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Top 15 Cryptocurrency by Market Capitalization

1,000,000,000,0008

500,000,000,0008
Bitcoin {ETE} | €) 895688,387,5238
Ethereum (ETH) _ & 455713,570,3818
Binance Coin (BNB) 88,637,570,485%5

Tether (USDT) - §p 78373,882,136$

Solana (SOL) B @ 54.552,495,292$
Cardano (ADA) [l &: 46,129.061,736
USD Coin (USDC) [l @ 425625349415
XrP (XRP) ] €9 40.838,984,4148
Terra (LUNA) . ® 32.335,168,165$
Polkadot (DOT) | # 29,361,884,2328
Avalanche (AVAX) [l @) 27.588.210,908$
Dogecoin {DDGE}[] F"'j 23,138,181,4238
SHIBAINU (SHIB) ] @ 18,692,252,748%

Polygon (MATIC) || @ 18.259,576,689$ ® ? Jan 2022

Crypto.com Coin (CRO) || @) 14,847,022,637$ -

Source: Statista

Source: https://statisticsanddata.org/data/top-15-cryptocurrency-by-market-capitalization-and-price-2013-2021/
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- I — |
Summary of Features of top 5 Blockchain Platforms for Enterprises

Hyperledger R3 Corda Ripple
Fabric

m Cross-industry Cross-industry Financial Services  Financial Services Cross-industry

Ethereum
Governance Ethereum developers Linux Foundation R3 Consortium Ripple Labs developers & JP

Morgan Chase

Ledger type Permissionless Permissioned Permissioned Permissioned Permissioned
Cryptocurrency Ether (ETH) None None Ripple (XRP) None

% providers with

! 93% 93% 60% 33% 27%
experiencel
% share of
52% 12% 13% 4% 10%
engagements?
Coin Market Cap? $91.5B (18%) Not applicable Not Applicable $43.9 B (9%) Not Applicable
Consensus Pl bl Pl bl

Proof of Work (PoW) e SRS Probabilistic voting  Majority voting

algorithm framework framework

Smart contract

{ i Yes Yes Yes No Yes
functionality
1z Based on responses from 15 leading blockchain service providers Source: HfS Research, 2018
2. Based on a random sample of set of 50 enterprise blockchain engagements across multiple industries

3. Coinmarketcap.com as of Feb 20, 2018, 6:20 PM UTC

Source: https://www.hfsresearch.com/blockchain/top-5-blockchain-platforms Oé(_iﬁ%

© HfS Research 2018
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Blockchain: A distributed, digital ledger of
records (transactions) stored in a
sequential order.

~
rﬂ1 Each block contains the hash of the
previous block.
Traditional approach: controlled by Blockchain approach: each The blocks are shared openly among its
a central and trusted third-party, participant in a peer-to-peer participants to create an immutable
e.g., a bank. network has a copy of the sequence of transactions.

database, ensuring immutability.

Blockchain is updated by consensus
among its users (open or controlled set).



Blockchain Consensus: Proof-of-Work

O

Proof-of-work is done by miners, who compete to create new blocks with the latest transactions.

The work (i.e., the computation) is reasonably hard (yet feasible) for the prover (miner), but is easy to check for
the verifier (other users).

The competition is won by the one whose computer can solve a math puzzle in proof-of-work the fastest -- this
generates the cryptographic link between the current block and the previous block.

The winning miner shares the new block with the rest of the network and earns some reward (newly minted
cryptocurrency).

Miners join the longest chain to resolve forks in blockchain.



Proof-of-X

O

O

Proof-of-Work is energy expensive, difficult to scale.
With trust in participants (permissioned setting), consensus costs can be reduced.
Proof-of-X is an umbrella term that covers Proof-of-Work alternatives in block mining.

Each alternative scheme expects miners to show a proof that they have done enough work or
spent enough wealth before creating the block.

Proof-of-Stake: Stake = Coin x Age. The miner with the highest stake becomes the next miner
in the chain. Once coins are used, their age becomes zero.

In September 2022, Ethereum made the transition from a proof-of-work system to a proof-of-
stake system.

