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Core Blockchain
10/31/2008: Satoshi Nakamoto posted the Bitcoin white 
paper to a forum.
1/3/2009: The first data block in the Bitcoin.

* By JEFF DESJARDINS. Image retrieved from VisualCapitalist.com and updated.
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Source: https://statisticsanddata.org/data/top-15-cryptocurrency-by-market-capitalization-and-price-2013-2021/

https://statisticsanddata.org/data/top-15-cryptocurrency-by-market-capitalization-and-price-2013-2021/
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Source: https://www.hfsresearch.com/blockchain/top-5-blockchain-platforms_031618/

https://www.hfsresearch.com/blockchain/top-5-blockchain-platforms_031618/
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Traditional approach: controlled by
a central and trusted third-party,
e.g., a bank.

Blockchain: Introduction

Blockchain approach: each
participant in a peer-to-peer
network has a copy of the
database, ensuring immutability.

Blockchain: A distributed, digital ledger of
records (transactions) stored in a
sequential order.

Each block contains the hash of the
previous block.

The blocks are shared openly among its
participants to create an immutable
sequence of transactions.

Blockchain is updated by consensus
among its users (open or controlled set).

Block_0 Block_1 Block_2 Block_N



7

Blockchain Consensus: Proof-of-Work 

o Proof-of-work is done by miners, who compete to create new blocks with the latest transactions.

o The work (i.e., the computation) is reasonably hard (yet feasible) for the prover (miner), but is easy to check for
the verifier (other users).

o The competition is won by the one whose computer can solve a math puzzle in proof-of-work the fastest -- this
generates the cryptographic link between the current block and the previous block.

o The winning miner shares the new block with the rest of the network and earns some reward (newly minted
cryptocurrency).

o Miners join the longest chain to resolve forks in blockchain.



Proof-of-X
o Proof-of-Work is energy expensive, difficult to scale.

o With trust in participants (permissioned setting), consensus costs can be reduced.

o Proof-of-X is an umbrella term that covers Proof-of-Work alternatives in block mining.

o Each alternative scheme expects miners to show a proof that they have done enough work or
spent enough wealth before creating the block.

o Proof-of-Stake: Stake = Coin × Age. The miner with the highest stake becomes the next miner
in the chain. Once coins are used, their age becomes zero.

o In September 2022, Ethereum made the transition from a proof-of-work system to a proof-of-
stake system.

o Proof-of-Burn, Delegated-Proof-of-Stake, Memory-hard Proof-of-Work, Proof-of-Ownership,
Proof-of-Publication, …
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Applications of Blockchains

Source: https://hellosergio.medium.com/6-emerging-categories-for-blockchain-use-cases-4650f824d130

Survey: H. Huang, W. Kong, S. Zhou, Z. 
Zheng, and S. Guo. 2021. A Survey of 
state-of-the-art on blockchains: 
theories, modelings, and tools. ACM 
Computing Surveys 54, 2 (2021), 44:1–
44:42.
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https://hellosergio.medium.com/6-emerging-categories-for-blockchain-use-cases-4650f824d130


Public, Private, and Permissioned Blockchains
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o Public blockchains are open to any user to join and participate.

o Private blockchains have a central controlling authority, usually the company behind the
blockchain. Participants are chosen by the authority with protected access modes.

o Permissioned, or consortium, blockchains are one or more entities, e.g., a group of
companies that can be in charge of the access control. These “administrator” nodes grant
different access modes to participating nodes, depending on business requirements.

Our Focus: Public, Permissionless Blockchains
o Public permissionless blockchains allow access to trusted, transparent, comprehensive, and

granular datasets of digital economic behaviors.

o Blockchain data analytics, also called the distributed ledger analytics (DLA), is an emerging field
of research (Financial data mining).



Blockchain Data Analytics
o Data stored in a public blockchain can be considered as big data.

o Volume: Ethereum archive nodes that store a complete snapshot of the Ethereum blockchain, 
including all the transaction records, take up to 4TB of space. 
https://decrypt.co/24779/ethereum-archive-nodes-now-take-up-4-terabytes-of-space

o Velocity: Ethereum blockchain has processed more than 1.1 million transactions per day in July 2021. 
https://www.statista.com/statistics/730838/number-of-daily-cryptocurrency-transactions-by-type/

o Veracity: Ethereum contains a vast number of heterogeneous interactions, e.g., user-to-user, user-to-
contract, contract-to-user, and contract-to-contract across multiple layers via external and internal 
transactions, ether, tokens, dAapps, etc. 

Interactions in the Ethereum Blockchain Network

https://decrypt.co/24779/ethereum-archive-nodes-now-take-up-4-terabytes-of-space
https://www.statista.com/statistics/730838/number-of-daily-cryptocurrency-transactions-by-type/


Graph-based Blockchain Data Analytics

Interactions in the Ethereum Blockchain Network

o Data stored in a public blockchain such as in Ethereum can be considered as big data.

o Data analytic methods can be applied to extract knowledge hidden in the blockchain.

o Several recent research works performed graph analysis on the publicly available blockchain data to reveal insights 
into its transactions and for important downstream tasks, e.g., cryptocurrency price prediction, address clustering, 
phishing scams, and counterfeit tokens detection. 

Various graphs created from interactions between accounts, 
transactions, token transfers; as well as their common applications



This Tutorial Is NOT About … 
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o Applications of blockchains.

Related survey: H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo. 2021. A survey of state-of-the-art on blockchains: theories, modelings, and tools. 
ACM Comput. Surv. 54, 2 (2021), 44:1–44:42.

o Distributed databases aspects of blockchains , e.g., consensus protocols, confidentiality, fault-tolerance, scalability, 
blockchain systems, and production deployment.

Related tutorials/ articles:

M. J. Amiri, D. Agrawal, and A. E. Abbadi. 2021. Permissioned blockchains: properties, techniques and applications. In SIGMOD.

S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi. 2020. Building high throughput permissioned blockchain fabrics: challenges and opportunities. 
PVLDB 13, 12 (2020), 3441–3444.

S. Maiyya, V. Zakhary, M. J. Amiri, D. Agrawal, and A. E. Abbadi. 2019. Database and distributed computing foundations of blockchains. In SIGMOD.

C. Mohan. 2019. State of public and private blockchains: myths and reality. In SIGMOD.

o Security and privacy on blockchains. 
Related survey: R. Zhang, R. Xue, and L. Liu: Security and privacy on blockchain. ACM Comput. Surv. 52(3): 51:1-51:34 (2019).



Relevant Tutorials
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o C. Akcora, M. Kantarcioglu, Y. R. Gel. Data science on blockchains. KDD 2021

o C. Akcora, M. Kantarcioglu, Y. R. Gel. Data science on blockchains. SDM 2021

o C. Akcora, M. Kantarcioglu, Y. R. Gel. Data science on blockchains. ICDE 2020

o C. Akcora, M. Kantarcioglu, Y. R. Gel. Blockchain data analytics. ICDM 2018 

These tutorials covered fundamental building blocks of blockchains and data structures of UTXO and account blockchains.

Unlike ours, these tutorials do not cover blockchain graph models, data extraction and analysis, state-of-the-art in graph
analysis, topological data analysis, and graph machine learning for blockchain data.

Relevant Surveys
o Jiajing Wu, Jieli Liu, Yijing Zhao, Zibin Zheng. Analysis of cryptocurrency transactions from a network perspective: an overview. J. Netw. 

Comput. Appl. 190: 103139 (2021).

o F. Victor, P. Ruppel, A. Küpper. A taxonomy for distributed ledger analytics. Computer 54(2): 30-38 (2021).

o A. Kamišalić and R. Kramberger and I. Fister. Synergy of blockchain technology and data mining techniques for anomaly detection. Appl. 
Sciences 11:17 (2021). 

o C. Akcora, Y. R. Gel, and M. Kantarcioglu. Blockchain networks: data structures of Bitcoin, Monero, Zcash, Ethereum, Ripple, and Iota. WIREs 
Data Mining Knowl. Discov. 12, 1 (2022).

o A. Khan. Graph Analysis of the Ethereum blockchain data: a survey of datasets, techniques, and future direction. In IEEE International 
Conference on Blockchain 2022.



Blockchain Components
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o Ledger: A ledger is a series (or chain) of blocks on which
transaction details are recorded after suitable authentication
and verification by the designated network participants.

o Cryptocurrencies: A cryptocurrency is a medium of exchange,
that is digital and uses encryption techniques to control the
creation of monetary units and to verify the transfer of funds.

o Transactions: . A transaction is a transfer of assets (e.g.,
cryptocurrencies, tokens) from one address to another.

Block_0 Block_1 Block_2 Block_N



Blockchain Components
o Smart Contracts: A smart contract is deployed to a specific address on the

blockchain and constitutes a collection of code (for multiple functions) and data
(its state). Smart contracts can define rules and automatically enforce them via
the code. User accounts interact with a smart contract by transactions that
execute a function defined on the contract. Smart contracts can also call (or, kill)
each other, even itself, if processing a transaction requires some functionality
within the other or in the same contract.

 Smart contracts were first proposed in 1994 by Nick Szabo, who coined the term, referring to "a set
of promises, specified in digital form, including protocols within which the parties perform on
these promises".

 Ethereum implemented a Turing-complete language on its blockchain, supporting smart contracts
(2015).

 Smart contracts introduced by Ethereum are fundamental building blocks for decentralized finance
(DeFi) and NFT applications.

o Tokens: Tokens are digital assets or access rights provided by their issuers,
managed by smart contracts and the blockchain platform. A token’s smart
contract specifies meta-attributes about the token, including its symbol, total
supply, decimals, etc.

 Two most popular token standards on Ethereum are: (1) ERC20, a standard interface for fungible
(interchangeable) tokens, such as voting tokens, staking tokens, or virtual currencies, -- widely
used in initial coin offering (ICO); and (2) ERC721, a standard interface for non-fungible tokens
(NFTs), e.g., a deed for a song or an artwork.

Source: https://www.edureka.co/blog/smart-contracts/

Source: https://developers.rsk.co/guides/get-crypto-on-
rsk/cryptocurrency-vs-token/

https://www.edureka.co/blog/smart-contracts/
https://developers.rsk.co/guides/get-crypto-on-rsk/cryptocurrency-vs-token/


Blockchain Components
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o dApps: A decentralized application (dapp) is built on a decentralized peer-to-peer network that combines smart
contract(s) as backend and a frontend user interface, generally implemented via HTML5, CSS, and web3.js.

 In Ethereum, about 70% dapps have only one smart contract, and 90% dapps have less than three smart contracts, while there are also some
dapps having more than 100 smart contracts.

 A dapp author may even include a smart contract written by others.
 Exchanges, wallet, and gamesare the most popular dApp categories.

o DeFi: DeFi, or decentralized finance, are dApps for financial products and services, e.g., loans, savings, insurance,
exchanges, liquidity, lenders, and trading, powered by decentralized blockchain technologies such as Ethereum. DeFi
protocols are autonomous programs (i.e., smart contracts) that constitute a collection of rules similar to physical
financial institutions.

o Stablecoins: Stablecoins are cryptocurrencies, whose value is pegged, or tied, to that of another currency,
commodity or financial instrument, e.g., Tether (USDT) and TrueUSD (TUSD) are popular stablecoins backed by U.S.
dollar, TerraUSD (UST) algorithmic stablecoin.

