations across different relations and node set could not be

immediately inferred if one keeps individual summaries for all relations separately.

9.3 Visualization and classification case studies on brain networks
For our second case study, we use the Austism dataset [24] containing 96 brain networks. 48 of them

are collected from ASD (Autism spectrum disorder) patients, and the other 48 brain networks are

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

of healthy people. In the original dataset, there were 49 networks of ASD patients and 52 networks

of healthy people. To maintain a balanced number of networks in each group, and for the ease of

our comparison, we only keep the first 48 networks in each group here. All networks share the

same set of 116 nodes. The average number of edges in each network is 1336.8 (1336.2 for ASD

patients, and 1337.5 for healthy people). If we treat the 48 ASD brain networks as a multi-relation

graph, HY returns a summary with 0.514 relative size (0.516 by GD+, 0.517 by KM+). Meanwhile,

the relative size of HY multi-relation summary for the 48 healthy people is 0.526 (0.526 by GD+,
0.529 by KM+). However, if we randomly choose 24 networks from each group, and generate a

multi-relation summary for them, the relative size will be 0.559 by HY (0.559 by GD+, 0.560 by
KM+, both are the average value over 20 attempts). Clearly, it is harder to summarize the mixed

group, which implies that the networks of ASD patients have different structure compared to those of
healthy people, and inspires us to utilize the multi-relation summaries for ASD patient detection.

Classification. We randomly choose two brain networks, one for ASD patient and one for healthy

people. A multi-relation summary 𝑆1 is generated for the rest 47 ASD brain networks, and another

multi-relation summary 𝑆2 for the rest 47 healthy ones. Then, we alternatively apply 𝑆1 and 𝑆2 as

summaries for the two selected networks, and suggest the label “ASD” to a network if 𝑆1 results in

lower cost than 𝑆2. We repeat the procedure 20 times. Within the 20 true ASD patients, 19 of them

are correctly detected. For the 20 healthy people, 3 of them are wrongly labelled as “ASD”. It can be

easily calculated that our classification precision is 0.86, recall is 0.95, and F1-score is 0.90. This

demonstrates the effectiveness of our multi-relation summaries in this classification task.

Visualization. Finally, we visualize some subgraphs of our multi-relation summaries for the

two groups of brain networks. As shown in Figure 12, the partitionings of the same set of 14

nodes are quite different for ASD brain networks and for healthy brain networks. Although these

supernodes are well-connected to each other, they can not be further merged since they have

different superedges.

10 CONCLUSIONS
In this paper, we first revisited the classic single-relation graph summarization problem, and

provided the first polynomial-time approximation algorithm based on the 𝑘-Median clustering.

Then we introduced and investigated the novel problem of multi-relation graph summarization.

To solve the problem, we first studied the baseline two-step approaches: first generate a summary

for each relation, and then properly aggregate them. We further demonstrated and discussed the

limitations of these baselines, and proposed holistic solutions to overcome them. Among them, the

holistic 𝑘-Median+ is able to maintain the approximation guarantee over multi-relation graphs.

Finally, we developed Hybrid algorithm as our ultimate solution, by utilizing both the strengths of

𝑘-Median+ and Greedy+. Our experimental results and case studies validated the effectiveness and

efficiency of our algorithms.

ACKNOWLEDGMENTS
Arijit Khan is supported by MOE Tier1 and Tier2 grants RG117/19 and MOE2019T2-2-042.

REFERENCES
[1] K. J. Ahn, S. Guha, and A. McGregor. 2012. Analyzing Graph Structure via Linear Measurements. In SODA.
[2] K. J. Ahn, S. Guha, and A. McGregor. 2012. Graph Sketches: Sparsification, Spanners, and Subgraphs. In PODS.
[3] S. Bandyopadhyay, M. Mehta, D. Kuo, M.-K. Sung, R. Chuang, E. J. Jaehnig, B. Bodenmiller, K. Licon, W. Copeland, M.