Proof-of-Burn, Delegated-Proof-of-Stake, Memory-hard Proof-of-Work, Proof-of-Ownership,

Proof-of-Publication, ... 9



Applications of Blockchains
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Public, Private, and Permissioned Blockchains

o Public blockchains are open to any user to join and participate.

o Private blockchains have a central controlling authority, usually the company behind the
blockchain. Participants are chosen by the authority with protected access modes.

o Permissioned, or consortium, blockchains are one or more entities, e.g., a group of
companies that can be in charge of the access control. These “administrator” nodes grant
different access modes to participating nodes, depending on business requirements.

Our Focus: Public, Permissionless Blockchains

o Public permissionless blockchains allow access to trusted, transparent, comprehensive, and
granular datasets of digital economic behaviors.

o Blockchain data analytics, also called the distributed ledger analytics (DLA), is an emerging field
of research (Financial data mining). 10



Blockchain Data Analytics

o Data stored in a public blockchain can be considered as big data.

o Volume: Ethereum archive nodes that store a complete snapshot of the Ethereum blockchain,
including all the transaction records, take up to 4TB of space.

https://decrypt.co/24779/ethereum-archive-nodes-now-take-up-4-terabytes-of-space

o Velocity: Ethereum blockchain has processed more than 1.1 million transactions per day in July 2021.

https://www.statista.com/statistics/730838/number-of-daily-cryptocurrency-transactions-by-type/

o Veracity: Ethereum contains a vast number of heterogeneous interactions, e.g., user-to-user, user-to-
contract, contract-to-user, and contract-to-contract across multiple layers via external and internal

transactions, ether, tokens, dAapps, etc.
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Graph-based Blockchain Data Analytics

o Data stored in a public blockchain such as in Ethereum can be considered as big data.

o Data analytic methods can be applied to extract knowledge hidden in the blockchain.

o Several recent research works performed graph analysis on the publicly available blockchain data to reveal insights
into its transactions and for important downstream tasks, e.g., cryptocurrency price prediction, address clustering,

phishing scams, and counterfeit tokens detection.
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This Tutorial Is NOT About ...

o Applications of blockchains.

Related survey: H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo. 2021. A survey of state-of-the-art on blockchains: theories, modelings, and tools.
ACM Comput. Surv. 54, 2 (2021), 44:1-44:42.

o Distributed databases aspects of blockchains, e.g., consensus protocols, confidentiality, fault-tolerance, scalability,
blockchain systems, and production deployment.

Related tutorials/ articles:

M. J. Amiri, D. Agrawal, and A. E. Abbadi. 2021. Permissioned blockchains: properties, techniques and applications. In SIGMOD.

S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi. 2020. Building high throughput permissioned blockchain fabrics: challenges and opportunities.
PVLDB 13, 12 (2020), 3441-3444.

S. Maiyya, V. Zakhary, M. J. Amiri, D. Agrawal, and A. E. Abbadi. 2019. Database and distributed computing foundations of blockchains. In SIGMOD.
C. Mohan. 2019. State of public and private blockchains: myths and reality. In SIGMOD.

o Security and privacy on blockchains.
Related survey: R. Zhang, R. Xue, and L. Liu: Security and privacy on blockchain. ACM Comput. Surv. 52(3): 51:1-51:34 (2019).
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Relevant Tutorials

o C. Akcora, M. Kantarcioglu, Y. R. Gel. Data science on blockchains. KDD 2021
o C. Akcora, M. Kantarcioglu, Y. R. Gel. Data science on blockchains. SDM 2021
o C. Akcora, M. Kantarcioglu, Y. R. Gel. Data science on blockchains. ICDE 2020
o C. Akcora, M. Kantarcioglu, Y. R. Gel. Blockchain data analytics. ICDM 2018

These tutorials covered fundamental building blocks of blockchains and data structures of UTXO and account blockchains.