K. Wu, An empirical study of blockchain-based decentralized applications, ArXiV, 2019. 
C. R. Harvey, A. Ramachandran, and J. Santoro, DeFi and the future of finance. John Wiley & Sons, 2021.
S. Kitzler, F. Victor, P. Saggese, and B. Haslhofer, Disentangling decentralized finance (DeFi) Compositions, ArXiV, 2021.



Blockchains: Data Structures, Storage and 
Categories



Private and Public Blockchains

Permissionless (public) blockchains Permissioned (private) blockchains

Bitcoin, Litecoin, Ethereum Hyperledger, R3

o By definition any user can join a public blockchain (e.g., Bitcoin). 

o For corporate settings, the transparency means that rivals can learn company 
finances and buy/sale relationships.

o The permissioned blockchains were created for industrial settings. 

o Permissioned: Less power consumption, more secure, privacy aware, but for all 
purposes a gated community.
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- Notary Documents
- Pictures
- Identity Documents
- Shipping logs
- Manufacturing logs
- IOT data

Data can be more: 

1- On-chain storage
2- Off-chain storage:
 Store hashes of data (as proof)
 Store the address of data (Our data 

resides as IP: 145.178.14.29)

20



oBitcoin and many cryptocurrencies use a construct called an output.

oAn output stores a set of addresses and the amount of coins these addresses 
receive (note that there may be many addresses in a tx).

o Each transaction (except for the coinbase transaction) consumes one or more 
outputs and creates one or more outputs.

o These blockchains are known as unspent transaction output based (UTXO) 
blockchains.

UTXO vs Account-Based Blockchains

21



oA few newer blockchains, such as Ethereum, do not use UTXOs.

o Instead, each address holds an account, and each transaction contains one input 
and one output address. 

o These blockchains are known as account-based blockchains.

oUTXO-account distinction is important because it changes the generated 
transaction data (and consequently how we model data).

UTXO vs Account-Based Blockchains

22



Blockchain – Beyond Cryptocurrencies

o Butterin created Ethereum to store data and software 
code on a blockchain.

o Similar to Bitcoin, Ethereum has a currency: Ether.

o The code (a smart contract) is written in a coding 
language, such as Solidity, which is then compiled 
to bytecode and executed on the Ethereum Virtual 
Machine.

o An analogy is the MYSQL snippets stored on a 
database.

Solidity

23



oOver time, blockchains started to run into scalability.

o Initial solutions, such as Segregated Witness, were developed to leave some of 
the encryption signatures and other non-transactional data out of blocks.

o Scalability efforts have culminated in second layer solutions, such as the Lightning 
Network, where most of the transactions are executed off the blockchain.

o The first layer (i.e., the blockchain itself) only stores a summary of transactions 
that occur on the second layer.

First Layer vs Second Layer

24



Lightning Network – 2nd layer solution

o Lightning Network creates another layer on top of the blockchain.

o Users transact with each other offline, without paying transaction fees for each 
transaction.

o Only the first and last transactions are written to the blockchain.

o LN was designed for repeated low value (micro) transactions, but it can be used 
for large transactions as well.

o The offline nature implies that we cannot see each transaction individually; only 
the aggregate information is published to the blockchain at the end.

o Good for transaction privacy, but not for the identity privacy!
25



Privacy Coins

o Bitcoin’s pseudonymous nature poses privacy problems.

o New cryptocurrencies have been developed to break the mapping 
between input-output addresses, and even hide the transaction 
amounts.

26



Monero

o Monero (April 2014) uses ring signatures and allows users to mix other 
transaction outputs as (fake) inputs, so that the mapping between inputs and 
outputs are blurred.

o Transaction structure is transaction output based (TXO), amounts could be visible 
or hidden. Alphabay adopted Monero in 2016.

27



ZCash

o Zcash (October 2016) transactions can be transparent and similar to bitcoin 
transactions in which case they are controlled by a t-address.

o or can be a type of zero-knowledge proof called zk-SNARKs; the transactions 
are then said to be shielded and are controlled by a z-address.

o Newly generated coins are required to pass through the shielded pool.

o Zcash can hide both transaction amounts and user entities, however less than 
10% of all transactions were done by using z-addresses.

Kappos, G., Yousaf, H., Maller, M. and Meiklejohn, S., 2018. An 
empirical analysis of anonymity in Zcash. In 27th USENIX 
Security Symposium (USENIX Security 18) (pp. 463-477).

28



Data Extraction and Analysis Tools



o Run a full-node on the blockchain to collect all historic transactions – e.g., Bitcoin-Core,  Geth, 
and Parity.
Massive-storage and hardware requirement; more than a week to fully synchronize entire data at a newly connected 
node.

 Not good for ad-hoc queries.

o Web3 services and APIs for data extraction – e.g., Infura, SoChain, and Quicknode.
 high costs if users want to extract large amounts of data; paid and slow APIs.

 Blockchain data is stored at clients in heterogeneous, complex data structures, in binary or in encrypted format, 
which cannot be directly used for exploration, mining, or visualization.

o Well-processed blockchain datasets – e.g., 
 Google Big Query (https://cloud.google.com/blog/products/data-analytics/introducing-six-new-cryptocurrencies-

in-bigquery-public-datasets-and-how-to-analyze-them ) 

 https://xblock.pro/#/ (Sun Yat-sen University and others)

 ETL (extract-transform-load) can still be an issue.

Data Extraction Methods 

30

https://cloud.google.com/blog/products/data-analytics/introducing-six-new-cryptocurrencies-in-bigquery-public-datasets-and-how-to-analyze-them
https://xblock.pro/


How to Parse the Data
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Blockchain Data ETL 
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Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of ethereum blockchain network, WSDM 2022.

table_id utc_created_date utc_modified_date rows_millions size_gb

blocks 2019-01-15 
13:30:29.658

2021-05-06 
05:29:23.607 11.72 12.07

token_transfers 2019-01-15 
13:28:07.793

2021-05-06 
05:31:55.894 595.69 171.88

traces 2019-01-15 
13:55:23.777

2021-05-06 
05:22:25.641 2775.28 1626.74

transactions 2019-01-15 
13:29:49.289

2021-05-06 
05:28:48.798 985.76 455.64

These four tables from Google BigQuery are the most important sets of data from
the Ethereum blockchain in terms of the primary “interaction networks” between
User and Contract accounts.

Source of Truth – Google BigQuery



Problem to Solve

Graph 
Representation

Tabular 
Representation

from_addres
s

to_address edge_data block_numbe
r

0xd3b1fad... 0x1625a9f...

...

0

0x4bc3c20... 0xfe611a3... 1

0x40af81b... 0x5716678... 2

0x9786a24... 0xa25a8dc... 3

How to 
perform 

this step?

Convert this To this

Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022.



Existing Solution

Download
Data

Manually 
download the data 

of interest from 
BigQuery

Write a script to 
extract distinct 
addresses and 

hash them

Preprocess 
Data - 1

Preprocess 
Data - 2

Write a script to 
build interactions 
using hash ids 
obtained from 
previous step

Data is 
Ready

Data is processed 
and is ready for 

analysis

Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022.



Existing Solution - Issues

BigQuery 
Limitations
Difficult to extract BigQuery results that are more than 
1GB/16,000 rows in size.

03

Not Intuitive
Output format is still in tabular form. Interactions cannot 
be easily visualised in an intuitive manner.

02

No Automation
The process is not automated. Users have to write their 
own BigQuery queries and preprocessing scripts.

01

V. H. Su, S. S. Gupta, A. Khan. Automating ETL and mining of Ethereum 
blockchain network, WSDM 2022.



Existing Solution - Issues

BigQuery 
Limitations
Difficult to extract BigQuery results that are more than 
1GB/16,000 rows in size.

03

Not Intuitive
Output format is still in tabular form. Interactions cannot 
be easily visualised in an intuitive manner.

02

No Automation
The process is not automated. Users have to write their 
own BigQuery queries and preprocessing scripts.

01
No Ability for Data Reuse 
Data downloaded from BigQuery is not catalogue and is 
stored in the filesystem as flat files.

04

Interaction Metadata Lost
Interaction data like amount of tokens and what type of 
tokens exchanged is not stored/represented.

05

V. H. Su, S. S. Gupta, A. Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022.



Proposed Solution - Workflow

Network/graph is 
constructed in 

Neo4j with CSV 
files exported in 
previous step

06

Required data to 
construct 

network/graph is 
exported to CSV 

files

05

Missing data is 
added to local 
Hive database

04

Missing data is 
downloaded 
from Google 

BigQuery

03

Missing data in 
local Hive 

database is 
identified

02

User uses the 
Python SDK to 
submit an ETL 

request

01

Automated Steps

Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022



Proposed Solution - Benefits
Enables 

Discovery
Users can see which 
graphs already exist

Data properly indexed 
and compressed in Hive

Scalable & 
Efficient

Data is stored as graph 
in a graph database 

instead of flat files

Intuitive
Consistent access layer 
to ETL workflows via 
EtherNet Python SDK

Consistent Entry

Interaction/edge data is 
preserved in the result

Data Preserved

Entire ETL workflow 
is fully automated

Fully Automated

EtherNet

Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022



transactions

traces

token_transfers

Proposed Solution - Efficiency

Data Compression Ratios* in Hive Tables

5.5

11.
8

3.7

* uncompressed size / compressed size

44.2 GB / 8.00 GB 
[152,587,661 rows]

115.1 GB / 9.72 GB
[267,789,485 rows]

44.3 GB / 11.93 GB
[103,189,720 rows]

Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022



Proposed Solution – Future Direction

Lack of cross-connectivity
Lack of support with other tools used for network 
analysis like NetworkX – potential future work.

03

Domain knowledge 
required
In order to maintain and optimise EtherNet, domain 
knowledge on Hadoop and HDFS is required.

02

Not too easy to 
deploy
Many components in the tool, requiring a considerably 
large overhead in deployment.

01

41V. H. Su, S. S. Gupta, A. Khan. Automating ETL and mining of Ethereum blockchain network, 
WSDM 2022.



Demonstration – Notebook Interface

Check out the toolbox – open-sourced at:
https://github.com/voonhousntu/ethernet

V. H. Su, S. S. Gupta, A. Khan. 
Automating ETL and mining 
of Ethereum blockchain 
network, WSDM 2022.
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Blockchain Query Models

Ethereum Query 
Language (EQL) is a 
query language that 
allows users to retrieve 
information from the 
blockchain by writing 
SQL-like queries.

Santiago Bragagnolo, Henrique Rocha, Marcus Denker, Stéphane Ducasse. Ethereum query 
language. Proceedings of the 1st International Workshop on Emerging Trends in Software 
Engineering for Blockchain. 2018.