Shales, D. Fiedler, J. Dutkowski, A. Guénolé, H. van Attikum, K. M. Shokat, R. D. Kolodner, W.-K. Huh, R. Aebersold,

M.-C. Keogh, N. J. Krogan, and T. Ideker. 2010. Rewiring of Genetic Networks in Response to DNA Damage. Science
330, 6009 (2010).

[4] N. Bansal, A. Blum, and Chawla S. 2004. Correlation Clutering. Machine Learning 56 (2004), 89–113.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:27

[5] M. A. Beg, M. Ahmad, A. Zaman, and I. Khan. 2018. Scalable Approximation Algorithm for Graph Summarization. In

PAKDD.
[6] A. A. Benczúr and D. R. Karger. 2015. Randomized Approximation Schemes for Cuts and Flows in Capacitated Graphs.

SIAM J. Comput. 44, 2 (2015), 290–319.
[7] M. Besta and T. Hoefler. 2018. Survey and Taxonomy of Lossless Graph Compression and Space-Efficient Graph

Representations. CoRR abs/1806.01799 (2018).

[8] B. Boden, S. Günnemann, H. Hoffmann, and T. Seidl. 2012. Mining Coherent Subgraphs in Multi-layer Graphs with

Edge Labels. In KDD.
[9] P. Boldi, M. Rosa, M. Santini, and S. Vigna. 2011. Layered Label Propagation: A Multiresolution Coordinate-Free

Ordering for Compressing Social Networks. In WWW.

[10] P. Boldi and S. Vigna. 2004. The Webgraph Framework I: Compression Techniques. In WWW.

[11] N. R. Brisaboa, S. Ladra, and G. Navarro. 2009. k2-Trees for Compact Web Graph Representation. In SPIRE.
[12] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. 2000. Min-wise Independent Permutations. J. Comput.

System Sci. 60 (2000), 630–659.
[13] G. Buehrer and K. Chellapilla. 2008. A Scalable PatternMining Approach toWeb Graph Compression with Communities.

In WSDM.

[14] A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. del Pozo, and S. Boccaletti. 2012. Emergence of

Network Features from Multiplexity. CoRR abs/1212.2153 (2012).

[15] M. Charikar, V. Guruswami, and A. Wirth. 2005. Clustering with Qualitative Information. J. Comput. Syst. Sci. 71, 3
(2005), 360–383.

[16] C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han. 2009. Mining Graph Patterns Efficiently via

Randomized Summaries. PVLDB 2, 1 (2009), 742–753.

[17] C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han. 2010. Mining Large Information Networks by

Graph Summarization. In Link Mining: Models, Algorithms, and Applications. 475–501.
[18] C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu. 2008. Graph OLAP: Towards Online Analytical Processing on Graphs. In

ICDM.

[19] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan. 2009. On Compressing Social

Networks. In KDD.
[20] Y. Choi and W. Szpankowski. 2012. Compression of Graphical Structures: Fundamental Limits, Algorithms, and

Experiments. IEEE Trans. Information Theory 58, 2 (2012), 620–638.

[21] D. J. Cook and L. B. Holder. 1994. Substructure Discovery Using Minimum Description Length and Background

Knowledge. J. Artif. Intell. Res. 1 (1994), 231–255.
[22] G. Cormode and S. Muthukrishnan. 2005. Space efficient mining of multigraph streams. In PODS.
[23] M. Coscia, G. Rossetti, D. Pennacchioli, D. Ceccarelli, and F. Giannotti. 2013. "You Know because I Know": A Multidi-

mensional Network Approach to Human Resources Problem. In ASONAM.

[24] C. Craddock, Y. Benhajali, C. Chu, F. Chouinard, A. Evans, A. Jakab, B. S. Khundrakpam, J. D. Lewis, Q. Li, M. Miham,

C. Yan, and P. Bellec. 2013. The Neuro Bureau Preprocessing Initiative: Open Sharing of Preprocessed Neuroimaging

Data and Derivatives. Frontiers in Neuroinformatics 41 (2013).
[25] M. E. Dickison, M. Magnani, and L. Rossi. 2016. Multilayer Social Networks. Cambridge University Press.