Unlike ours, these tutorials do not cover blockchain graph models, data extraction and analysis, state-of-the-art in graph
Gnalysis, topological data analysis, and graph machine learning for blockchain data. y

Relevant Surveys

o lJiajing Wu, lieli Liu, Yijing Zhao, Zibin Zheng. Analysis of cryptocurrency transactions from a network perspective: an overview. J. Netw.
Comput. Appl. 190: 103139 (2021).

o F. Victor, P. Ruppel, A. Kiipper. A taxonomy for distributed ledger analytics. Computer 54(2): 30-38 (2021).

o A. Kamisali¢ and R. Kramberger and I. Fister. Synergy of blockchain technology and data mining techniques for anomaly detection. Appl.
Sciences 11:17 (2021).

o C. Akcora, Y. R. Gel, and M. Kantarcioglu. Blockchain networks: data structures of Bitcoin, Monero, Zcash, Ethereum, Ripple, and lota. WIREs
Data Mining Knowl. Discov. 12, 1 (2022).

o A. Khan. Graph Analysis of the Ethereum blockchain data: a survey of datasets, techniques, and future direction. In IEEE International
Conference on Blockchain 2022. 14



Blockchain Components

o Ledger: A ledger is a series (or chain) of blocks on which
transaction details are recorded after suitable authentication
and verification by the designated network participants.

o Cryptocurrencies: A cryptocurrency is a medium of exchange,
that is digital and uses encryption techniques to control the
creation of monetary units and to verify the transfer of funds.

o Transactions: . A transaction is a transfer of assets (e.g.,
cryptocurrencies, tokens) from one address to another.
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Blockchain Components

o Smart Contracts: A smart contract is deployed to a specific address on the
blockchain and constitutes a collection of code (for multiple functions) and data
(its state). Smart contracts can define rules and automatically enforce them via
the code. User accounts interact with a smart contract by transactions that
execute a function defined on the contract. Smart contracts can also call (or, kill)
each other, even itself, if processing a transaction requires some functionality
within the other or in the same contract.

» Smart contracts were first proposed in 1994 by Nick Szabo, who coined the term, referring to "a set
of promises, specified in digital form, including protocols within which the parties perform on
these promises".

» Ethereum implemented a Turing-complete language on its blockchain, supporting smart contracts
(2015).

» Smart contracts introduced by Ethereum are fundamental building blocks for decentralized finance
(DeFi) and NFT applications.

o Tokens: Tokens are digital assets or access rights provided by their issuers,
managed by smart contracts and the blockchain platform. A token’s smart
contract specifies meta-attributes about the token, including its symbol, total
supply, decimals, etc.

» Two most popular token standards on Ethereum are: (1) ERC20, a standard interface for fungible
(interchangeable) tokens, such as voting tokens, staking tokens, or virtual currencies, -- widely
used in initial coin offering (ICO); and (2) ERC721, a standard interface for non-fungible tokens
(NFTs), e.g., a deed for a song or an artwork.

-
-

........ .
LT TS . Savings
’ -~
’ ~,
e — .
II — \\
] .
VA — SRR O
i Vi V’ -
Ld ® ]
[ ] {

\
1 e e
Autonomous Ii @
Execution Q e ! {é} . @
I .
1
\ ! Code Is Law

_ — \ !
€)% . SMARTCONTRACTS

n N »

o
S

[LT S -~ El—F
_________ \7 \7\

Trustless } {
Execution j =i
(] O

Default

Avoid Manual Backups

Error

Source: https://www.edureka.co/blog/smart-contracts/
'

Cryptocurrencies

A
4 0

" DAl LING
—e —_— —_

II.I )

Source: https://developers.rsk.co/guides/get-crypto-on-
rsk/cryptocurrency-vs-token/



https://www.edureka.co/blog/smart-contracts/
https://developers.rsk.co/guides/get-crypto-on-rsk/cryptocurrency-vs-token/

Blockchain Components

o dApps: A decentralized application (dapp) is built on a decentralized peer-to-peer network that combines smart
contract(s) as backend and a frontend user interface, generally implemented via HTML5, CSS, and web3.js.

» In Ethereum, about 70% dapps have only one smart contract, and 90% dapps have less than three smart contracts, while there are also some
dapps having more than 100 smart contracts.

