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ABSTRACT
Graph neural networks (GNNs) are widely used in many downstream
applications, such as graphs and nodes classification, entity resolu-
tion, link prediction, and question answering. Several interpretability
methods for GNNs have been proposed recently. However, since they
have not been thoroughly compared with each other, their trade-offs
and efficiency in the context of underlying GNNs and downstream
applications are unclear. To support more research in this domain,
we develop an end-to-end interactive tool, named gInterpreter, by re-
implementing 15 recent GNN interpretability methods in a common
environment on top of a number of state-of-the-art GNNs employed
for different downstream tasks. This paper demonstrates gInterpreter
with an interactive performance profiling of 15 recent GNN inter-
pretability methods, aiming to explain the complex deep learning
pipelines over graph-structured data.

CCS CONCEPTS
• Computing methodologies → Machine learning approaches; •
Information systems → Network data models.
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1 INTRODUCTION
Modern deep learning models are data-hungry and considered as
black-box. In black-box models, complex data move through various
processes involved in machine learning (ML) to generate the final
predictive output, creating a data pipeline [12]. While the data man-
agement community extensively worked on early and middle-stages
of such data pipelines, e.g., data integration, cleaning, validation,
enrichment, models management, query optimization, AutoML, etc.,
the late stages of the pipeline, such as explaining the results of
black-box deep learning models in regards to downstream applica-
tions received relatively less attention by this community [3, 6, 16].
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Explainability would improve the model’s transparency related to
fairness, privacy, and other safety challenges, thus enhancing the
trust in decision-critical applications, democratizing deep learning
techniques, and easing their adoption in the real-world [19].

In this work, we focus on interpretability of deep learning meth-
ods over graph-structured data. Graph neural networks (GNNs) [22]
are useful in graphs and nodes classification, link prediction, entity
resolution, question answering, fraud detection, etc. Recently, inter-
pretability methods for graph neural networks are becoming popular.
For a taxonomic survey of these approaches, we refer to [26]. How-
ever, since the interpretability methods have not been thoroughly
compared with each other, it is unclear whether the later methods
outperform the earlier ones. The evaluation frameworks, datasets,
metrics, and the GNNs employed were often not consistent across
these works, neither they were widely compared beyond graphs
and nodes classification tasks. Lack of ground truth, benchmarks,
and errors introduced while evaluating the performance of GNN
interpretability methods are other concerns [4].

We address the aforementioned challenges by re-implementing
15 recent GNN interpretability methods in a common environment
and code base, using several real-world graph datasets from diverse
domains, identical evaluation metrics, and novel ground truth, via
employing a number of state-of-the-art GNNs and downstream tasks.
With our system, gInterpreter, one can visualize important findings,
such as which interpretability method is more suitable under what
metrics and scenarios. A user may plug-and-play with different
graph datasets, GNNs, downstream tasks, interpretability tools, and
can also interactively update the test graph to realize the importance
of its salient features (e.g., important nodes, edges, node- and edge-
attributes) in the context of downstream applications. Thus, we
believe that gInterpreter would benefit researchers, domain experts,
and data scientists. A video demonstration of our system is available
at YouTube - https://youtu.be/z4R_v8Lbmsw.

Differences with prior benchmarking efforts. Earlier [1, 4, 13, 18]
and recently [9, 26] empirically studied GNN-based interpretability
methods. Ours is a comprehensive evaluation that includes more
recent interpretability methods, state-of-the-art GNNs, and down-
stream tasks beyond graphs and nodes classification (e.g., link pre-
diction and entity resolution). To the best of our knowledge, the
demonstration of our system, gInterpreter, is the first demonstration
proposal about interactive performance profiling of 15 recent GNN
interpretability methods. We select them as they are state-of-the-art
instance-specific GNN interpretability methods from 4 different cat-
egories [26]: gradient-based, perturbation-based, surrogate, and de-
composition methods. Additionally, we compare more recent GNN
interpretability methods not considered in [26], e.g., counterfactuals
[20]. We re-implement 15 interpretability methods from different
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Figure 1: The architecture of the gInterpreter system

categories (e.g., model-specific vs. model-agnostic, forward vs. back-
ward, perturbation-based vs. gradient-based vs. decomposition-based
vs. surrogate models vs. counterfactuals), together with advanced
GNNs employed for several downstream applications, and evalu-
ate them via a diverse set of metrics, efficiency results, interactive
approaches, and novel ground truth, compared to earlier works.