Not able to search inside 
contract attributes when 
querying. 
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Blockchain Data Analytic Tools
o Bartoletti et al. developed a Scala framework for blockchain data analytics. This can integrate 
relevant blockchain data with data from other sources, and organize them in a database, either 
SQL or NoSQL.

o GraphSense is an open-source platform for analyzing cryptocurrency transactions.

o BlockSci loads the parsed data as an in-memory database, which the user can either 
query directly or through a Jupyter notebook interface. 

o Industry: https://santiment.net/ , https://www.nansen.ai/ , 
https://www.blockchain.com/ , https://www.chainalysis.com/ etc. 

M. Bartoletti, S. Lande, L. Pompianu, A. Bracciali. A general framework for blockchain analytics. SERIAL@Middleware 2017.
B. Haslhofer, R. Stütz, M. Romiti, R. King. GraphSense: A general-purpose cryptoasset analytics platform. CoRR 2021. 
H. A. Kalodner, M. Möser, K. Lee, S. Goldfeder, M. Plattner, A. Chator, A. Narayanan. BlockSci: design and applications of a blockchain 
analysis platform. USENIX Security Symposium 2020.

44

https://santiment.net/
https://www.nansen.ai/
https://www.blockchain.com/
https://www.chainalysis.com/


Blockchain Data Analytic Tools
o Information on User Accounts: https://etherscan.io/, https://cryptoscamdb.org/, 
https://tutela.xyz/ - fraud detection and classifying accounts.

o Static code analysis, machine learning on smart contracts are popular for code reuse 
checking, contract classification, and ponzi schemes detection.

o LATTE provides a novel visual smart contract construction system. This will benefit non-
programmers to easily construct a contract by manipulating visual objects and without writing 
Solidity code.   

o BiVA is a graph mining tool for the bitcoin network visualization and analysis and transaction 
pattern analysis.

45

F. Victor. Address clustering heuristics for Ethereum. Financial Cryptography, 2020.
W. Chen, Z. Zheng, J. Cui, E. C. H. Ngai, P. Zheng, Y. Zhou. Detecting Ponzi schemes on Ethereum: towards healthier blockchain technology,  WWW, 2018.
T. Hu, X. Liu, T. Chen, X. Zhang, X. Huang, W. Niu, J. Lu, K. Zhou, Y. Liu. Transaction-based classification and detection approach for Ethereum smart contract. Inf. Process. 
Manag. 58(2): 102462 (2021).
S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, Y. Alexandrov. SmartCheck: static analysis of Ethereum smart contracts. WETSEB@ICSE 2018.
S. Ducasse, H. Rocha, S. Bragagnolo, M. Denker, C. Francomme. SmartAnvil: open-source tool suite for smart contract analysis. Blockchain and Web 3.0: Social, Economic, and 
Technological Challenges. 2019.
S. Tan and S. S. Bhowmick and H.-E. Chua and X. Xiao. LATTE: visual construction of smart contracts, SIGMOD, 2020.
F. E. Oggier, A. Datta, and S. Phetsouvanh. An ego network analysis of sextortionists. Soc. Netw. Anal. Min., 10(1), 2020.

https://etherscan.io/
https://cryptoscamdb.org/
https://tutela.xyz/


Blockchain Data Analytic Tools
o Visualization of blockchain data: BitConeView, BitConduite, Bitcoinrain, Ethviewer, … 

Survey: N. Tovanich, N. Heulot, J.-D. Fekete, P. Isenberg. 
Visualization of Blockchain data: a systematic review. IEEE Trans. Vis. Comput. 
Graph. 27(7): 3135-3152 (2021)

46

o Natural language processing and sentiment analysis using tweets, online articles, 
cryptocurrency prices and charts, Google Trends about blockchain.

 O. Kraaijeveld and J. D. Smedt. The predictive power of public Twitter sentiment for forecasting 
cryptocurrency prices, 2020, Journal of International Financial Markets, Institutions and Money, 65.

 A.-D. Vo and Q.-P. Nguyen and C.-Y. Ock, Sentiment analysis of news for effective cryptocurrency price 
prediction, International Journal of Knowledge Engineering, 5(2), 2019.

 Abraham and D. Higdon and J. Nelson and J. Ibarra. Cryptocurrency price prediction using tweet 
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Blockchain Graphs: UTXO, Account Networks



UTXO Graphs: Bitcoin, Litecoin, Monero, ZCash



oA UTXO transaction can have 𝑖𝑖 > 0 inputs and 𝑜𝑜 > 0 outputs. Usually 
𝑖𝑖 = 1 and 𝑜𝑜 = 2 (57% of all transactions in Bitcoin).

oi and o can be arbitrarily large, as long as the transaction size is less 
than the block size (1MB in Bitcoin).

What does a UTXO transaction Look Like?

Transaction 1

Address



Transaction Output (TXO) Based Blockchains

0.8 bitcoin

2 bitcoins

3B
0.8B

2B

Transaction 1
Address

0.2B tx fee

Next, if  address b wants to spend its received 2B, it needs to show proof 
of funds:

“Use the 2B I received from Block 1, transaction 1 and to pay 1.5B to c 
and 0.3B to d”.

a

b

3B
0.8B

2B
2B

1.5B

0.3B

c

d
b

a

b
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Transaction Output (TXO) Based Blockchains
o Genesis block 0: The first block, created by Nakamoto.

o Every block has one coinbase transaction that creates  bitcoins (sum of 
block reward + transaction fees).

o All other payments must show proof of funds (previous outputs).
Coinbase transaction

Block n Block 
n+1

Time 51



A Few Notes on the Physical Word

o Bitcoin uses addresses to represent accounts. If you want to “open an account”, you 
need to create a bitcoin address (easily).

o An address is a short string of text that is created by using private/public key 
cryptography.

o If you know the address of someone, you can send bitcoins to the address. You do not 
need to know anything else (i.e., owner’s name, zip code, etc.) about the address.

o This means that multiple output addresses in a transaction can belong to two unrelated 
people.

3B
0.8B

2B
2B

1.5B

0.3B

c

d
b
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A Few Notes on the Physical Word

What about input addresses?

3B
0.8B

2B
2B

1.5B

0.3B

c

d
b
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2B

They probably know each other, or they are the same person.
Because they need to sign the transaction by using private keys.



Three Graph Rules for TXO

1 – Mapping Rule: Multiple inputs can be signed separately and merged, 
but the input-output address mappings are not recorded.

A transaction can be considered a lake with incoming rivers, and outgoing emissaries. 
Coins mix in this lake.

1B

1B 1B

1B
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Three Graph Rules for TXO

2- Source Rule: Coins can be gained from multiple  transactions. 
These can be spent at once or separately (dashed edges connect 
to unspecified addresses). 

b

Address b can spend bitcoins at 𝑡𝑡𝑥𝑥1(once), or at 𝑡𝑡𝑥𝑥1 and 𝑡𝑡𝑥𝑥2.

𝑡𝑡𝑥𝑥1

𝑡𝑡𝑥𝑥2

55



Three Graph Rules for TXO

3- Balance Rule: All coins gained from a transaction must be spent in a single 
transaction. Addresses cannot keep change, must forward it.

𝑇𝑇𝑥𝑥𝑇

Same user?

Address reuse is 
rare

c

d

e

i - c sold all its coins: c, d and e all belong to different people, or
ii - c paid to d, and forwarded the change to its new address e.

In many scenarios, we have to learn which addresses belong to the same entity.

Two cases:
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rarely.

A Toy TXO Graph
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oTransaction graphs omit address nodes from the transaction network 
and create edges among transactions only.

Heterogeneous graph Transaction graph

Transaction Graph

58



Disadvantages

59

oBy omitting addresses, we lose the information that 𝑡𝑡5 and 𝑡𝑡1 are connected 
by 𝑎𝑎1. The address reuse of 𝑎𝑎10 is hidden in the transaction graph as well. 



oUnspent transaction outputs are not visible; we cannot know how many 
outputs are there in 𝑡𝑡5 and  𝑡𝑡6. Similarly, if 𝑡𝑡3 had an unspent output, we 
would not learn this information from the graph. In Bitcoin, many outputs 
stay unspent for years; the transaction graph will ignore all of them. 

Disadvantages
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o First, we may be more interested in analyzing transactions than addresses. Many chain 
analysis companies focus their efforts on identifying transactions that are used in e-crime.

o Second, the graph order (node count) and size (edge count) are reduced from the 
blockchain network, which is useful for large scale network analysis. 

o In UTXO networks, transaction nodes are typically less than half the number of address 
nodes. For example, Bitcoin contains 400K-800K unique daily addresses but 200K-400K 
transactions only. However, the real advantage of the transaction graph is its reduced 
size. 

As we will explain in the next section, the address graph contains many more edges 
than the transaction graph. 

Advantages
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UTXO Address Graph
oThe address graph omits transactions and creates edges between addresses 

only. 
oAddress nodes may appear multiple times, which implies that addresses may 

create new transactions or receive coins from new transactions in the future.

Heterogeneous graph Address graph
62



UTXO Address Graph

oAddress graphs are larger than transaction graphs in node and edge counts. 
oAs per the mapping rule, we cannot know how to connect input-output 

address pairs. As a result, we must create an edge between every pair.  

Creating an edge between all address pairs?
63



UTXO Address Graph

𝑎𝑎4

𝑎𝑎6𝑎𝑎3

𝑎𝑎8

𝑎𝑎7𝑡𝑡2

𝑎𝑎4

𝑎𝑎6𝑎𝑎3

𝑎𝑎8

𝑎𝑎7𝑡𝑡3

𝑡𝑡2

𝑎𝑎4

𝑎𝑎6

𝑎𝑎3

𝑎𝑎8

𝑎𝑎7Both create 
the same 
address 
graph
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oGraph size is not the only problem. The address graph loses the association 
of input or output addresses. 

oFor example, the address graph loses the information that edges 𝑎𝑎3 and 𝑎𝑎4
were used in a single transaction; address graph edges would be identical if 
the addresses had used two separate transactions to transfer coins to 𝑎𝑎6, 𝑎𝑎7
and 𝑎𝑎8.  



Disadvantages 

Graph Analysis with single node type: 
Not always useful for the forever forward branching tree of Bitcoin

Address graph: is it worth the trouble searching for graph motifs?

o No: Addresses are not supposed to re-appear in future.

o No: Closed triangles are very rare

o No: Output/input address sets do not have edges to each other – our tools 
do not consider this, and search for edges in vain (linked transactions within 
a block are possible but rare)
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The Chainlet Methodology

Definition [K-Chainlets]: 
Let k-chainletGk = (Vk, Ek, B) be a subgraph of G with k nodes of type {Transaction}.  
If there exists an isomorphism between Gk and G’, G’ ∈G, we say that there exists an 
occurrence, or embedding of Gk in G.

If a Gk occurs more/less frequently than expected by chance, it is called a Blockchain 
k-chainlet. A k-chainlet signature fG(Gk) is the number of occurrences of Gk in G.

o Rather than individual edges or nodes, we can 
use a subgraph as the building block in our 
Bitcoin analysis. 

o We use the term chainlet to refer to such 
subgraphs.

