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ABSTRACT

We study the fundamental problem of finding the set of top-k edge
colors that maximizes the reliability between a source node and
a destination node in an uncertain and edge-colored graph. Our
top-k reliable color set problem naturally arises in a variety of
real-world applications including pathway finding in biological net-
works, topic-aware influence maximization, and team formation
in social networks, among many others. In addition to the #P-
completeness of the classical reliability finding problem between a
source and a destination node over an uncertain graph, we prove
that our problem is also NP-hard, and neither sub-modular, nor
super-modular. To this end, we aim at designing effective and scal-
able solutions for the top-k reliable color set problem. We first
introduce two baselines following the idea of repetitive inclusion
of the next best edge colors, and we later develop a more effi-
cient and effective algorithm that directly finds the highly-reliable
paths while maintaining the budget on the number of edge-colors.
An extensive empirical evaluation on various large-scale and real-
world graph datasets illustrates that our proposed techniques are
both scalable and highly accurate.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search process; H.2.8
[Database Applications]: Uncertain networks

General Terms

Algorithms, Performance
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1. INTRODUCTION
Uncertainty is inherent in graph data due to a variety of reasons,

such as noisy measurements, inference and prediction models, or
explicit manipulation, e.g., for privacy purposes. In these cases,
data is represented as an uncertain graph, that is, a graph whose
arcs are accompanied with a probability of existence. A fundamen-
tal problem in uncertain graphs is reliability query, which asks to
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estimate the probability that a given destination node is reachable
from a given source node. The reliability estimation problem has
been widely studied in device networks [1], social networks [9], as
well as in biological networks [10].

Nevertheless, most of these reliability queries over uncertain graphs
are performed without considering any edge attributes, which we
simply refer to as edge colors. Since complex networks, such as bi-
ological, social, and information networks usually exhibit diverse
types of relationships among the entities, it is often meaningful to
define reliability via a constrained set of edge colors [3]. To this
end, we study the following novel and critical problem: given a

source and a destination node in an edge-colored, uncertain graph

and a small positive integer k, find the edge-color-set of size k that

maximizes the reliability from the source to the destination.

Application. The top-k reliable color set problem naturally arises
in a variety of real-world scenarios as follows.

Pathway Formation in Biological Networks: In order to understand
the metabolic chain reactions in cellular systems, biologists utilize
metabolic networks, where each vertex represents a compound, and
a directed edge between two compounds indicates that one com-
pound can be transformed into another through a certain chemical
reaction [8]. The edge colors record the enzymes which control
these reactions. In addition, uncertainty arises in metabolic net-
work edges due to noisy measurements, experimental errors, in-
ference, and prediction models. One of the basic questions on such
networks is finding the top-k set of enzymes which create pathways
of very high probabilities between two given compounds.

Topic-Aware Information Cascade: Marketing companies are grad-
ually turning to social networks such as Facebook, Twitter, and
LinkedIn for campaigning of their products. However, the influ-
ence of an individual over another in a social network often changes
drastically based on advertisement contents [2]. Therefore, one can
formulate the topic-aware information cascade problem with an
uncertain graph model, where the probabilities on the edges vary
based on advertisement features. In this setting, it is critical for the
marketing companies to identify the top-k advertisement features
such that the information cascade from an early adopter to a group
of target customers could be maximized.

Challenges. Our top-k reliable color set problem is a non-trivial
one — in fact, the simplest reliability computation problem over
uncertain graphs is a #P-complete problem [1]. Due to the large
size of networks, most work in this regard has resorted to Monte-
Carlo (MC) sampling methods [6], as well as other sampling tech-
niques improving upon the efficiency of MC methods (e.g., RHT-
sampling [9]). These sampling-based approaches, in reality, esti-
mate the reliability between two nodes very well, and they usually
require only polynomial time in the size of the network.
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However, even considering polynomial-time sampling techniques
to estimate reliability, the top-k reliable color set problem remains
NP-hard. More importantly, unlike the classical max-k cover prob-
lem, our problem is neither sub-modular, nor super-modular. There-
fore, an iterative hill-climbing algorithm that maximally increases
the marginal gain at every iteration, and which has been widely
used for solving the max-k cover problem, can no longer be em-
ployed in our case for deriving similar approximation guarantees.

Our contribution. We propose two baselines to solve our top-k re-
liable color set problem, and we also design a more efficient and ef-
fective algorithm that directly finds the highly-reliable paths while
maintaining the budget on the number of edge-colors. Our experi-
mental results over three real-world large-scale graph datasets attest
the effectiveness and efficiency of our approach.