2 FRAMEWORK OVERVIEW
Figure 1 shows gInterpreter’s architecture with four layers.
Data storage layer. The back-end stores training and test graphs and
their embeddings. The graph structure is represented as an adjacency
matrix. Node and edge features are stored as one-hot encodings. We
store node embeddings for a graph in a dictionary: each node as a
key and its embedding vector as the associated value.
GNN layer. We employ 7 recent GNNs for graph and node clas-
sification, link prediction, and entity resolution tasks: GCN+GAP,
DGCNN, DiffPool, GIN, SEAL, LGLP, and GraphER (§3). We use
torch_geometric, dive into graphs (DIG), and deep graph libraries
(DGL) for GNN implementation. The pretrained model configura-
tion and parameters are stored as .pt files.
Interpretability layer. We use 15 instance-specific GNN interpretabil-
ity methods from 5 categories: gradient-, perturbation-, and decom-
position -based, surrogate models, and counterfactuals (§3). We also
implement them using DIG, DGL, and torch_geometric libraries.
Visualization and interaction layer. The output layer of gInterpreter
reports the performance and efficiency results of the selected GNN
and the interpretability method in a tabular format. Additionally,
it provides an interactive displayer (built using NetworkX, dash,
and pyvis libraries) to visualize the test graph, GNN model, im-
portant neurons, and salient graph features according to a selected
interpretability method. The user may modify the test graph (while
ensuring that the new graph is valid for that domain) and realize the
importance of salient features related to a downstream task.

3 GNN AND INTERPRETABILITY METHODS
We briefly introduce recent graph neural networks and their inter-
pretability methods that have been employed in our system.

Graph neural networks (GNNs). Recent GNNs are convolution-
based, known as graph convolutional neural networks (GCNs), con-
ducting recursive neighborhood aggregation. We consider 4 state-of-
the-art GNNs designed for node and graph classification, 2 GNNs
for link prediction, and 1 GNN for entity resolution.
GCN+GAP consists of graph convolutional layers following Kipf
and Welling [7], creating node embeddings useful for node classifica-
tion. For graph classification, node features from the last GCN layer
are aggregated (known as a READOUT function), e.g., with a global
average pooling (GAP) layer [13] to compute the entire graph’s
representation, followed by dense layers and a softmax classifier.
DGCNN [29] uses graph convolutional layers, followed by a Sort-
Pooling layer, classic convolutional and dense layers, and then a
softmax classifier. The SortPooling layer sorts nodes based on node
features from the last GCN layer and selects the top-𝑘 nodes.
DiffPool [25] learns a soft clustering of nodes at each DiffPool layer,
which forms the coarsened input for the next DiffPool layer. Every
DiffPool layer contains a collection of GCN layers for node em-
beddings generation and their probabilistic assignments to different
clusters. Embedding vectors from the last DiffPool layer are aggre-
gated by taking maximum across each embedding dimension. This
is followed by dense layers and a softmax classifier.
GIN [23] employs injective neighborhood aggregation and READ-
OUT functions to generate a more powerful GNN.
SEAL [28] extracts local enclosing subgraphs around links as input,
and applies GNN learning to predict how likely the links exist.
LGLP [2] converts the original graph into a line graph, and conducts
GNN-based node classification in the line graph, which solves the
link prediction problem in the original graph.
GraphER [8] trains an Entity Record Graph Convolutional Network
(ER-GCN), which embeds semantic and structural information into
token embeddings, thus conducting token-centric entity resolution.

GNN interpretability methods. We study 9 recent forward and
another 6 backward interpretability methods.

Forward interpretability methods are GNN model-agnostic, re-
lying on learning evidence about graphs or nodes passed through
the GNN model. They could be perturbation-based (e.g., GNNEx-
plainer [24], PGExplainer [10], GraphMask [14], and SubgraphX
[27]), that is, masking some node features and/or edge features
and analyzing the resulting changes when the modified graphs are
passed through the GNN model. They might also employ a simple,
interpretable surrogate model to approximate the predictions of a
complex GNN model. Examples include PGM-Explainer [21], RelEx
[30], GraphLime [5], and DnX [11]. Additionally, we consider one
counterfactuals-based GNN interpretability method, CF2 [20].