Akcora, Cuneyt G., et al. "Forecasting bitcoin 
price with graph chainlets." Pacific-Asia 
Conference on Knowledge Discovery and Data 
Mining. Springer, Cham, 2018.
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Blockchain Chainlets

o Chainlets have distinct shapes that 
reflect their role in the network.

o We aggregate these roles to analyze 
network dynamics.

Tx 1

Tx 1

Tx 2

Tx 2

Tx 3

Tx 3

Tx 4

Tx 4

Three distinct types of 1-chainlets!
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Aggregate Chainlets

Transition. Ex: Chainlet C3→3 

Cx→y : chainlet with x inputs and y outputs.

o Transition Chainlets imply coins changing 
address: x = y.

Split. Ex: Chainlet 
C1→2 

o Split Chainlets may imply spending behavior: 
y > x.

But the community practice against address 
reuse can also create split chainlets.

Merge. Ex: Chainlet C3→1 

o Merge Chainlets imply gathering of funds: 
x > y.
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Aggregate Chainlets

Percentage of aggregate chainlets in the Bitcoin Graph (daily snapshots).

Around here 2 pizzas were bought for 10 thousand bitcoins.

Spam attacks to increase block size.
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Outputs
1 2 3

in
pu

ts

3
2

1

Representing the Network in Time

oFor a given time granularity, such as one day, we take snapshots of the 
Bitcoin graph.

oChainlet counts obtained from the graph are stored in an N×N matrix.

2 1

1

0 0 0

0

0 0

N: How big should the matrix be? 
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Extreme Chainlets o N can reach thousands; the matrix can be 
1000 × 1000.

o On Bitcoin, % 90.50 of the chainlets have N 
of 5 (x < 5 and y < 5), and % 97.57for N
of 20.

outputs
1 2 3

in
pu

ts
3

2
1

2 1

1

0 0 0

0

0 0

4

Extreme chainlets are the last column/row of the chainlet matrix. 
They imply big coin movements in the graph!

Occurrence matrix

𝑂𝑂[𝑖𝑖, 𝑗𝑗] =

#𝐶𝐶𝑖𝑖→𝑗𝑗 if 𝑖𝑖 < 𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 < 𝑁𝑁

�
𝑧𝑧=𝑁𝑁

∞

#𝐶𝐶𝑖𝑖→𝑧𝑧 if 𝑖𝑖 < 𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 = 𝑁𝑁

�
𝑦𝑦=𝑁𝑁

∞

#𝐶𝐶𝑦𝑦→𝑗𝑗 if 𝑖𝑖 = 𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 < 𝑁𝑁

�
𝑦𝑦=𝑁𝑁

∞

�
𝑧𝑧=𝑁𝑁

∞

#𝐶𝐶𝑦𝑦→𝑧𝑧 if 𝑖𝑖 = 𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 = 𝑁𝑁
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Percentages of all bitcoin 
chainlets.

Most transactions involve 
few addresses:
57.04% of transactions 
have one input and two 
outputs.

Input 
address 
count

Output address count

Chainlet Behavior



Account Graphs: Ethereum



Graphs Constructed

o Survey: A. Khan, "Graph 
analysis of the Ethereum 
blockchain data: a survey 
of datasets, techniques, 
and future direction", IEEE 
International Conference 
on Blockchain 2022



o Survey: A. Khan, " Graph 
analysis of the Ethereum
blockchain data: a survey of 
datasets, techniques, and 
future direction ", IEEE 
International Conference on 
Blockchain 2022

o Static graphs
o Dynamic graphs
o Temporal snapshot graphs
o Directed graphs
o Weighted graphs (?weight) 
o Simple and multi-graphs
o Attributed graphs
o Multi-layer networks

Graphs Constructed



o User-to-User Graph

o Smart Contract Creation Graph

o Smart Contract Invocation Graph

o ContractNet/ Contract-to-Contract Graph

Graphs between Accounts: 

o T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhang, “Understanding 
Ethereum via graph analysis,” in INFOCOM, 2018.

o A. Anoaica and H. Levard, “Quantitative description of internal activity on the 
Ethereum public blockchain,” in NTMS, 2018.

o Q. Bai, C. Zhang, Y. Xu, X. Chen, and X. Wang, “Evolution of Ethereum: a temporal 
graph perspective,” in IFIP Net. Conf., 2020. 

o X. T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, “Measurements, analyses, and 
insights on the entire Ethereum blockchain network,” in WWW, 2020. 

o L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal analysis of the entire 
Ethereum blockchain network,” in WWW, 2021.
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o Ethereum has two types of accounts:

 Externally owned accounts (EOAs) are accounts controlled by private
keys. If a participant own the private key of an EOA, the participant has
the ability to send ether and messages from it.

 Smart contract code controlled accounts have their own code, and
are controlled by the code.



Graphs between Accounts: 

o A. Anoaica and H. Levard, “Quantitative Description of Internal Activity on the 
Ethereum Public Blockchain,” in NTMS, 2018.

o Q. Bai, C. Zhang, Y. Xu, X. Chen, and X. Wang, “Evolution of Ethereum: A 
Temporal Graph Perspective,” in IFIP Net. Conf., 2020. 

o X. T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, “Measurements, Analyses, 
and Insights on the Entire Ethereum Blockchain Network,” in WWW, 2020. 

o L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal Analysis of the Entire 
Ethereum Blockchain Network,” in WWW, 2021.
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o A. Anoaica and H. Levard, “Quantitative description of internal activity on 
the Ethereum public blockchain,” in NTMS, 2018.



o Transaction Graph/ Money Flow Graph/ TransactionNet

Graphs Based on Transaction of Ether: 

o Regular, or external transaction denotes a transaction
with the sender address being an EOA.

o Internal transaction refers to a transfer that occurs when
the sender address is a smart contract, e.g., a smart contract
calling another smart contract or an EOA.

o Token transfer is an event log for transfer of tokens only.

Token transfers can be considered as internal transactions.
Internal transactions are not broadcast to the network in the
form of regular transactions.

o T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhang, “Understanding 
Ethereum via graph analysis,” in INFOCOM, 2018.

o J. Liang, L. Li, and D. Zeng, “Evolutionary dynamics of cryptocurrency transaction 
networks: an empirical study,” PLoS ONE, vol. 13, no. 8, p. e0202202, 2018.

o D. Guo, J. Dong, and K. Wang, “Graph structure and statistical properties of 
Ethereum transaction relationships,” Inf. Sci., vol. 492, pp. 58–71, 2019.

o S. Ferretti and G. D’Angelo, “On the Ethereum blockchain structure: a complex 
networks theory perspective,” Concurr. Comput. Pract. Exp., vol. 32, no. 12, 2020.

o D. Lin, J. Wu, Q. Yuan, and Z. Zheng, “Modeling and understanding Ethereum 
transaction records via a complex network approach,” IEEE Trans. Circuits Syst., vol. 
67-II, no. 11, pp. 2737–2741, 2020.

o X. T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, “Measurements, analyses, and 
insights on the entire Ethereum blockchain network,” in WWW, 2020. 

o L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal analysis of the entire 
Ethereum blockchain network,” in WWW, 2021.



o Full ERC20 token transfer graph

o Individual ERC20 token transfer graphs

o Individual ERC721 token transfer graphs

o TokenNet/ Token transfer graph

o Token creator graph

o Token holder graph

Graphs Based on Transfer of Tokens: o S. Somin, G. Gordon, and Y. Altshuler, “Network analysis of ERC20 tokens trading 
on Ethereum blockchain,” in Complex Systems, 2018.

o F. Victor and B. K. L¨uders, “Measuring ethereum-based ERC20 token networks,” 
in Financial Cryptography and Data Security, 2019.

oY. Chen and H. K. T. Ng, “Deep learning Ethereum token price prediction with 
network motif analysis,” in ICDM Workshops, 2019.

oW. Chen, T. Zhang, Z. Chen, Z. Zheng, and Y. Lu, “Traveling the token world: A graph 
analysis of Ethereum ERC20 token ecosystem,” in WWW, 2020

o Y. Li, U. Islambekov, C. G. Akcora, E. Smirnova, Y. R. Gel, and M. Kantarcioglu, 
“Dissecting Ethereum blockchain analytics: what we learn from topology and 
geometry of the Ethereum graph?” in SDM, 2020.

oB. Gao, H. Wang, P. Xia, S. Wu, Y. Zhou, X. Luo, and G. Tyson, “Tracking counterfeit 
cryptocurrency end-to-end,” Proc. ACM Meas. Anal. Comput. Syst., vol. 4, no. 3, pp. 
50:1–50:28, 2020.

o X. T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, “Measurements, analyses, and 
insights on the entire Ethereum blockchain network,” in WWW, 2020. 

o L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal analysis of the entire 
Ethereum blockchain network,” in WWW, 2021.

o D. Ofori-Boateng, I. Segovia-Dominguez, C. G. Akcora, M. Kantarcioglu, and Y. R. 
Gel, “Topological anomaly detection in dynamic multilayer blockchain networks,” 
in ECML PKDD, 2021.

oS. Casale-Brunet, P. Ribeca, P. Doyle, and M. Mattavelli, “Networks of Ethereum 
non-fungible tokens: a graph-based analysis of the ERC-721 ecosystem,” in 
Blockchain, 2021.
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Ethereum Network Properties
Basic Network Properties
Local Network Properties
Global Network Properties
Temporal Network Properties

o X. T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, “Measurements, analyses, and insights on the entire 
Ethereum blockchain network,” in WWW, 2020. 

o L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal analysis of the entire Ethereum blockchain network,” in 
WWW, 2021.

Graph Analysis on Blockchain Graphs 
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Motivation
o Blockchain is a fascinating ecosystem of humans and autonomous agents. 
o Not like conventional social networks, where the players are human users.
o Not like cryptocurrencies, where all interactions are transfer of value/asset.

Blockchain network is closer to the Internet or Web, where users 
interact with one another, as well as with programs. 

We study a public permissionless blockchain network as a complex system, and we 
choose Ethereum, the most prominent blockchain network, for this purpose.
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Ethereum

o Introduced an automation layer on top of a blockchain through contracts. 
o Facilitates a decentralized computing environment across the blockchain.

Transaction-based state machine. Global state made up of 
accounts. Transfer of value/information between accounts 
cause transitions in the state. Recorded in the blockchain.

We target the network of interactions between the User and Contract accounts that 
make up the global state of Ethereum, and study them as complex systems.
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TraceNet TransactionNet
v : user and smart contract addresses v : user and smart contract addresses
a : all successful traces/transactions a : all successful transactions by users

ContractNet TokenNet
v : only smart contract addresses v : user and smart contract addresses
a : all successful traces/messages a : all successful transaction of tokens

While TraceNet presents a global view of interactions, ContractNet focusses on 
the multi-agent network of contracts. While TransactionNet depicts all of basic 
ether transactions, TokenNet focusses on the rich and diverse token ecosystem.

Networks

1 3

2 4
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Source : Google Cloud Platform BigQuery
bigquery-public-data.Ethereum_blockchain.

Data extracted/mined : Block #0 till #7185508
Blocks recorded upto 2019-02-07 00:00:27 UTC
Seven different tables in the Ethereum dataset.

Data cleaning : Removing failed traces and handling Null addresses appropriately.