2. PRELIMINARIES

2.1 Problem Formulation
An edge-labeled, uncertain graph G is a quadruple (V,E,C, P ),

where V is a set of n nodes, E ⊆ V × V is a set of m directed
edges, C is the set of all edge-colors in G, whereas C(e) ⊆ C

is a set of edge-colors assigned to the edge e ∈ E. Finally, P :
E×C → (0, 1) assigns a conditional probability on an edge given
a specific color, i.e., P (e|c) ∈ (0, 1).

Edge Existence Probability. In this work, we assume that the
conditional probability of an edge e ∈ E given some color c ∈
C(e), that is, P (e|c) is independent [3] of the other colors in C(e).
Thus, the edge-existence probability of e given the edge-colors
c1, c2, . . . , cr ∈ C is: P (e|c1c2 . . . cr) = 1−

∏r

i=1
(1−P (e|ci)).

Given a predefined edge-color set C1 ⊆ C, one can compute all
the edge-existence probabilities in the uncertain graph G. If the
edge-color setC1 is predefined, we simply write the edge-existence
probabilities as P (e|C1).

Possible World Semantics. The bulk of the literature on uncer-
tain graphs and device-network-reliability assumes the existence of
the edges in the graph independent from one another and interprets
uncertain graphs according to the well-known possible-world se-
mantics [6, 8, 9]. More precisely, given a pre-defined edge-color
set C1, a possible graph G ⊑ 〈G, C1〉 is a pair (V, EG), where
EG ⊆ E, and its sampling probability is:

Pr(G|C1) =
∏

e∈EG

P (e|C1)
∏

e∈E\EG

(1− P (e|C1)) (1)

For a possible deterministic graph G ⊑ 〈G, C1〉, we define an
indicator function IG(s, t) to be 1 if there is a path in G from a
source node s ∈ V to a target node t ∈ V , and 0 otherwise. Finally,
the probability that t is reachable from s in the uncertain graph G
and via a pre-defined edge-color setC1 is defined as the edge-color-
constrained reliability from s to t, and it is denoted by RC1

(s, t).
The edge-color-constrained reliability is computed as follows.

RC1
(s, t) =

∑

G⊑〈G,C1〉

[IG(s, t)× Pr(G|C1)] (2)

The number of possible worlds G ⊑ 〈G, C1〉 is exponential in
the number of edges, which makes the exact reliability computa-
tion a #P-complete problem; and hence, almost infeasible even
for moderately-sized graphs.

Problem Statement. We are now ready to define our problem
statement.

PROBLEM 1 (TOP-k RELIABLE COLOR SET). Given a source

node s ∈ V and a destination node t ∈ V in an edge-colored, un-

certain graph G = (V,E,C, P ), and a small positive integer k,
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Figure 1: Example for Non-Sub-Modularity and Non-Super-Modularity

find the edge-color-set C1 of size k that maximizes the edge-color-

constrained reliability RC1
(s, t) from s to t. Formally,

argmax
C1⊆C

RC1
(s, t)

such that |C1| = k (3)

Intuitively, the top-k reliable edge-colors create multiple paths
of high probabilities from source to destination node.

2.2 Hardness Results
Our problem, however, is non-trivial. Theorem 1 shows that

Problem 1 is NP-hard, even when one considers polynomial-time
reliability estimation approaches (e.g., MC sampling).

THEOREM 1. The top-k reliable color set problem isNP-hard.

PROOF. We proveNP-hardness by a reduction from the max-k
cover problem. In max-k cover problem, we are given a universe
U , and a set of h subsets of U , i.e., S = {S1, S2, . . . , Sh}, where
Si ⊆ U for all i ∈ [1 . . . h]. The objective is to find a subset S∗

of S of size k such that the number of elements covered by S∗ is
maximized, i.e., so as to maximize | ∪S∈S∗ S|. Given an instance
of the max-k cover problem, we construct in polynomial time an
instance of our top-k reliable color set problem.

We put in our edge-colored, uncertain graph G a source node s

and a destination node t. Next, we include a set of nodes u1, u2, . . . ,

uZ , one for each element in U(Z = |U |), and connect each of
these nodes u to the destination node t with a directed edge (u, t).
Each such edge (u, t) has color c, and we assign a probability
P ((u, t)|c) = p, with p < 1. We then add a set of nodes x1, x2, . . . ,

xZ , one for each element in U(Z = |U |), and connect each of
these nodes x to the source node t with a directed edge (s, x).
Each such edge (s, x) also has color c, and we assign a probability
P ((s, x)|c) = p, with p < 1. Finally, if some element ui ∈ U

is covered by at least one of the subsets in S , we add a directed
edge (xi, ui) in G. For each of Sj ∈ S that covers the item ui, we
assign a color cj on the edge (xi, ui), and then, we also assign a
probability P ((xi, ui)|cj) = 1.