Backward interpretability methods are model-specific and can be
either gradient-based (i.e., backpropagating an importance signal
from the output neuron of the model to the individual nodes of the
input graph), or decomposition-based (i.e., distributing the prediction
score in a backpropagation manner until the input layer). Thus, we
observe which nodes, edges, and features contribute the most to
the specific output label in the model. SA [1], GuidedBP [1], CAM
[13], and Grad-CAM [17] are examples of gradient-based methods,
whereas LRP [15] and ExcitationBP [13] are decomposition-based.
Sensitivity Analysis (SA) uses the squared values of gradients as the
importance of different input features.
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Figure 2: User interface of the gInterpreter system: Graph classification with salient features

GuidedBP follows a similar measure as SA, but it only backpropa-
gates positive gradients, while zero-ing out negative gradients.
GRAD-CAM is class-discriminative, computing a coarse-grained
feature importance map by associating the feature maps in the final
convolutional layer with specific classes, based on the gradients
of each class with respect to each feature map, and then using the
weighted activations of the feature maps as an indication of which
input features are important.
LRP, ExcitationBP decompose the output prediction score to differ-
ent node importance scores following certain rules. Different from
earlier gradient-based methods, they identify which input features
contribute the most to the output, without focusing on its variation.
GNNExplainer learns soft masks for edges and node features to
generate an evidence subgraph of the input graph and the masks
are optimized to maximize the mutual information between the
predictions of the input graph and that of the evidence subgraph.
PGExplainer follows the same paradigm as GNNExplainer which
maximizes the mutual information between the predictions of the
input graph and that of the evidence subgraph; however, it only
generates edge masks by using a deep neural network to parame-
terize the generation process of the evidence subgraph. Due to its
parameterized generation process, PGExplainer can explain multiple
instances collectively and also works in an inductive setting.
GraphMask learns a parameterized classifier that, for every edge
in every GNN layer, predicts if that edge can be dropped without
sufficiently changing the prediction of the model.
SubgraphX uses Monte Carlo tree search to select the most important
subgraph with Shapley value-based formulation.
PGM-Explainer uses an interpretable Bayesian network generated
from node features perturbation.
RelEx explains in two steps – first by perturbation-based learning of
a local differentiable approximation for the GNN model, and then
learning an interpretable mask over the local approximation.
GraphLime fits a simpler, nonlinear surrogate model to the local
dataset surrounding a node to explain node classification.

Distill n’ Explain (DnX) learns a surrogate GNN via knowledge dis-
tillation, and then extracts explanations by solving a convex program.
CF2 uses causal inference theory and generates both necessary and
sufficient (counterfactual and factual) explanations.

Evaluation metrics. We consider several metrics including effi-
ciency. Fidelity [26] computes the decrease in accuracy by masking
important (or salient) input features having attribution values greater
than a threshold. Contrastivity [13] computes the normalized dif-
ference of saliency maps across different classes, reporting how
class-specific the explanations are. Sparsity [13] measures the size
of the explanation set. Besides individual test instance-specific re-
sults, we demonstrate GNN model-specific aggregate measure by
visualizing important frequent subgraphs induced by salient nodes
from a set of test instances. When the ground-truth interpretability
result is available (e.g., for synthetically generated graphs) [4], we
report accuracy, precision, recall, and F1-measures of the employed
interpretability methods. Finally, users can interactively update the
input test graph to understand the importance of its salient features.

4 DEMONSTRATION
Demonstration and audience. We demonstrate with a web appli-
cation. Our demonstration will fill the gap between black-box deep
learning algorithms and explanation of their results, by interpreting
technical complexities of ML pipelines. gInterpreter can be useful
in selecting the best interpretability method for a certain task and
dataset by comparing the results with ground truth (if available) or
any domain-specific knowledge. All the interpretability methods
covered by gInterpreter compute on-the-fly explanations, except
SubgraphX [27] which is expensive.

User interface and interactiveness. Figure 2 presents the graphical
user interface of our web application. When a user initiates this web
application, it offers two input columns that have a set of interac-
tive choices. In the left column, users can choose the task, the test
graph/node(s) to select, the pre-trained GNN model to be applied
for the task, and finally the interpretability method.
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Table 1: Performance of GNN graph classification models on the MU-
TAG dataset

Model AUC-ROC AUC-PRC Accuracy Avg. Time/Epoch
GCN + GAP 0.80 0.81 0.71 0.05 sec
DGCNN 0.91 0.82 0.85 0.12 sec