Network Data
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We observe that self-loop percentage in ContractNet MultiDiGraph is significantly 
higher than that in the three other networks. Moreover, the number of self-loops 
in its MultiDiGraph is almost 40 times than that in its own simple, undirected 
graph, indicating that a lot of smart contracts make multiple calls to itself.

Basic Network Properties
Vertices and Arcs, Self-Loops and Density 

85



We compare power-law distribution model against (i) exponential, (ii) log-normal, (iii) 
power-law with exponential cutoff, and (iv) stretched exponential or Weibull.

We see that for our larger networks, TraceNet and TransactionNet, three of the four 
alternative heavy-tailed distributions are better fit than the power-law.

Local Network Properties
Vertex Degree Distribution
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Indegree and outdegree of vertices in the four 
network MultiDiGraphs.

≈ 50% have similar in and out. 

≈ 30% have significantly higher in (ICO smart 
contracts appear a lot in the to_address). 

≈ 20% have significantly higher out  (mining 
pools and mixers generally appear a lot in the 
from_address).

This is similar to the Web, involving hubs and 
authorities, and it is unlike the case of 
standard social networks.

Local Network Properties
Indegree and Outdegree Correlation
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Centrality Measures

Vertex centrality aims at scoring, ranking, and identification of important vertices.

We identify the most central vertices from the innermost core of the largest 
strongly connected component and find that high-degree vertices in blockchain 
networks are also most central based on betweenness, closeness, and PageRank.
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Reciprocity and Assortativity

Reciprocity: Measure of vertices 
being mutually linked in network.

Assortativity: Measure of vertices 
being linked to similar-degree ones.

Unlike social networks, all four of our blockchain networks are Disassortative.
Negative assortativity implies relatively more scenarios of addresses (vertices) 
with different degrees transacting with each other in the blockchain networks.

89

Global Network Properties



Strong and Weakly Connected Components

Number of WCC is significantly lesser than the number of SCC in their respective 
networks, due to lesser bidirectional edges between majority pairs of vertices.

ContractNet has the least # of SCC in the networks, indicating relatively stronger 
connectivity within smart contracts. Similar to the Web, the blockchain networks 
have a single, large SCC, with about 98% of the remaining vertices within reach.
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Global Network Properties



Core Decomposition

k-core is the maximal 
subgraph, where each 
vertex is connected to 
at least k other vertices
within the subgraph. 

ContractNet and TokenNet have larger core indices for vertices in the innermost 
cores, indicating higher density of their innermost cores. ContractNet’s innermost 
core is the largest, implying more vertices participating in denser substructures.
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Triangles, Transitivity, Clustering Coefficients

Transitivity is quite low.
This suggests that in the 
blockchain networks, we
do not have a conducive
environment for creation 
of triangles. Indeed, non-social networks have lower transitivity coefficients. 

High-degree vertices are often “loner-star”, that is, connected to mostly low-
degree vertices, resulting in lack of community structure in blockchain graphs.
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Higher-Order Motifs Counting

The most frequent motifs in the 
blockchain graphs are primarily 
chain and star-shaped. Counts 
for more complex patterns, 
e.g., cliques and cycles, are less. 

We check the density of a motif, the ratio of its count to its count in a complete 
graph having same number of vertices as the innermost core. The densities for 
more complex patterns are quite less, indicating lack of community structure.
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Articulation points, Adhesion, Cohesion, Average path lengths, Radius, Diameter

Adhesion and Cohesion for all blockchain networks are 1, indicating that removal 
of the only one vertex or only one arc disconnects the respective SCCs and WCCs.

Interestingly, similar to social networks, blockchain graphs are also small-world.
However, in both our larger networks, TraceNet and TransactionNet, there are 
vertices which are far apart, making the radius and the diameter quite large.
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Progress of Core Decomposition in Token Networks

We study temporal evolution of the number of cores in token subgraphs against 
the corresponding evolution of price of the token in the cryptocurrency market. 
Observations clearly show a significant relationship between activity and price.
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Temporal Network Properties



Summary of Observations
o In/Out-degree characteristics are very similar to the Web (hub/authority).
o The blockchain networks are disassortative, having very low transitivity.
o Complex motifs occur quite less, indicating lack of community structure.
o Removal of one vertex or arc can disconnect the entire largest SCC/WCC.
o Blockchain networks are surprisingly small-world and well-connected.
o Networks contain a single, large SCC, with 98% of the vertices reachable.
o ContractNet and TokenNet yield larger core indices for vertices in the 

innermost cores, indicating higher density of their innermost cores.
o Significant relationship between temporal relationship of inner cores of 

prominent token networks and the price of the tokens in the market.

the Web

social network

both 
networks

financial
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Future work may include analysis of prominent token networks in terms of activity signatures to forecast 
trading behavior and token prices. Identifying influential vertices and complex motifs may also detect 
fraudulent activities.

https://github.com/sgsourav/blockchain-network-analysis



Motivation and Research Questions 

o Investigate the evolutionary nature of 
Ethereum interaction networks from a 
temporal graph perspective

o Address 3 main questions:

 How do Ethereum network evolve over time?

 How network properties changes over time, what is 
the right “time granularity” for such temporal 
analysis?

 Detect meaningful communities and forecast the 
survival of communities in succeeding months. 

L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal 
analysis of the entire Ethereum blockchain
network,” in WWW, 2021.
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Evolution of Ethereum Network (Vertex) 

(b) ContractNet(a) TransactionNet

o The number of new vertices and arcs 
added is almost of the same order of 
total number of vertices and arcs at 
that time => Ethereum interaction 
networks growing at a fast speed. 
(highly active network).

o Vertices which are disappeared keep 
increasing.  
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Network Growth Model

The increasing percentage (3rd column) 
indicates:
o As the Ethereum network matures, more 

accounts remain active.

o And more than half of new vertices 
participate in interaction with old vertices. 
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o Correlation between old vertex degree in previous 
year (2018) to its number of new connections in the 
current year (2019).

o High degree vertices are highly likely to have more 
new vertex connections in next year. 

o The observation indicates that the Ethereum graphs 
follow the preferential attachment growth model.

(b) ContractNet

(a) TransactionNet

Network Growth Model



Average Activity Period of Vertices

TransactionNet

o Active period = duration (month) from 
its first transaction to the last transaction 
between Jan 2016 and Dec 2019.

o ContractNet: 91% has no more than 6 
month active period.

o TransactionNet: Longer active period.

o In general, 88% of accounts have an 
active period of no more than 6 months, 
and up to 68% of accounts are only active 
within a month. ContractNet



Temporal Evolution of Network Properties 
o Investigate network properties changes over time to understand how the network is 

connected and changed over time.

o Reveal any anomaly (beyond average) occurred in a specific time duration.

o A good time granularity as the shortest time duration by which we can detect an anomaly.
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Temporal Evolution of Network Properties 
o Oct 2016: Plenty of positive news on Ethereum in the media  a lot of tokens were deployed on 

the network, which increased the number of one-directional arcs to the token contracts. 
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Detection of ContractNet Communities 
o Multilevel algorithm scales well over large-scale datasets and 

produce good-quality communities.

o Consider multi, undirected version of graph .

o # vertices and arcs in each community obtained over 

ContractNet 2018 and 2019 networks.

o The size of the communities follows power-law: a few large 

communities followed by a long-tail of remaining small 

communities.

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large 
networks. Journal of Statistical Mechanics: Theory and Experiment 2008, 10 (2008), 10008.



Community Continuation Prediction

o Data preparation: window size of 3 months and slide stride of 1 month.

o Training dataset: the network properties of communities existing in 3-

month period dataset.

o Aim: predict whether the communities still exists in next 1 month. 

o Model: Logistic Regression & Random Forest.

Random Forest prediction accuracy for 
ContractNet 2019

Logistic Regression prediction accuracy for 
ContractNet 2019



Summary of Observation

oEthereum interaction network grows at a fast speed. 
oNetworks follow the preferential attachment growth model.

oUser accounts remain active much longer than smart contracts. 

oReveal anomalies occurred in a specific time duration and correlate them with external 
‘real-life’ aspects of network. 

oDetect meaningful communities in Ethereum network using multilevel algorithm. 

oForecast the continuation of communities in succeeding months leveraging on the 
relevant graph properties and ML models. Achieving up to 77% correct predictions for 
continuation. 
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https://github.com/LinZhao89/Ethereum-analysis

https://github.com/LinZhao89/Ethereum-analysis


Address Clustering, Coin Mixing, Traceability 
and Obfuscation



Coin-mixing, Obfuscation, and Money Laundering

oWhy? Foremost, ordinary citizens need privacy in cryptocurrency. 

o Criminals need to sell their coins for fiat currency – on online 
exchanges which require customer identification.

o Law enforcement can find the person behind an address by 
asking for customer information from exchanges.

o Criminals need to launder their coins before they sell them.
How to not get caught when you launder money on blockchain?
CG Akcora, S Purusotham, YR Gel, M Krawiec-Thayer, M Kantarcioglu
arXiv preprint arXiv:2010.15082



Clustering on UTXO Blockchains

Where do the bitcoins at 
address a come from?

a
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Clustering on UTXO Blockchains

o Can we tell which addresses are controlled by the same user, entity, 
organization?

o In order to answer this question, we need to link addresses.

Where do the bitcoins at 
address a come from?

a

Possibly, from nine addresses!

Fungibility: Is a specific bitcoin 
worth a bitcoin everywhere? 
Taint analysis studies a bitcoin’s 
history
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Data science on Blockchains 111

https://twitter.co
m/cuneytgurcan/
status/136135490
3885553664

https://twitter.com/cuneytgurcan/status/1361354903885553664


Heuristics

Heuristics are used to detect which input and output addresses 
are controlled by the same user.

Meiklejohn, Sarah, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker, and 
Stefan Savage. A fistful of bitcoins: characterizing payments among men with no names. In Proceedings of the 
2013 conference on Internet measurement conference, pp. 127-140. ACM, 2013

1B

4B 3B

2B 1B

1B 1B

1B

Considering amounts may help in 
basic cases (at least some coins at c 
and d came from a).

Schemes exist to use multiple rounds 
of flows with equal amounts to hide 
tracks.
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a

b

c

d



Heuristics

Addresses a, b, and c belong to the same user. 

1- Idioms of Use: posits that all input addresses in a transaction should belong 
to the same entity because only the owner could have signed the inputs with 
the associated private keys.

a
b
c
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Heuristics

Addresses a, b, c, d, and e belong to the same user.

2- Transitive Closure: extends Idioms of Use: if a transaction has 
inputs from a and b, whereas another transaction has from a and c, 
b and c belong to the same user.

d

e
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a
b
c



Heuristics

The heuristic posits that the one-time change (output) address— if 
one exists— is controlled by the same user as the input addresses.