Now, we ask for a solution of our problem on the graph con-
structed this way by using k + 1 colors. One may observe that
every solution to our problem necessarily takes color c, because
otherwise there would be no way to connect s to t. Also, the re-
liability is maximized by properly selecting colors that make each
of the edges (xi, ui) exist with probability 1. However, in order
for each edges (xi, ui) to exist with a probability 1, it suffices to
have selected only one of the colors between such a pair of nodes.
Thus, we can see that maximizing reliability with k+1 colors cor-
responds to maximizing coverage of elements in U with k sets in
S . Hence, the theorem.

In this paper, we leave the following question open whether Prob-
lem 1 can be approximately solved within a constant factor in poly-
nomial time or not. However, we show that unlike the max-k
cover problem, our top-k reliable color set problem is neither sub-
modular, nor super-modular; therefore, making it difficult to design
an approximate solution with provable performance guarantees.
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CLAIM 1. The top-k reliable color set problem is not sub-modular.

A function f() is sub-modular if it satisfies the following prop-
erty: f(A ∪ x) − f(A) ≥ f(B ∪ x) − f(B), for all elements
x and all pairs of sets A ⊆ B. We show non-sub-modularity of
our problem with an example in Figure 1(a). More specifically, let
C1 = {c2}, C2 = {c1, c2}. It is easy to verify that RC1

(s, t) =
0, RC1∪{c3}(s, t) = 0, RC2

(s, t) = 0.3, and RC2∪{c3}=0.475.
Clearly, the sub-modularity property does not hold in this example.

CLAIM 2. The top-k reliable color set problem is not super-

modular.

A function f() is super-modular if it satisfies the following prop-
erty: f(A ∪ x) − f(A) ≤ f(B ∪ x) − f(B), for all elements
x and all pairs of sets A ⊆ B. We show non-super-modularity of
our problem with an example in Figure 1(b). LetC1 = {c1},C2 =
{c1, c3}. One may verify thatRC1

(s, t) = 0.25,RC1∪{c2}(s, t) =
0.438, RC2

(s, t) = 0.438, and RC2∪{c2} = 0.578. Hence, the
super-modularity property does not hold in this example.

3. ALGORITHMS FOR TOP-K

COLOR RELIABILITY
As the top-k reliable color set problem is NP-hard, we develop

two greedy baselines, as well as a more effective and efficient heuris-
tic solution that provides a good approximation to our problem.

3.1 Individual Top-k: First Baseline
Our individual top-k algorithm estimates the reliability between

the source and the destination nodes attained by each edge-color in-
dividually. In other words, we compute R{c}(s, t) for every edge-
color c ∈ L. We report the top-k edge colors that achieve the
highest reliability individually.

Time Complexity. For each color, we can estimate reliability by
applying the MC sampling technique. If we require total K itera-
tions of MC sampling in order to get a good estimate, then the time
complexity to compute the reliability for each color is given by:
O(K(n+ e)). Here, n and e are the number of nodes and edges in
the uncertain graph, respectively. Therefore, the overall complex-
ity of our individual top-k baseline algorithm isO(|C|K(n+ e)+
|C| log k), the last term is due to finding the top-k colors based on
individual reliability values.

Difficulties. The individual top-k algorithm suffers from several
shortcomings, which are both accuracy and efficiency-driven.

• This baseline algorithm is unable to capture the contribution
of the paths that consist of multiple edge-colors. For exam-
ple, in Figure 1(a), the individual reliability attained by each
of the three colors is 0; and therefore, if we are to select
the top-2 color-set, it will be a random selection by our first
baseline. However, in reality, the top-2 color set is {c1, c2}.

• For large-scale graph datasets, the MC sampling itself is very
inefficient [9]; and performing such sampling for |C| times,
that is, one for each edge-color causes scalability bottleneck.

3.2 Iterative Hill-Climbing: Second Baseline
Our iterative hill-climbing baseline approach attempts at solving

the accuracy bottleneck of the individual top-k algorithm. At each
iteration of our hill-climbing algorithm, we add the color c∗ to C1

that maximizes the marginal gain in terms of reliability given the
partial set C1, which was already computed in the previous itera-
tions. Formally,

c
∗ = argmax

c∈C\C1

[RC1∪{c}(s, t)−RC1
(s, t)] (4)

We perform k iterations to identify the top-k reliable color set.