» A dapp author may even include a smart contract written by others.
» Exchanges, wallet, and gamesare the most popular dApp categories.

o DeFi: DeFi, or decentralized finance, are dApps for financial products and services, e.g., loans, savings, insurance,
exchanges, liquidity, lenders, and trading, powered by decentralized blockchain technologies such as Ethereum. DeFi
protocols are autonomous programs (i.e., smart contracts) that constitute a collection of rules similar to physical
financial institutions.

o Stablecoins: Stablecoins are cryptocurrencies, whose value is pegged, or tied, to that of another currency,
commodity or financial instrument, e.g., Tether (USDT) and TrueUSD (TUSD) are popular stablecoins backed by U.S.
dollar, TerraUSD (UST) algorithmic stablecoin.

K. Wu, An empirical study of blockchain-based decentralized applications, ArXiV, 2019.
C. R. Harvey, A. Ramachandran, and J. Santoro, DeFi and the future of finance. John Wiley & Sons, 2021.
S. Kitzler, F. Victor, P. Saggese, and B. Haslhofer, Disentangling decentralized finance (DeFi) Compositions, ArXiV, 2021.
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Blockchains: Data Structures, Storage and
Categories



Private and Public Blockchains

Permissionless (public) blockchains Permissioned (private) blockchains

Bitcoin, Litecoin, Ethereum Hyperledger, R3

o By definition any user can join a public blockchain (e.g., Bitcoin).

o For corporate settings, the transparency means that rivals can learn company
finances and buy/sale relationships.

o The permissioned blockchains were created for industrial settings.

o Permissioned: Less power consumption, more secure, privacy aware, but for all
purposes a gated community.

19
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UTXO vs Account-Based Blockchains

o Bitcoin and many cryptocurrencies use a construct called an output.

o An output stores a set of addresses and the amount of coins these addresses
receive ( ).

o Each transaction (except for the coinbase transaction) consumes one or more
outputs and creates one or more outputs.

o These blockchains are known as unspent transaction output based (UTXO)
blockchains.

21



UTXO vs Account-Based Blockchains

o A few newer blockchains, such as Ethereum, do not use UTXOs.

o Instead, each address holds an account, and each transaction contains one input
and one output address.

o These blockchains are known as account-based blockchains.

o UTXO-account distinction is important because it changes the generated
transaction data ( ).

22



Blockchain — Beyond Cryptocurrencies

Vitalik Buterin

o Butterin created Ethereum to store data and software
code on a blockchain.

e o Similar to Bitcoin, Ethereum has a currency: Ether.
o The code (a smart contract) is written in a coding

language, such as Solidity, which is then compiled
to bytecode and executed on the Ethereum Virtual

Vitalik Buterin, 2016

Machine.
Born January 31, 1994 (age 26)
Kolomna, Russia
Nationality Russian-Canadian o An analogy is the MYSQL snippets stored on a
Alma mater University of Waterloo data base.

(dropped out)
Known for Ethereum, Bitcoin Magazine

Awards Thiel Fellowship
Scientific career

Fields Digital contracts, digital ‘ Sol|d|ty
currencies, game theory
Website vitalik.ca g’
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First Layer vs Second Layer

o Over time, blockchains started to run into scalability.

o Initial solutions, such as Segregated Witness, were developed to leave some of
the encryption signatures and other non-transactional data out of blocks.

o Scalability efforts have culminated in second layer solutions, such as the Lightning
Network, where most of the transactions are executed off the blockchain.

o The first layer (i.e., the blockchain itself) only stores a summary of transactions
that occur on the second layer.

24



Lightning Network — 2"9 |ayer solution

o Lightning Network creates another layer on top of the blockchain.

o Users transact with each other offline, without paying transaction fees for each
transaction.

o Only the first and last transactions are written to the blockchain.

o LN was designed for repeated low value (micro) transactions, but it can be used
for large transactions as well.

o The offline nature implies that we cannot see each transaction individually; only
the aggregate information is published to the blockchain at the end.

o Good for transaction privacy, but not for the identity privacy!
25



Privacy Coins

o Bitcoin’s pseudonymous nature poses privacy problems.

o New cryptocurrencies have been developed to break the mapping
between input-output addresses, and even hide the transaction
amounts.