3- Change address: the following four conditions must be met: 
(1)the output address has not appeared in any previous transaction; 
(2)the transaction is not a coin generation; 
(3)there is no self-change address in the outputs;
(4)all the other output addresses in the transaction have appeared in 

previous transactions. 
10B 9.5B

0.5B

Change address

Spending 
address

Payment address

115



Traceability Problems and Privacy Coins

o Privacy coins break the mapping between input-output addresses, and 
even hide the transaction amounts.
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Monero

o Monero (April 2014) uses ring signatures and allows users to mix other 
transaction outputs as (fake) inputs, so that the mapping between inputs and 
outputs are blurred.

o Transaction structure is transaction output based (TXO), amounts could be visible 
or hidden. Alphabay adopted Monero in 2016.
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Monero

Hiding transaction amount, sender and receiver address behind 
mixins. Reds are actual used addresses, blues are mixins.
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ZCash

Zcash can hide both transaction amounts and user 
entities, however less than 10% of all transactions 
were done by using z-addresses.

Kappos, G., Yousaf, H., Maller, M. and Meiklejohn, S., 2018. An 
empirical analysis of anonymity in zcash. In 27th USENIX 
Security Symposium (USENIX Security 18) (pp. 463-477).
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Zcash

Hiding transaction amount, sender and receiver address behind zero 
knowledge proofs.
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Obfuscation Efforts

o Obfuscation: hiding coin movements in the network to finally 
cash out of the system by using an online exchange.

o Three regimes with increasing sophistication:

 2009-2013: Hiding patterns. Assumes that analyst cannot trace payments in the large network,

 2013-now: Coin-mixing,

 2018-now: Shapeshifting. Moving coins to privacy coins and bringing them back.
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Narayanan, Arvind, and Malte Möser. Obfuscation in bitcoin: Techniques and politics. arXiv
preprint arXiv:1706.05432 (2017).



Obfuscation Efforts 1 – Peeling Chains

o In a peeling chain, a single address begins with a relatively large amount 
of bitcoins. 

o A smaller amount is then “peeled” off this larger amount, creating a 
transaction in which a small amount is sent to one address and the 
remainder is sent to a one-time change address.

o This process is repeated— potentially for hundreds or thousands of 
hops— until the larger amount is pared down.

Di Battista, Giuseppe, Valentino Di Donato, Maurizio Patrignani, Maurizio Pizzonia, Vincenzo 
Roselli, and Roberto Tamassia. Bitconeview: visualization of flows in the bitcoin transaction 
graph. In Visualization for Cyber Security (VizSec), 2015 IEEE Symposium on, pp. 1-8. IEEE, 2015.
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Obfuscation Efforts 1 – Peeling Chains

25B 0.5B

0.5B

0.5B

0.5B

…
Repeated patterns are frequently found on the 
Bitcoin blockchain (spam transactions in the 
figure)

Exit to 
fiat 
currency

McGinn, Dan, David Birch, David Akroyd, Miguel Molina-Solana, Yike Guo, 
and William J. Knottenbelt. Visualizing dynamic bitcoin transaction 
patterns. Big data 4, no. 2 (2016): 109-119.
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Obfuscation Efforts 2- Coin Mixing

o A measure to prevent matching addresses to users is known as Coin Mixing, or 
its improved version, CoinJoin.

o The initial idea in mixing was to use a central server to mix inputs from multiple 
users.

2B

2B 2B

2B

5B

2B 3B

4B

2B

1B 1B

2B

3B

2B 2B

3B

Ruffing, Tim, Pedro Moreno-Sanchez, and Aniket Kate. CoinShuffle: Practical 
decentralized coin mixing for Bitcoin. In European Symposium on Research in Computer 
Security, pp. 345-364. Springer, Cham, 2014. 124



Obfuscation Efforts 2- Coin Mixing

o A measure to prevent matching addresses to users is known as Coin Mixing, or 
its improved version, CoinJoin.

o The initial idea in mixing was to use a central server to mix inputs from multiple 
users.

2B

2B 2B

2B

5B

2B 3B

4B

2B

1B 1B

2B

3B

2B 2B

3B

Ruffing, Tim, Pedro Moreno-Sanchez, and Aniket Kate. CoinShuffle: Practical 
decentralized coin mixing for Bitcoin. In European Symposium on Research in Computer 
Security, pp. 345-364. Springer, Cham, 2014. 125



Obfuscation Efforts 3 - Shape Shifting
o Shapeshifting is moving exchanging bitcoins for Zcash/Monero, moving the coins 

within the privacy coin securely and bringing them back to bitcoin.
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a

Bitcoin

Bitcoin

Zcash



Counter-Counter Measures - Antinalysis

“Worried about dirty 
funds in your BTC 
address? Come check 
out Antinalysis, the new 
address risk analyzer” 
– a darknet market.
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AMLBot



o What is difficult about transaction fingerprinting (matching sale amounts to 
transaction amounts)? 

128

Locating Payments – Tx Fingerprinting

In 2-3 hops from 
certain addresses 
(e.g., ransomware 
addresses) of interest, 
too many bitcoin 
addresses are caught 
in the search net.

We used the Wannacry ransomware addresses in this analysis.



o What is difficult about transaction fingerprinting? 

129

Amount Matching (Fingerprinting)

- Amounts can be 
chosen carefully to 
complicate 
transaction detection.
- Do not use too 
specific amounts like 
0.1457 btc.

Figure: Amounts in all Bitcoin 
transactions.



o What is difficult about transaction fingerprinting? 

130

Patterns can be 
chosen carefully –
using transactions 
with one input and 
two outputs in every 
payment puts you in a 
large privacy pool.

Input 
address 
count

57.04% of all transactions are one input, two 
output chainlets

Amount Matching (Fingerprinting)

Output address count



Topological Data Analysis on Blockchain Graphs
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What is the true shape 
of this data?

Why TDA?
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o Is there a set of tools which detects the shape of the object underlying a 
dataset?

o Persistent Homology of TDA is a way to watch how the homology of a 
filtration (sequence) of topological spaces changes so that we can understand 
something about the space.

Why TDA?
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Let 𝑋𝑋 be a discrete set in some metric space. 

o Now, we fix an increasing sequence of scales 𝜖𝜖1 < 𝜖𝜖2 <
⋯ < 𝜖𝜖𝑛𝑛 and construct a chain of nested Vietoris-Rips 
complexes called a finite VR filtration 𝑉𝑉𝑅𝑅𝜖𝜖1 ⊆ 𝑉𝑉𝑅𝑅𝜖𝜖2 ⊆ ⋯ ⊆
𝑉𝑉𝑅𝑅𝜖𝜖𝑛𝑛, where 𝑉𝑉𝑅𝑅𝜖𝜖𝑘𝑘, 𝑘𝑘 = 1, … ,𝑎𝑎.

We expect that features with a longer lifespan, i.e. persistent 
features, have a higher role in explaining structure and 
functionality of the data than features with a shorter lifespan.

TDA on Point Clouds
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Topological Data Analysis – Persistent Homology

o To extract summaries of such topological features at a mesoscopic level, we use Betti 
numbers.

o Betti-p number of a simplicial complex 𝒞𝒞 of dimension 𝑎𝑎, denoted by 𝛽𝛽𝑝𝑝(𝒞𝒞), is defined as

o 𝛽𝛽𝑝𝑝(𝒞𝒞) = �
# of connected components of 𝒞𝒞 𝑝𝑝 = 0

# of 1−D holes or tunnels of 𝒞𝒞 𝑝𝑝 = 1
# of 2−D holes or cavities of 𝒞𝒞 𝑝𝑝 = 2… …

Betti numbers at increasing dissimilarity scales.
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Topological Data Analysis of Blockchain – Ethereum Case

o Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝜔𝜔) be a weighted graph, with the node set 𝑉𝑉 and edge set 
𝐸𝐸 and 𝜔𝜔:𝐸𝐸 → 𝑅𝑅+ is a function encoding dissimilarity between two nodes 
connected by an edge. 

o To account for dissimilarity between two disconnected nodes, we introduce 
the weight �𝜔𝜔 :𝑉𝑉 × 𝑉𝑉 → 𝑅𝑅+

�𝜔𝜔𝑢𝑢𝑢𝑢 = �𝜔𝜔𝑢𝑢𝑢𝑢 (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸
∞ (𝑢𝑢, 𝑣𝑣) ∉ 𝐸𝐸.

Dissecting Ethereum blockchain analytics: What we learn from topology and geometry of the Ethereum 
graph?
Y Li, U Islambekov, C Akcora, E Smirnova, YR Gel, M Kantarcioglu
Proceedings of the 2020 SIAM international conference on data mining, 523-531.
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Topological Data Analysis of Blockchain – Ethereum Case

o In the context of a weighted network, we define 𝜔𝜔𝑢𝑢𝑢𝑢 as 

𝜔𝜔𝑢𝑢𝑢𝑢 = [1 +
𝐴𝐴𝑢𝑢𝑢𝑢 − 𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛 ⋅ 𝑎𝑎 − 𝑏𝑏

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛
]−1,

where 𝐴𝐴𝑢𝑢𝑢𝑢 is the weight of the edge (total amount of tokens 
traded) between nodes 𝑢𝑢 and 𝑣𝑣. Values of a and b create a scale.

o 𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛 and 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 are the smallest and the largest edge weights, 
respectively.  
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Topological Data Analysis of Ethereum Networks

o In this context, we introduce a novel notion of Betti functions which relate these counts to 
the scale parameter viewed as continuum. 

o The Betti-𝒑𝒑function ℬ𝑝𝑝:𝑅𝑅+ → {0,1,2,3, … }, 𝑝𝑝 = 0, … ,𝑎𝑎, associated with {𝒞𝒞𝜖𝜖}𝜖𝜖∈𝑅𝑅+ is 
defined as

ℬ𝑝𝑝: 𝜖𝜖 ↦ 𝛽𝛽𝑝𝑝(𝒞𝒞𝜖𝜖).
o Sequence of Betti numbers are finite dimensional realizations of Betti functions.
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Topological Data Analysis of Ethereum Networks

o The Betti functions can be regarded as a functional summary statistic of the 
network’s topological structure. 

o Due to the functional dependency 
among Betti numbers at different scales, 
it is important to view {ℬ𝑝𝑝(𝜖𝜖𝑘𝑘)}𝑘𝑘=1𝑛𝑛 as a 
function as opposed to a vector in 𝑅𝑅𝑛𝑛. 

o This point of view allows us to utilize 
methods from functional data analysis 
such as a concept of functional data 
depth.
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Topological Data Analysis of Ethereum Networks

Boxplots of motif distributions in 39 token 
networks for two closed triangle motifs.

The largest connected component on the Storj
token network on 13-1-2018.

The biggest connected component of 
the Storj network (for a single day).

Corresponding Betti functions.

Scale at which Betti-0 
starts to decrease

Betti-2: early 2D holes 
disappear

Betti-2: 2D 
holes do not 

persist



141

Topological Data Analysis of Ethereum Networks

o Consider Betti functions {ℬ𝑝𝑝,𝑡𝑡}𝑡𝑡=1𝑇𝑇 associated with an evolving token 
transaction network over days 𝑡𝑡 = 1, 2, … ,𝑇𝑇.  

o Although each day visually looks different, some days present a clear 
anomaly in terms of their shape. 

o We use a notion of rolling band depth: 
𝑅𝑅𝐷𝐷𝑤𝑤(ℬ𝑝𝑝,𝑡𝑡):
= 𝑀𝑀𝑀𝑀𝐷𝐷(ℬ𝑝𝑝,𝑡𝑡|ℬ𝑝𝑝,𝑡𝑡 ,ℬ𝑝𝑝,𝑡𝑡−1, …ℬ𝑝𝑝,𝑡𝑡−𝑤𝑤+1).

o We introduce a concept of Betti
signature which is defined as the 
deepest or most central Betti function. 