Time Complexity. The time complexity of each iteration of our
hill-climbing algorithm is O(|C|K(n + e)). Since, we require to-
tal k iterations, the overall complexity of our second baseline is
O(|C|kK(n + e)).

Difficulties. The iterative hill-climbing method also suffers from
both accuracy and efficiency issues.

• Our second baseline performs MC sampling over the entire
graph for |C|k times. Hence, this is even slower than our
first baseline method.

• Although the iterative hill-climbing algorithm partially solves
the accuracy issue of our first baseline, the issue is still present
in the initial phases of the algorithm. For example, in Fig-
ure 1(a), the individual reliability attained by each of the
three colors is 0. Therefore, in the first iteration of our hill-
climbing method, it will perform a random selection. If our
algorithm selects c3 as the first color in C1, then the second
selected color would be c1. One may note that the top-2 re-
liable color set is {c1, c2}, while the iterative hill-climbing
may find the set {c1, c3}, which is a sub-optimal choice. We
refer to this issue as the “cold-start” problem.

3.3 Most-Reliable-Path based Heuristic
We finally introduce our most-reliable-path based heuristic ap-

proach that eliminates the efficiency bottleneck of the two base-
lines. We follow a two-step approach as discussed below.

Most Reliable Paths Selection. Given an uncertain, edge-colored
graph G = (V,E,L, P ), a source s ∈ V , and a destination t ∈
V , we first convert G into an edge-colored, uncertain, multi-graph
G′ as follows. For each edge (u, v) in G, if the edge-color set
C(u, v) = {c1, c2, . . . , ci} has total i colors, we add i edges {e1, e2,
. . . , ei}, with colors c1, c2, . . . , ci, respectively, between u and v

in the multi-graph G′. Each newly constructed edge ei is assigned a
probability: P (ei) = P ((u, v)|ci). One may note that G and G′ are
equivalent in terms of our problem. Next, we select the top-r most
reliable paths from source s to destination t in G′, where the reli-
ability of a path is defined as the product of the edge-probabilities
along that path. The main intuition behind selecting the top-r most
reliable paths is that the reliability between two nodes can often be
approximated well by a collection of the top-r most-reliable paths
between those two nodes [4]. The value of the parameter r is de-
termined empirically, such that the inclusion of the top-(r + 1)-th
reliable path does not significantly increase the reliability from s to
t that was already achieved via the subgraph induced by the top-r
most reliable paths.

The top-r most reliable paths from s to t can be obtained by first
converting the uncertain, multi-graph G′ into an edge-weighted,
multi-graph G′′ as follows. Each edge e with probability P (e) in
G′ is assigned a weight {− logP (e)} in G′′. Therefore, the top-r
shortest paths in G′′ will be the top-r most reliable paths in G′. We
next apply the fastest known algorithm by Eppstein et. al. [5] in
order to find the top-r shortest paths (with cycles) in G′, which has
time complexity O(|C|e + nlogn + r). Here, |C|e denotes the
maximum possible number of edges in the multi-graph G′.

Iterative Path Inclusion. We formally define our iterative path
inclusion problem as follows.

PROBLEM 2 (ITERATIVE PATH INCLUSION). Given a set P
of the top-r most reliable paths from s to t in G′, find the subset

P1 ⊆ P , such that the reliability RelP1
(s, t) from s to t, via the
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Algorithm 1 Iterative Path Inclusion Algorithm

Require: Top-r most-reliable path set P between s to t in G′, budget k on
the number of colors

Ensure: A subset of paths P1 ⊆ P that maximizes RelP1
(s, t), while

total no. of edge-colors in P1 less than k

1: P1 = φ

2: while total no. of edge-colors in P1 less than k do
3: P ∗ = argmaxP∈P\P1

RelP1∪{P}(s, t),
such that total no. of edge-colors in P1 and P ∗ less than k

4: P1 = P1 ∪ {P ∗}
5: end while
6: output P1

Table 1: Graph Dataset Characteristics

Data # Node # Edge # Color Avg. # Color Edge Prob:

Set per Edge Mean, SD, Quartiles

Freebase 28 483 132 46 708 421 5 428 1 0.50, 0.24, {0.250, 0.500, 0.750}

BioMine 1 045 414 6 742 943 20 1 0.27, 0.17, {0.116, 0.216, 0.363}
Flixter 29 357 280 517 10 4 0.17, 0.26, {0.003, 0.056,0.212}