[26] W. Fan, J. Li, X. Wang, and Y. Wu. 2012. Query Preserving Graph Compression. In SIGMOD.
[27] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. 2008. Graph Distances in the Data-Stream Model. SIAM

J. Comput. 38, 5 (2008), 1709–1727.
[28] E. Galimberti, F. Bonchi, and F. Gullo. 2017. Core Decomposition and Densest Subgraph in Multilayer Networks. In

CIKM.

[29] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano. 2020. Core Decomposition in

Multilayer Networks: Theory, Algorithms, and Applications. ACM Trans. Knowl. Discov. Data 14, 1 (2020), 11:1–11:40.
[30] A. Gionis, H. Mannila, and P. Tsaparas. 2007. Clustering Aggregation. TKDD 1 (2007).

[31] A. Gionis and C. E. Tsourakakis. 2015. Dense Subgraph Discovery: KDD 2015 Tutorial. In KDD.
[32] X. Gou, L. Zou, C. Zhao, and T. Yang. 2019. Fast and Accurate Graph Stream Summarization. In ICDE.
[33] N. Hassanlou, M. Shoaran, and A. Thomo. 2013. Probabilistic Graph Summarization. In WAIM (Lecture Notes in

Computer Science, Vol. 7923). Springer.
[34] P. Hu and W. C. Lau. 2013. A Survey and Taxonomy of Graph Sampling. CoRR abs/1308.5865 (2013).

[35] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. 2015. Querying Knowledge Graphs by Example Entity Tuples. IEEE
Trans. Knowl. Data Eng. 27, 10 (2015), 2797–2811.

[36] B. Jin, C. Gao, X. He, D. Jin, and Y. Li. 2020. Multi-behavior Recommendation with Graph Convolutional Networks. In

SIGIR.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Xiangyu Ke, Arijit Khan, and Francesco Bonchi

[37] D. Jin, R. A. Rossi, E. Koh, S. Kim, A. Rao, and D. Koutra. 2019. Latent Network Summarization: Bridging Network

Embedding and Summarization. In KDD.
[38] k. Lee, H. Jo, J. Ko, S. Lim, and K. Shin. 2020. SSumM: Sparse Summarization of Massive Graphs. In KDD.
[39] U. Kang and C. Faloutsos. 2011. Beyond ’Caveman Communities’: Hubs and Spokes for Graph Compression and

Mining. In ICDM.

[40] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. 2011. GBASE: A Scalable and General Graph Management System.

In KDD.
[41] G. Karypis and V. Kumar. 1995. Analysis of Multilevel Graph Partitioning. In Supercomputing.
[42] X. Ke, A. Khan, and G. Cong. 2018. Finding Seeds and Relevant Tags Jointly: For Targeted Influence Maximization in

Social Networks. In SIGMOD.
[43] A. Khan and C. C. Aggarwal. 2017. Toward Query-Friendly Compression of Rapid Graph Streams. Social Netw. Analys.

Mining 7, 1 (2017), 23:1–23:19.

[44] A. Khan, S. S. Bhowmick, and F. Bonchi. 2017. Summarizing Static and Dynamic Big Graphs. PVLDB 10, 12 (2017),

1981–1984.

[45] K. U. Khan, W. Nawaz, and Y.-K. Lee. 2014. Set-Based Unified Approach for Attributed Graph Summarization. In

BDCLOUD.
[46] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. 2014. VOG: Summarizing and Understanding Large Graphs. In SDM.

[47] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. 2015. Summarizing and Understanding Large Graphs. Statistical
Analysis and Data Mining 8, 3 (2015), 183–202.

[48] D. Koutra, J. Vreeken, and F. Bonchi. 2018. Summarizing Graphs at Multiple Scales: New Trends. In ICDM.