DIFFPOOL 0.56 0.75 0.67 0.04 sec
GIN 0.92 0.82 0.84 0.07 sec

In the second part of the input section, users can control the
outputs to be returned, e.g., displaying the test object, the GNN
model architecture, general as well as instance-specific statistics
derived from the selected GNN and the interpretability method. For
the input section, the application also offers a threshold slider to be
set by the user on the intended value that determines the important
components/attributes of the selected object accordingly.

gInterpreter permits users to consider isomers of the selected
graph (which are structurally similar to the input graph with some
differences in node and edge attributes, and have different class
labels than the input graph), thus users can visualize the importance
of salient features in the selected graph, compared to its isomers,
in the context of a downstream task. Moreover, users can visualize
active subgraphs induced by salient nodes from many test graphs
w.r.t. the selected interpretability method.

Based on selections made by the user, the displayer provides
three interactive 3D network visualization panels: (1) the selected
graph, (2) its isomers (if available), and (3) active subgraphs that
are frequently present based on the selected interpretability method.
Over these interactive panels, users can hover the cursor and obtain
annotations of each object, for instance, the number of connections
for a node, the type of connections between two objects, and the
intrinsic characteristics of objects.

The displayer also depicts the architecture of the selected GNN
model. The network is represented in a 2D interactive panel. It allows
users to hover on neurons, layers, and other components of a GNN.
By hovering the cursor, users can observe the contribution of all
neurons to any prediction, scaled and non-scaled contributions of
the neuron, and the type of layer that the neuron belongs to.

The other output is to provide statistical information about the
selections made by a user. The results can be divided into two cate-
gories: general and instance-specific. The general statistics demon-
strate the mean performance of the selected model and the inter-
pretability method over many test instances. The instance-specific
part corresponds to displaying performance analysis of the selected
model and the interpretability method on a selected object.

The application offers downloading of associated weight sets and
configurational details of the pretrained GNN models.
Demonstration with the MUTAG dataset. The MUTAG (https://ls11-

www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets) is an open-source dataset
of mutagenic aromatic and heteroaromatic nitro compounds classi-
fied according to their mutagenic effects on a bacterium . For the
graph classification task, we shall demonstrate gInterpreter with this
dataset, highlighting which graph components have potential im-
pacts on classification results. While in the following we discuss our
demonstration scenario and result snippets for this dataset and graph
classification task, during demonstration we shall also showcase
other downstream tasks (e.g., link prediction, entity resolution).

Table 2: Performance of selected interpretability methods on the MU-
TAG dataset and graph classification task

GCN+GAP Classifier
Methods Fidelity Contrastivity Sparsity

GNNExplainer 0.481 0.789 0.847
ExcitationBP 0.029 0.526 0.703

LRP 0.004 0.473 0.192
SA 0.148 0.052 0.687

GuidedBP 0.139 0.210 0.879
DGCNN Classifier

Methods Fidelity Contrastivity Sparsity
GNNExplainer 0.361 0.842 0.831
ExcitationBP 0.283 0.170 0.801

LRP 0.253 0.478 0.639
SA 0.164 0.095 0.472

GuidedBP 0.151 0.193 0.779

Figure 3: GNNExplainer and ExcitationBP interpretability results on
two compounds from two different classes in the MUTAG dataset

Table 1 shows the performance of 4 GNN classification models.
We notice that DGCNN and GIN outperform others in terms of
AUC-ROC, AUC-PRC, and accuracy metrics, which is due to the
benefits of SortPooling layer in DGCNN and injective nature of GIN.
The average training time required per epoch is also modest for GIN.

Table 2 indicates that the performance of the same interpretability
method is enhanced when combined with a better GNN classifica-
tion model (e.g., DGCNN over GCN+GAP). Among the selected
methods in Table 2, GNNExplainer achieves better interpretability
results (i.e., higher fidelity, contrastivity, and sparsity) compared to
other backward interpretability methods.

Figure 3 presents interpretability results of GNNExplainer and
ExcitationBP on two compounds from two different classes in the
MUTAG dataset. The dark (red color-filled) nodes are important
nodes as identified by an interpretability method, where we set the
importance threshold 0.5 on a scale of [0, 1]. We find that GNNEx-
plainer is more discriminative compared to ExcitationBP, since the
former can well-identify the differences between two compounds
selected from two different classes.

We believe that our benchmarking and visualization results ob-
tained from gInterpreter will be useful to both expert and non-expert
users in the domain of interpretability for GNNs.
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