Tronix token PowerLedger token
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Next: Predictive Models

Problem Definition: Given the transaction network of an Ethereum token and time series of the token price in fiat 
currency, predict whether the token price will change more than 𝛿𝛿 in the next ℎ days. Identify the maximum 
horizon value ℎ such that the prediction accuracy is at least 𝜌𝜌.

A histogram of absolute price returns of 31 tokens 
𝑅𝑅𝑡𝑡 = (𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑡𝑡−1)/(𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑡𝑡−1).

Number of (price) anomalous tokens in time.

https://ethereumcurves.github.io/tokens/bytom.html
https://ethereumcurves.github.io/tokens/tronix.html
https://ethereumcurves.github.io/tokens/reputation.html
https://ethereumcurves.github.io/tokens/storj.html


A brief background on a use case: 
Ransomware is a type of malware that infects a victim's data 
and resources and demands ransom to release them. 

TDA in UTXO Networks
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Images: gdatasoftware.com, healthcareitnews.com
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Hacker’s address



The combination of strong and well-implemented 
cryptographic techniques to take files hostage, the Tor 
protocol to communicate anonymously, and the use of 
a cryptocurrency to receive unmediated payments 
provide altogether a high level of impunity for 
ransomware attackers.

Paquet-Clouston, “Ransomware payments in the 
Bitcoin ecosystem (2019)”
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Why Now?

https://arxiv.org/abs/1804.04080



Company’s 
address

Hackers’ 
address

Transaction arbitrated by a blockchain 
exchange – the ransomed company is 
buying coins.

o There is a considerable time (e.g., 20 hours) gap between 𝑡𝑡1 and 𝑡𝑡2. 
o Searching this exact pattern catches many true positives.

The Anatomy of a Ransom Payment
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Bitcoin transaction network is public – we can see all coin transfers.

𝑎𝑎5 𝑎𝑎9
𝑎𝑎11

𝑡𝑡1 𝑡𝑡3

𝑎𝑎10
𝑎𝑎12

𝑡𝑡5

Time

𝑎𝑎1

𝑎𝑎4

𝑎𝑎2
𝑎𝑎6

𝑎𝑎3

𝑎𝑎8

𝑎𝑎7𝑡𝑡2 𝑡𝑡4 𝑡𝑡6

Transaction

Address
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Public Network



Can we identify ransomware victims automatically?

Can we discover new 
ransomware families?

Our two tasks!

On Bitcoin
148

Our Tasks



Our ransomware dataset is a union of datasets from three widely 
adopted studies: 

Montreal, Princeton and Padua. 

The combined dataset contains 24,486 addresses from 27 ransomware
families.

Paquet-Clouston, M., Haslhofer, B. and Dupont, B., 2019. Ransomware payments in the bitcoin 
ecosystem. Journal of Cybersecurity, 5(1).

Huang, D.Y., Aliapoulios, M.M., Li, V.G., Invernizzi, L., Bursztein, E., McRoberts, K., Levin, J., Levchenko, K., 
Snoeren, A.C. and McCoy, D., 2018, May. Tracking ransomware end-to-end. In 2018 IEEE Symposium on 
Security and Privacy (SP) (pp. 618-631). IEEE.

Conti, M., Gangwal, A. and Ruj, S., 2018. On the economic significance of ransomware campaigns: A 
Bitcoin transactions perspective. Computers & Security, 79, pp.162-189.
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Our Data



We divide the Bitcoin network into 24-hour long 
windows by using the UTC-6 timezone as reference. 

On the Bitcoin network, an address may appear 
multiple times. 

An address 𝑢𝑢 that appears in a transaction at time 𝑡𝑡
can be denoted as 𝑎𝑎𝑢𝑢𝑡𝑡 . 
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Network Snapshots



Let {𝑎𝑎𝑢𝑢}𝑢𝑢∈𝑍𝑍+ be a set of addresses and let 
each address 𝑎𝑎𝑢𝑢 be associated with a pair 
(�⃗�𝑥𝑢𝑢,𝑦𝑦𝑢𝑢), where �⃗�𝑥𝑢𝑢 ∈ ℛ𝐷𝐷is a vector of its 
features and 𝑦𝑦𝑢𝑢 is its label. 

The label 𝑦𝑦𝑢𝑢 can designate a  white (i.e., 
non-ransomware) address or a 
ransomware address.
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Notation



Let 𝑓𝑓1, … , 𝑓𝑓𝑛𝑛 be labels of known ransomware 
families which have been observed until time point 
𝑡𝑡. 
We set 𝑓𝑓0 to be the label of addresses which are  
not known to belong to any ransomware family,  
and we assume them to be white addresses. 

Assumption: those addresses that we do not know as 
ransomware  are white (non-ransom) addresses.
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White vs. Dark Addresses



The window approach serves two purposes:

o The induced 24-hour network allows us to 
capture how fast a coin moves in the network. 

o Temporal information of transactions, such as 
the local time, has been found useful to cluster 
criminal transactions.
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Why the Window?



On the heterogeneous Bitcoin network, in each snapshot 
we extract the following six features for an address: 

Income of an address 𝑢𝑢 is the total amount of coins 
output to 𝑢𝑢: 𝐼𝐼𝑢𝑢 = ∑𝑡𝑡𝑛𝑛∈𝛤𝛤𝑢𝑢𝑜𝑜 𝐴𝐴𝑢𝑢

𝑜𝑜(𝑎𝑎).

Neighbors of an address 𝑢𝑢 is the number of transactions 
which have 𝑢𝑢 as one of its output addresses: 𝛤𝛤𝑢𝑢𝑖𝑖 .

Income and neighbors do not consider position of the address in 
the network!
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Features



We designed graph features to quantify specific 
obfuscation patterns used by ransomware operators:

o Loop counts how many transactions i) split their coins; ii) 
move these coins in the network by using different paths 
and finally, and iii) merge them in a single address.

o Weight quantifies the merge behavior, where coins in 
multiple addresses are each passed through a succession 
of merging transactions and accumulated in a final 
address. 
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Features



Count represents information on the number of 
transactions, whereas the weight feature 
represents information on the amount (what 
percent of starter transactions’ output?).

Length quantifies mixing rounds on Bitcoin, where 
transactions receive and distribute similar 
amounts of coins in multiple rounds with newly 
created addresses to hide the coin origin.
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Features



Len Wei Nei Cou Loo Inc # addresses OverallRank
0 0.5 2 1 0 1 327 1
0 0.5 2 1 0 1.2 250 113
0 1 2 1 0 1 189 4
0 1 1 1 0 0.5 178 9
0 0.5 2 1 0 0.8 160 116
0 1 1 1 0 1 146 3
0 1 2 1 0 1.2 127 121
0 0.5 2 1 0 1.25 119 327
0 0.5 1 1 0 0.5 118 6
0 1 1 1 0 2 117 18

Table 1: Most frequent feature values in ransomware addresses.



Length 0: The first transaction involving these coins 
in the day.

Weight 1: All output goes into the address.

Neighbor 1: One transaction makes a payment into 
the address.

Count 1: One starter transaction reaches the 
address. 

Loop 0: No obfuscation, coins are directly paid.

Most Payments are N-1 or N-2!
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Experiment 1: Detecting Undisclosed Payments

Naïve approach: Similarity search all history. Not so bad!

However, this naive approach creates 21,371 FP addresses overall.
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T-Stochastic neighbor 
embeddings of 

ransomware 
addresses

Address patterns 
are diverse!

Patterns



We apply Topological Data Analysis 
for ransomware payment 
detection and compare  our node 
classification results to ML 
techniques.

161

Topological Analysis
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1.Naïve Cosine similarity search
2.Transition and co-spending heuristics
3.Tree based methods: XGBoost, Random Forest
4.Clustering: DBSCAN, K-means  

Network node classification with past labeled data.

5. TDA Mapper

Problem



The key idea behind Mapper is the following:

o Let 𝑈𝑈 be a total number of observed addresses and 
{�⃗�𝑥𝑢𝑢}𝑢𝑢=1𝑈𝑈 ∈ ℛ𝐷𝐷 be a data cloud of address features.

o Select a filter function𝜉𝜉: {�⃗�𝑥𝑢𝑢}𝑢𝑢=1𝑈𝑈 → ℝ. 

o Let 𝐼𝐼 be the range of 𝜉𝜉, that is, 𝐼𝐼 = [𝑚𝑚,𝑀𝑀] ∈ ℝ, where 𝑚𝑚 =
min𝑢𝑢𝜉𝜉(�⃗�𝑥𝑢𝑢) and 𝑀𝑀 = max𝑢𝑢𝜉𝜉(�⃗�𝑥𝑢𝑢). 

TDA Mapper
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o Now place data into overlapping bins by dividing the 
range 𝐼𝐼 into a set 𝑆𝑆 of smaller overlapping intervals of 
uniform length.

o Let 𝑢𝑢𝑗𝑗 = {𝑢𝑢: 𝜉𝜉(�⃗�𝑥𝑢𝑢) ∈ 𝐼𝐼𝑗𝑗} be addresses corresponding 
to features in the interval 𝐼𝐼𝑗𝑗 ∈ 𝑆𝑆. 

o For each 𝑢𝑢𝑗𝑗 perform a single linkage clustering to 
form clusters {𝑢𝑢𝑗𝑗𝑘𝑘}.

Features
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537 addresses
78 of which are 
known past 
ransomware 
addresses.

In BitcoinHeist, we did not consider 
the edge information of the network.



o If current addresses are contained in clusters that also contain
many past known ransomware addresses, by association, we 
deem these current addresses potential ransomware addresses.

o We filter the TDA mapper graph by using each of our six graph 
features. As a result, we get six filtered graphs 𝒞𝒞𝒞𝒞1, … ,𝒞𝒞𝒞𝒞6 for 
each time window. 

o Afterwards, we assign a suspicion, or risk score to an address 𝑎𝑎𝑢𝑢.

166

TDA Mapper



Experiment 1: Detecting Undisclosed Payments

o ML Methods: TDA gives the best F1. For each ransomware 
family, we predict 16.59 false positives for each true positive. 

o In turn, this number is 27.44 for the best non-TDA models.
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Experiment 2: Predicting a New Family
In CryptXX we catch 
two addresses, one is 
a TP!

In general, we 
predict 27.53 

false positives for 
each true
positive



We predict 16.59 false positive ransom addresses 
for each true positive. 

In locating ransomware addresses

In identifying new ransomware families.
We predict 27.53 false positive ransom addresses
for each true positive.

Through some black magic Topological Data Analysis methods  

Among 600K Bitcoin addresses daily!