[49] K. A. Kumar and P. Efstathopoulos. 2018. Utility-Driven Graph Summarization. PVLDB 12, 4 (2018), 335–347.

[50] K. LeFevre and E. Terzi. 2010. GraSS: Graph Structure Summarization. In SDM.

[51] S.-D. Lin, M.-Y. Yeh, and C.-T. Li. 2013. Sampling and Summarization for Social Networks. In SDM.

[52] X. Liu, Y. Tian, Q. He, W.-C. Lee, and J. McPherson. 2014. Distributed Graph Summarization. In CIKM.

[53] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. 2018. Graph Summarization Methods and Applications: A Survey. ACM
Comput. Surv. 51, 3 (2018), 62:1–62:34.

[54] M. Mao, J. Lu, G. Zhang, and J. Zhang. 2017. Multirelational Social Recommendations via Multigraph Ranking. IEEE
Trans. Cybernetics 47, 12 (2017), 4049–4061.

[55] H. Maserrat and J. Pei. 2010. Neighbor Query Friendly Compression of Social Networks. In KDD.
[56] H. Maserrat and J. Pei. 2012. Community Preserving Lossy Compression of Social Networks. In ICDM.

[57] S. Navlakha, R. Rastogi, and N. Shrivastava. 2008. Graph Summarization with Bounded Error. In SIGMOD.
[58] M. E. J. Newman and M. Girvan. 2004. Finding and Evaluating Community Structure in Networks. Phys. Rev. E 69

(2004), 026113. Issue 2.

[59] D. L. Phuoc, H. N. M. Quoc, H. N. Quoc, T. T. Nhat, and M. Hauswirth. 2016. The Graph of Things: A Step towards the

Live Knowledge Graph of Connected Things. J. Web Semant. 37-38 (2016), 25–35.
[60] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. S. Subrahmanian. 2014. Fast Influence-based Coarsening for Large

Networks. In KDD.
[61] Q. Qu, S. Liu, C. S. Jensen, F. Zhu, and C. Faloutsos. 2014. Interestingness-Driven Diffusion Process Summarization in

Dynamic Networks. In ECML PKDD.
[62] S. Raghavan and H. Garcia-Molina. 2003. Representing Web Graphs. In ICDE.
[63] M. Riondato, D. García-Soriano, and F. Bonchi. 2014. Graph Summarization with Quality Guarantees. In ICDM.

[64] Matteo Riondato, David García-Soriano, and Francesco Bonchi. 2017. Graph summarization with quality guarantees.

Data Min. Knowl. Discov. 31, 2 (2017), 314–349.
[65] J. Rissanen. 1978. Modelling by the Shortest Data Description. Automatica 14 (1978).
[66] R. A. Rossi and R. Zhou. 2018. GraphZIP: A Clique-based Sparse Graph Compression Method. J. Big Data 5 (2018), 10.
[67] B.-S. Seah, S. S. Bhowmick, and C. F. Dewey Jr. 2014. DiffNet: Automatic Differential Functional Summarization of

dE-MAP Networks. Methods 63, 3 (2014).
[68] B.-S. Seah, S. S. Bhowmick, C. F. Dewey Jr, and H. Yu. 2012. FUSE: A Profit Maximization Approach for Functional

Summarization of Biological Networks. BMC Bioinformatics 13 (2012).
[69] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos. 2015. TimeCrunch: Interpretable Dynamic Graph Summa-

rization. In KDD.
[70] L. Shi, S. Sun, Y. Xuan, Y. Su, H. Tong, S. Ma, and Y. Chen. 2016. TOPIC: Toward Perfect Influence Graph Summarization.

In ICDE.
[71] K. Shin, A. Ghoting, M. Kim, and H. Raghavan. 2019. SWeG: Lossless and Lossy Summariation of Web-Scale Graphs.

In WWW.