26



Monero

o Monero (April 2014) uses ring signatures and allows users to mix other
transaction outputs as (fake) inputs, so that the mapping between inputs and
outputs are blurred.

o Transaction structure is transaction output based (TXO), amounts could be visible
or hidden. Alphabay adopted Monero in 2016.

ul Confidential Transaction — amounts are not discloszed.
Inputs (3) Outputs (2)
Amount Key Image Amount Public Key

+  0.008000000000 d587442d855e 1 beaTa3cE05dablabfdcddc 50582508 TeFcaded Hoabs 0.000000000000 95cidasfbtd|eaf| bidbeTEbIe3FEE5TI0329c 35712 The 20 ca2Ta2 2 5abe 1 b

43¢
. 0.000000DOoO0D 8201437957808 e4ab42f 74083 beb 1 d TS5 00 1b9h2d584fa64ET5acdd 185

+  0.000000000000 Tc2874b12494282d7T544/0809256338624cc2017 18ace | cal B45466d13
begd

+  0.010000000000 572e2ackas0c01b51fIeb12a030eb0c 5 6eb186900FeT2F030ade5d47 100
831d
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ZCash

o Zcash (October 2016) transactions can be transparent and similar to bitcoin
transactions in which case they are controlled by a t-address.

o or can be a type of zero-knowledge proof called zk-SNARKs; the transactions
are then said to be shielded and are controlled by a z-address.

o Newly generated coins are required to pass through the shielded pool.

o Zcash can hide both transaction amounts and user entities, however less than
10% of all transactions were done by using z-addresses.

Kappos, G., Yousaf, H., Maller, M. and Meiklejohn, S., 2018. An
empirical analysis of anonymity in Zcash. In 27th USENIX
Security Symposium (USENIX Security 18) (pp. 463-477).

28



Data Extraction and Analysis Tools



Data Extraction Methods

o Run a full-node on the blockchain to collect all historic transactions — e.g., Bitcoin-Core, Geth,
and Parity.

» Massive-storage and hardware requirement; more than a week to fully synchronize entire data at a newly connected
node.

» Not good for ad-hoc queries.

o Web3 services and APIs for data extraction — e.g., Infura, SoChain, and Quicknode.
» high costs if users want to extract large amounts of data; paid and slow APIs.

» Blockchain data is stored at clients in heterogeneous, complex data structures, in binary or in encrypted format,
which cannot be directly used for exploration, mining, or visualization.

o Well-processed blockchain datasets — e.g.,

> Google Big Query (https://cloud.google.com/blog/products/data-analytics/introducing-six-new-cryptocurrencies-
in-bigquery-public-datasets-and-how-to-analyze-them )

» https://xblock.pro/#/ (Sun Yat-sen University and others)

» ETL (extract-transform-load) can still be an issue.

30
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How to Parse the Data

h https://github.com/alecalve/python-bitcoin-blockchain-parser

‘= README.md

bitcoin-blockchain-parser

This Python 3 library provides a parser for the raw data stored by bitcoind.

@ https://github.com/bitcoinj/bitcoin

‘= README.md

Java CI failing § build passing | pipeline | passed J coverage &7%

&) RC  #bitcoin]

Welcome to bitcoinj

The bitcoinj library is a Java implementation of the Bitcoin protocol, which allows it to maintain a wallet and
send/receive transactions without needing a local copy of Bitcoin Core. It comes with full documentation and some
example apps showing how to use it.

31
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Source of Truth — Google BigQuery

utc_created_date utc_modified_date rows_millions

133029 658 05:29:23,607 .72 1207
132607793 05:3155.894 595.69 171.88
1356237177 05222564 277528 1626.74
1329149289 05:28.45.798 08576 45564

These four tables from Google BigQuery are the most important sets of data from
the Ethereum blockchain in terms of the primary “interaction networks” between
User and Contract accounts.

Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of ethereum blockchain network, WSDM 2022.
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Problem to Solve

Tabular _ How to
Representation
perform

this step?

from_addres to_address edge_data block_numbe
s r

Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022.



Download
Data

Manually
download the data
of interest from
BigQuery

Voon Hou Su, Sourav Sen Gupta, Arijit Khan.

Existing Solution

Data is
Ready

Preprocess
Data - 1

Preprocess
Data - 2

_— e . . . . . E———,

& 2 &G

Write a script to

extract distinct

addresses and
hash them

Write a script to
build interactions
using hash ids
obtained from
previous step

Data is processed
and is ready for
analysis

Automating ETL and mining of Ethereum blockchain network, WSDM 2022.