Table 2: Avg. Reliability and Efficiency over Datasets; Top-k=5

Reliability Running Time (Sec)
Datasets Base1 Base2 Rel-Path Base1 Base2 Rel-Path

Freebase 0.21 0.21 0.22 104.9 1278.0 0.6

BioMine 0.21 0.38 0.35 4240.7 341960.5 27.5

Flixter 0.29 0.62 0.53 1.3 15355.6 0.99

subgraph induced by the paths in P1, is maximized; while the total

number of colors on the edges of paths in P1 does not exceed k.

argmax
P1⊆P

RelP1
(s, t)

such that | ∪e∈P1
C(e)| ≤ k (5)

Unfortunately, our iterative path inclusion problem is NP-hard;
and it is neither sub-modular, nor super-modular with respect to
the inclusion of paths. We omit the details of the proof due to
limitation of space. Next, we design an efficient heuristic algorithm
(Algorithm 1) for the iterative path inclusion problem.

Our heuristic procedure works in successive iterations. At each
iteration, we add the path P ∗ to P1 that maximizes the marginal
gain in terms of reliability given the partial set P1, that was already
computed in the previous iterations. While selecting the path P ∗

in the current iteration, we also ensure that the total number of col-
ors used in the paths P1 ∪ {P ∗} is no more than k. Finally, we
terminate our algorithm either when there is no path left in the top-
r most reliable path set P , or we cannot include any more paths
without violating the overall edge-color budget k. We report the
edge-colors present in P1 as our final solution. Also, if the total
number of edge-colors present in P1 is k′ < k, then we select uni-
formly at random additional k − k′ colors that are not in P1. We
report all of them, along with the edge-colors in P1, as our output
for the top-k reliable color set problem.

Time Complexity. Let us denote by n′ and e′ the number of nodes
and edges in the subgraph induced by the top-r most-reliable path
set P . Our iterative path selection algorithm can have at most r
iterations. At each iteration, we perform MC sampling for O(r)
times over the subgraph induced by the selected paths. If K is the
number of samples used in each MC sampling, the overall time-
complexity of our iterative path selection algorithm is O(r2(n′ +
e′)K). We here emphasize that the subgraph induced by the top-r
most reliable paths is much smaller than the input uncertain graph
G. Thus, our iterative path selection technique is more efficient
than the two baselines introduced earlier.

4. EXPERIMENTS
Datasets: We summarize our data sets in Table 1. While BioMine

[10] and Flixter [2] have both edge-probabilities and edge-colors,

Freebase [7] contains only edge-colors. Thus, we assign edge-
probabilities in Freebase with uniform distribution from (0, 1).

Accuracy and Efficiency: We compare the accuracy and efficiency
of our reliable-path based heuristic with two baselines in Tables 2,
3, and 4. Each result is reported as an average over 500 uniformly
selected source-destination pairs. The number of top-r paths for
our reliable-path based heuristic is set as 20, as increasing it more
than that value does not significantly increase the reliability be-
tween the source-destination pair. The number of Monte Carlo
samples is fixed as 1000 [9]. In all our experiments, we find that
the reliable-path based method is several orders of magnitude faster
compared to the second baseline, while it still achieves similar reli-
ability from the source to the destination node. Also, the reliability
achieved by reliability-path based method and by the second base-
line is much higher than that of the first baseline.

Table 3: Avg. Reliability and Efficiency with Varying Top-k, Freebase

Reliability Running Time (Sec)
Top-k Base1 Base2 Rel-Path Base1 Base2 Rel-Path

5 0.21 0.21 0.22 104.9 1278.0 0.6

10 0.21 0.21 0.23 116.6 2560.2 0.6

15 0.21 0.21 0.23 120.0 3835.0 0.6

20 0.21 0.21 0.23 139.9 5112.0 0.7

Table 4: Avg. Reliability and Efficiency with Varying Distance from
Source to Destination, BioMine, Top-k=5

Distance Reliability Running Time (Sec)
(# hop) Base1 Base2 Rel-Path Base1 Base2 Rel-Path

2 0.30 0.53 0.46 3615.0 283621.0 19.1

4 0.12 0.23 0.23 4865.0 400300.0 35.8

5. CONCLUSIONS
We study the novel problem of finding the top-k edge-colors set

that maximizes the reliability from a source to a destination node
in an uncertain graph. Our proposed reliable-path based heuristic
is several orders of magnitude faster than various naïve baselines,
while it also achieves comparable accuracy to that of our most ef-
fective baseline method. In future work, we shall consider the prob-
lem with a set of source and destination nodes.
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