[72] M. Stella, C. S. Andreazzi, S. Selakovic, A. Goudarzi, and A. Antonioni. 2017. Parasite Spreading in Spatial Ecological

Multiplex Networks. J. Complex Networks 5, 3 (2017), 486–511.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Multi-relation Graph Summarization 1:29

[73] N. Tang, Q. Chen, and P. Mitra. 2016. Graph Stream Summarization: From Big Bang to Big Crunch. In SIGMOD.
[74] R. L. Thorndike. 1953. Who Belongs in the Family? Psychometrika 18 (1953), 267–276.
[75] Y. Tian, R. A. Hankins, and J. M. Patel. 2008. Efficient Aggregation for Graph Summarization. In SIGMOD.
[76] Y. Tian and J. M. Patel. 2010. Interactive Graph Summarization. In Link Mining: Models, Algorithms, and Applications.

389–409.

[77] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka. 2011. Compression of Weighted Graphs. In KDD.
[78] I. Tsalouchidou, G. De Francisci Morales, F. Bonchi, and R. Baeza-Yates. 2016. Scalable dynamic graph summarization.

In BigData.
[79] S. White and P. Smyth. 2005. A Spectral Clustering Approach To Finding Communities in Graph. In SDM.

[80] Y. Wu, S. Yang, M. Srivatsa, A. Iyengar, and X. Yan. 2013. Summarizing Answer Graphs Induced by Keyword Queries.

PVLDB 6, 14 (2013), 1774–1785.

[81] L. Xia, C. Huang, Y. Xu, P. Dai, X. Zhang, H. Yang, J. Pei, and L. Bo. 2021. Knowledge-enhanced Hierarchical Graph

Transformer Network for Multi-behavior Recommendation. In AAAI.
[82] X. Yan, X. J. Zhou, and J. Han. 2005. Mining Closed Relational Graphs with Connectivity Constraints. In KDD.
[83] J. Yang, J. You, and X. Wan. 2021. Graph Embedding via Graph Summarization. IEEE Access 9 (2021), 45163–45174.
[84] J. Zhang, S. S. Bhowmick, H. H. Nguyen, B. Choi, and F. Zhu. 2015. DaVinci: Data-driven Visual Interface Construction

for Subgraph Search in Graph Databases. In ICDE.
[85] X. Zhang and T. Özsu. 2019. Correlation Constraint Shortest Path over Large Multi-Relation Graphs. PVLDB 12, 5

(2019), 488–501.

[86] P. Zhao, C. C. Aggarwal, and M. Wang. 2011. gSketch: On Query Estimation in Graph Streams. PVLDB 5, 3 (2011),

193–204.

[87] F. Zhou, S. Mahler, and H. Toivonen. 2010. Network Simplification with Minimal Loss of Connectivity. In ICDM.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

	Abstract
	1 Introduction
	1.1 Background and related work
	1.2 Multi-relation graph summarization
	1.3 Why not keeping an individual summary for each relation?
	1.4 Contributions and roadmap

	2 Other related work
	3 Single-Relation Graph Summarization: k-Median Clustering
	4 Multi-Relation Graph Summary: Baseline Methods
	4.1 Single-relation graph summarization algorithms
	4.2 Summary aggregation
	4.3 Limitation of baselines methods

	5 Multi-Relation Graph Summary: Holistic Methods
	5.1 k-Median+
	5.2 Greedy+
	5.3 Randomized+

	6 Finding Optimal Number of Supernodes
	7 Multi-Relation Graph Summary: Hybrid Algorithm
	8 Experimental Results
	8.1 Experimental setup
	8.2 Performance analyses
	8.3 Exact storage cost
	8.4 Scalability analysis
	8.5 Summary and recommendation

	9 Applications and case studies
	9.1 Efficient query processing on graph summaries
	9.2 Visualization case study on DBLP
	9.3 Visualization and classification case studies on brain networks

	10 Conclusions
	Acknowledgments
	References