Existing Solution - Issues

0 1 Save Query Results

Choose where to save the results data from the query.

No Automation

The process is not automated. Users have to write their
own BigQuery queries and preprocessing scripts.

02

Not Intuitive

Output format is still in tabular form. Interactions cannot
be easily visualised in an intuitive manner.

03
BigQuery
Limitations

Difficult to extract BigQuery results that are more than
1GB/16,000 rows in size.

V. H. Su, S. S. Gupta, A. Khan. Automating ETL and mining of Ethereum
blockchain network, \WSDM 2022.

CSV (Google Drive)

Save up to 1GB of results to Google Drive.

CSV (local file)

Save up to 16,000 rows locally.

JSON (Google Drive)

Save up to 1GB of results to Google Drive.

JSON (local file)

Save up to 16,000 rows locally.

BigQuery table

Save results as a BigQuery table.

Google Sheets

Save up to 16,000 rows to Google Sheets.

Copy to Clipboard

Copy up to 16,000 rows to the clipboard.

CANCEL

© Response too large to return. Consider specifying a destination
table in your job configuration. For more details, see
https://cloud.google.com/bigquery/troubleshooting-errors




Existing Solution - Issues

01

No Automation

The process is not automated. Users have to write their
own BigQuery queries and preprocessing scripts.

02

Not Intuitive

Output format is still in tabular form. Interactions cannot
be easily visualised in an intuitive manner.

03

BigQuery

Limitations

Difficult to extract BigQuery results that are more than
1GB/16,000 rows in size.

04
No Ability for Data Reuse

Data downloaded from BigQuery is not catalogue and is
stored in the filesystem as flat files.

05
Interaction Metadata Lost

Interaction data like amount of tokens and what type of
tokens exchanged is not stored/represented.

V. H. Su, S. S. Gupta, A. Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022.



Proposed Solution - Workflow

Automated Steps

01
User uses the Missing data in Missing data is Missing data is Required data to Network/graph is
Python SDK to local Hive downloaded added to local construct constructed in
submit an ETL database is from Google Hive database network/graph is Neo4j with CSV
request identified BigQuery exported to CSV files exported in

files previous step

Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022



Fully Automated

Entire ETL workflow
is fully automated

Consistent Entry

Consistent access layer
to ETL workflows via
EtherNet Python SDK

Data Preserved

Interaction/edge data is
preserved in the result

Proposed Solution - Benefits

Enables

Discovery
Users can see which
graphs already exist

Intuitive

Data is stored as graph
in a graph database
instead of flat files

Scalable &
Efficient

Data properly indexed
and compressed in Hive

Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022



Proposed Solution - Efficiency

Data Compression Ratios™ in Hive Tables

5.5 token_transfers

44.2 GB /8.00 GB
[152,587,661 rows]

115.1 GB/9.72 GB
[267,789,485 rows]

44.3 GB /11.93 GB
[103,189,720 rows]

* uncompressed size / compressed size

Voon Hou Su, Sourav Sen Gupta, Arijit Khan. Automating ETL and mining of Ethereum blockchain network, WSDM 2022



Proposed Solution — Future Direction

01

Not too easy to
deploy

Many components in the tool, requiring a considerably
large overhead in deployment.

02

Domain knowledge

required
In order to maintain and optimise EtherNet, domain
knowledge on Hadoop and HDFS is required.

03

Lack of cross-connectivity

Lack of support with other tools used for network
analysis like NetworkX — potential future work.

V. H. Su, S. S. Gupta, A. Khan. Automating ETL and mining of Ethereum blockchain network,
WSDM 2022.
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Check out the toolbox — open-sourced at:
https://github.com/voonhousntu/ethernet

Demonstration — Notebook Interface
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9. Analysis

In this section, we will demonstrate how a user can analyse the token_transfers graph created from step 4.1 .

In this simple analysis demonsitration, we will be using the Neo4j Graph Data Science Library to extract some graph characteristics/metrics.