Data and Article
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BitcoinHeist: Topological data analysis for Ransomware prediction on the bitcoin blockchain
Cuneyt G. Akcora, Yitao Li, Yulia R. Gel, Murat Kantarcioglu.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020.
https://www.ijcai.org/proceedings/2020/612



Machine Learning on Blockchain Graphs



Machine Learning on Blockchain Graphs

D. Lin, J. Wu, Q. Yuan, and Z. Zheng. Modeling and understanding Ethereum transaction records via a complex 
network approach. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 67, NO. 11, NOVEMBER 
2020.

D. Lin, J. Wu, Q. Yuan, and Z. Zheng. T-EDGE: Temporal WEighted MultiDiGraph Embedding for Ethereum transaction
network analysis. Front. Phys., 2020, Sec. Social Physics.

F. Poursafaei, R. Rabbany, and Z. Zilic. SIGTRAN: Signature vectors for detecting illicit activities in Blockchain 
transaction networks. PAKDD 2021.

J. Wu , Q. Yuan, D. Lin , W. You, W. Chen, C. Chen. Who are the phishers? Phishing scam detection on Ethereum via 
network embedding. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 2020.

L. CHEN, J. PENG, Y. LIU, J. LI, F. XIE, and Z. ZHENG. Phishing scams detection in Ethereum transaction network. ACM 
Trans. Internet Technol. 2021.

T. Yu , X. Chen, Z. Xu, and J. Xu. MP-GCN: a phishing nodes detection approach via graph convolution 
network for Ethereum. Appl. Sci. 2022.
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Graphs Representation Learning

173

Graph Node embedding/ vectors Downstream tasks

Node classification
Link prediction
Graph classification
Entity resolution
Question Answering
… … … 

Matrix factorization
Random walk sampling + Skip-Gram learning
Graph convolutional neural networks (GCN)
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Machine Learning on Blockchain Graphs

Paper Embedding Method Downstream Task
D. Lin, J. Wu, Q. Yuan, and Z. Zheng. Modeling and 
understanding Ethereum transaction records via a complex 
network approach. IEEE TRANSACTIONS ON CIRCUITS AND 
SYSTEMS II: EXPRESS BRIEFS, VOL. 67, NO. 11, NOVEMBER 
2020.

Random walk sampling + 
Skip-Gram learning

Transaction (link) prediction

D. Lin, J. Wu, Q. Yuan, and Z. Zheng. T-EDGE: Temporal 
WEighted MultiDiGraph Embedding for Ethereum transaction
network analysis. Front. Phys., 2020, Sec. Social Physics.

Random walk sampling + 
Skip-Gram learning

Transaction (link) prediction

F. Poursafaei, R. Rabbany, and Z. Zilic. SIGTRAN: Signature 
vectors for detecting illicit activities in Blockchain transaction 
networks. PAKDD 2021.

Random walk sampling + 
Skip-Gram learning + Feature

Detecting illicit activities (node 
classification)

J. Wu , Q. Yuan, D. Lin , W. You, W. Chen, C. Chen. Who are the 
phishers? Phishing scam detection on Ethereum via network 
embedding. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND 
CYBERNETICS: SYSTEMS 2020.

Random walk sampling + 
Skip-Gram learning

Phishing scams detection (node 
classification)

L. CHEN, J. PENG, Y. LIU, J. LI, F. XIE, and Z. ZHENG. Phishing 
scams detection in Ethereum transaction network. ACM Trans. 
Internet Technol. 2021.

Graph convolutional neural 
networks (GCN)

Phishing scams detection (node 
classification)

T. Yu , X. Chen, Z. Xu, and J. Xu. MP-GCN: A phishing nodes 
detection approach via graph convolution network for 
Ethereum. Appl. Sci. 2022.

Graph convolutional neural 
networks (GCN)

Phishing scams detection (node 
classification)
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Random Walk Sampling + Skip-Gram Learning
o Transform a graph into a set of random walks through sampling methods, treat each random walk as a sentence, 
and then adopt word2vec (Skip-Gram) to generate node embeddings from the sampled walks.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013. Distributed representations of words and phrases and their compositionality. In NeurIPS
A. Grover and J. Leskovec. 2016. Node2vec: scalable feature learning for networks. In KDD.

Graph Random walk sampling Corpus Node embedding/ vectors

Skip-Gram learning

o DeepWalk (KDD 2014)
o LINE (WWW 2015)
o Node2vec (KDD 2016)
o HuGE (ICDE 2021)
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Random Walk Sampling + Skip-Gram Learning on Blockchain Graphs

o l-length temporal walk: A sequence of l nodes together with a sequence of (l-1) edges traversed in non-
decreasing timestamps

o Challenges
 Dynamic/ temporal
 Multi-graph
 Value on edges
 Other node and edge features

o Temporal Biased Sampling (TBS): Sampling method biases the selection towards edges that are closer (or later) in 
time to the previous edge.

o Weighted Biased Sampling (WBS): Sampling method biases the selection towards edges with a higher value of 
transaction amount, implying a larger similarity between the two accounts.

D. Lin, J. Wu, Q. Yuan, and Z. Zheng. Modeling and understanding Ethereum transaction records via a complex network approach. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: 
EXPRESS BRIEFS, VOL. 67, NO. 11, NOVEMBER 2020.
D. Lin, J. Wu, Q. Yuan, and Z. Zheng. T-EDGE: Temporal WEighted MultiDiGraph Embedding for Ethereum transaction network analysis. Front. Phys., 2020, Sec. Social Physics.
J. Wu , Q. Yuan, D. Lin , W. You, W. Chen, C. Chen. Who are the phishers? Phishing scam detection on Ethereum via network embedding. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND 
CYBERNETICS: SYSTEMS 2020.
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Random Walk Sampling + Skip-Gram Learning on Blockchain Graphs

o SIGTRAN extracts a set of useful features which are fused with the corresponding node representations produced 
by a node embedding method

F. Poursafaei, R. Rabbany, and Z. Zilic. SIGTRAN: Signature vectors for detecting illicit activities in blockchain transaction networks. PAKDD 2021.

SIGTRAN embedding to detect illicit nodes on a blockchain network

o SIGTRAN features: structural features (in-degree, out-degree, total-degree); transactional features (amount and 
time interval of the transactions); regional and neighborhood features (number of edges, features in the egonet) 
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Graph Convolutional Neural Networks (GCN)

T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks”, ICLR, 2017.

Source: https://graphdeeplearning.github.io/project/spatial-convnets/

https://graphdeeplearning.github.io/project/spatial-convnets/
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Graph Convolutional Neural Networks (GCN) on Blockchain

L. CHEN, J. PENG, Y. LIU, J. LI, F. XIE, and Z. ZHENG. Phishing scams detection in Ethereum transaction network. ACM Trans. Internet Technol. 2021.

Node embedding and classification based on graph convolutional network and autoencoder

o In the first step, apply a random walk to sample the subgraph. The orange dots are randomly selected and 
represent the starting point for the walk. 

o For the obtained subgraphs, features (degree, transaction amount and frequency, no of neighbors, etc.) are 
extracted and min-max normalized as the feature matrix X. 

o The adjacency matrix and X are fed into GCN with encoder and decoder stage for embedding. 

o As the output of GCN, Z and features’ matrix X are concatenated to get the final result for classification.



Applications of Blockchain Data Analytics and 
Open Problems



Target Applications
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o Bulk of the works conducted graph analysis to gain insights into transaction and token 
transfers. 

o Some of them considered downstream tasks, e.g., node classification, link prediction, 
anomaly detection, token price prediction. 

o Most tools for blockchain data are related to e-crime or financial (e.g., price, investor) 
analytics. 

o From ransomware payment detection to sextortion discovery, transaction graph analysis 
has proven useful to study blockchain address importance and to cluster them. 

Oggier, F., Datta, A. and Phetsouvanh, S., 2020. An ego network analysis of sextortionists. Social Network 
Analysis and Mining, 10(1), pp.1-14.

Bistarelli, S., Mercanti, I. and Santini, F., 2018, August. A suite of tools for the forensic analysis of bitcoin 
transactions: Preliminary report. In European Conference on Parallel Processing (pp. 329-341). Springer, 
Cham.



oPrice prediction
Cryptocurrencies, tokens, NFTs.

oUnsupervised learning
Address clustering: detecting influential investors, exchange addresses.
Transaction clustering: linking transactions to an entity (P2P network solutions).

oSupervised learning
Address type detection: ransom receiving, money laundering addresses. 
Transaction type detection: pump and dump, darknet market transactions.
Smart contract type prediction: Ponzi schemes.

Applications

182

Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M. and Savage, S., 
2013, October. A fistful of bitcoins: characterizing payments among men with no names. 
In Proceedings of the 2013 conference on Internet measurement conference (pp. 127-140).



oRelationship between transaction networks of multiple cryptocurrencies and 
health of crypto eco-system.

oNetwork features of cryptocurrencies transactions as a proxy for market 
sensing. 

oEnsemble forecasting of fiat currencies with cryptocurrencies features.

Price, Risk, and Volatility

183

Baur, D.G., Hoang, L.T. and Hossain, M.Z., 2022. Is Bitcoin a hedge? How extreme volatility can 
destroy the hedge property. Finance Research Letters, p.102655.

Mokni, K., 2021. When, where, and how economic policy uncertainty predicts Bitcoin returns and 
volatility? A quantiles-based analysis. The Quarterly Review of Economics and Finance, 80, pp.65-73.



oSupervised learning: we have external labels on nodes or edges

oWhat are our node labels: 
known ransomware coin receiving/forwarding addresses
http://chartalist.org/btc/TaskTypePrediction.html
How do we know these addresses? Some companies release them 

when ransomed.
potential darknet market addresses
https://www.gwern.net/DNM-archives#gramsd2l
How do we identify these addresses? We match market item price  

amounts of a day to output amounts in btc transactions of the day.
184

Learning and Labels

http://chartalist.org/btc/TaskTypePrediction.html
https://www.gwern.net/DNM-archives
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Open Problems
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o Investigating graph properties, embeddings, and anomalous patterns. 
 Stablecoins’ price stabilization mechanisms (Luna Terra).  

o Multilayer graphs would be an expressive model of real-world activities such as external 
and internal transactions, token transfers, dApps and DeFi usage.

o Conducting graph analysis in an OLAP (online analytical processing) manner for accounts
 miners, mining pools, mixers, exchanges, phishing accounts, ICO contracts, gambling 

games.  

o Due to highly dynamic nature of accounts and transactions, employed ML models must 
deal with data and model drifts. 
 Drift detection, incremental learning, machine unlearning and continuous learning 

would be useful. 



Check out the Ethereum toolbox – open-sourced at:
https://github.com/voonhousntu/ethernet

V. H. Su, S. S. Gupta, A. Khan. 
Automating ETL and mining 
of Ethereum blockchain
network, WSDM 2022.
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https://github.com/cakcora/Chartalist

Chartalist is the first blockchain machine learning ready dataset platform from unspent 
transaction output and account-based blockchains.



Thanks for attending!

Reach us at

arijitk@cs.aau.dk
cuneyt.akcora@umanitoba.ca

https://twitter.com/cuneytgurcan https://twitter.com/rijitk
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