We will mainly be demonstrating how one can:

1. Get the degree-centrality (in-degree) of a graph
2. Get the degree-centrality (out-degree) of a graph
3. Get the strongly connected component metrics of a graph
4. Determine which strongly connected component each address/node belongs to of a graph
Y
9.1. Install dependencies

First install the required dependencies.
In [ ]: # Install Neo4j driver
!pip3 install neo4j

# Install pandas
!pip3 install pandas

V. H. Su, S. S. Gupta, A. Khan.
9.2. Declare helper classes to connect to Neo4j Automating ETL and mining
Declare a helper class to connect and submit queries to Neodj easily. of Ethereum blockchain
N e —— network, WSDM 2022.

from neo4j import _ version_ _ as neo4j_version

# Set maximum number of rows to be displayed
pd.set option("display.max rows", 100)

# Print Neo4j version ¢ | 2




Blockchain Query Models

Ethereum Query
Language (EQL) is a
qguery language that
allows users to retrieve
information from the
blockchain by writing
SQL-like queries.

Not able to search inside
contract attributes when

guerying.

Listing 3: EQL Block Query Example
SELECT block.parent.number, block.hash,
block.timestamp, block.number,

—

block.amountOfTransactions
2 FROM ethereum.blocks AS block
3 WHERE block.timestamp BETWEEN date ('2016—01-01")
AND now () AND block.transactions.size >10
s+ ORDER BY block.transactions.size
s LIMIT 100;

Santiago Bragagnolo, Henrique Rocha, Marcus Denker, Stéphane Ducasse. Ethereum query
language. Proceedings of the 1st International Workshop on Emerging Trends in Software

Engineering for Blockchain. 2018.
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Blockchain Data Analytic Tools

o Bartoletti et al. developed a Scala framework for blockchain data analytics. This can integrate
relevant blockchain data with data from other sources, and organize them in a database, either
SQL or NoSQL.

o GraphSense is an open-source platform for analyzing cryptocurrency transactions.

o BlockSci loads the parsed data as an in-memory database, which the user can either
query directly or through a Jupyter notebook interface.

o Industry: https://santiment.net/, https://www.nansen.ai/,
https://www.blockchain.com/, https://www.chainalysis.com/ etc.

M. Bartoletti, S. Lande, L. Pompianu, A. Bracciali. A general framework for blockchain analytics. SERIAL@ Middleware 2017.

B. Haslhofer, R. Stitz, M. Romiti, R. King. GraphSense: A general-purpose cryptoasset analytics platform. CoRR 2021.

H. A. Kalodner, M. Moéser, K. Lee, S. Goldfeder, M. Plattner, A. Chator, A. Narayanan. BlockSci: design and applications of a blockchain
analysis platform. USENIX Security Symposium 2020.
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https://www.chainalysis.com/

Blockchain Data Analytic Tools

o Information on User Accounts: https://etherscan.io/, https://cryptoscamdb.org/,
https://tutela.xyz/ - fraud detection and classifying accounts.

o Static code analysis, machine learning on smart contracts are popular for code reuse
checking, contract classification, and ponzi schemes detection.

o LATTE provides a novel visual smart contract construction system. This will benefit non-
programmers to easily construct a contract by manipulating visual objects and without writing
Solidity code.

o BiVA is a graph mining tool for the bitcoin network visualization and analysis and transaction
pattern analysis.

F. Victor. Address clustering heuristics for Ethereum. Financial Cryptography, 2020.

W. Chen, Z. Zheng, J. Cui, E. C. H. Ngai, P. Zheng, Y. Zhou. Detecting Ponzi schemes on Ethereum: towards healthier blockchain technology, WWW, 2018.

T. Hu, X. Liu, T. Chen, X. Zhang, X. Huang, W. Niu, J. Lu, K. Zhou, Y. Liu. Transaction-based classification and detection approach for Ethereum smart contract. Inf. Process.
Manag. 58(2): 102462 (2021).

S. Tikhomirov, E. Voskresenskaya, |. Ivanitskiy, R. Takhaviev, E. Marchenko, Y. Alexandrov. SmartCheck: static analysis of Ethereum smart contracts. WETSEB@ICSE 2018.

S. Ducasse, H. Rocha, S. Bragagnolo, M. Denker, C. Francomme. SmartAnvil: open-source tool suite for smart contract analysis. Blockchain and Web 3.0: Social, Economic, and
Technological Challenges. 2019.

S. Tan and S. S. Bhowmick and H.-E. Chua and X. Xiao. LATTE: visual construction of smart contracts, SIGMOD, 2020.

F. E. Oggier, A. Datta, and S. Phetsouvanh. An ego network analysis of sextortionists. Soc. Netw. Anal. Min., 10(1), 2020.
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Blockchain Data Analytic Tools

o Visualization of blockchain data: BitConeView, BitConduite, Bitcoinrain, Ethviewer, ...

Survey: N. Tovanich, N. Heulot, J.-D. Fekete, P. Isenberg.
Visualization of Blockchain data: a systematic review. |IEEE Trans. Vis. Comput.

Graph. 27(7): 3135-3152 (2021)

o Natural language processing and sentiment analysis using tweets, online articles,
cryptocurrency prices and charts, Google Trends about blockchain.

> 0. Kraaijeveld and J. D. Smedt. The predictive power of public Twitter sentiment for forecasting
cryptocurrency prices, 2020, Journal of International Financial Markets, Institutions and Money, 65.

» A.-D. Vo and Q.-P. Nguyen and C.-Y. Ock, Sentiment analysis of news for effective cryptocurrency price
prediction, International Journal of Knowledge Engineering, 5(2), 2019.

» Abraham and D. Higdon and J. Nelson and J. Ibarra. Cryptocurrency price prediction using tweet
volumes and sentiment analysis, SMU Data Science Review, 2018.
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Blockchain Graphs: UTXO, Account Networks



UTXO Graphs: Bitcoin, Litecoin, Monero, ZCash



What does a UTXO transaction Look Like?

oA UTXO transaction can have i > 0 inputs and o0 > 0 outputs. Usually
. = 1and o = 2 (57% of all transactions in Bitcoin).

oi and o can be arbitrarily large, as long as the transaction size is less
than the block size (1MB in Bitcoin).

Transaction 1

== Address

‘\
| S ..\\ '/ I.
)\
O O Q—»@ A
. V4
| 4 4-—”’




Transaction Output (TXO) Based Blockchains

. 0.2B tx fee
Transaction 1

e Address

0.8 bitcoin

2 bitcoins

Next, if address b wants to spend its received 2B, it needs to show proof
of funds:

“Use the 2B | received from Block 1, transaction 1 and to pay 1.5Bto c
and 0.3B to d”.
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Transaction Output (TXO) Based Blockchains

o Genesis block 0: The first block, created by Nakamoto.

o Every block has one coinbase transaction that creates bitcoins (sum of
block reward + transaction fees).

o All other payments must show proof of funds (previous outputs).

_-== Coinbase transaction N

Block n Time Block

n+1 51




A Few Notes on the Physical Word

o Bitcoin uses addresses to represent accounts. If you want to “open an account”, you
need to create a bitcoin address (easily).

o An address is a short string of text that is created by using private/public key
cryptography.

o If you know the address of someone, you can send bitcoins to the address. You do not
need to know anything else (i.e., owner’s name, zip code, etc.) about the address.

o This means that multiple output addresses in a transaction can belong to two unrelated
people.
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A Few Notes on the Physical Word

What about input addresses?

0.8B c
it 1.5B
2B
2B 2B d
b 0.3B

They probably know each other, or they are the same person.
Because they need to sign the transaction by using private keys.

53



Three Graph Rules for TXO

1 — Mapping Rule: Multiple inputs can be signed separately and merged,
but the input-output address mappings are not recorded.

A transaction can be considered a lake with incoming rivers, and outgoing emissaries.

Coins mix in this lake.

1B 1B
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Three Graph Rules for TXO

2- Source Rule: Coins can be gained from multiple transactions.
These can be spent at once or separately (dashed edges connect
to unspecified addresses).

-y

Address b can spend bitcoins at tx;(once), or at tx; and tx,.

tX4

—~0

tx,
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Three Graph Rules for TXO

3- Balance Rule: All coins gained from a transaction must be spent in a single
transaction. Addresses cannot keep change, must forward it.

Address reuse is
— -, -~

- rare

—y -
e R e

TwoO cases: Same user?

i - ¢ sold all its coins: ¢, d and e all belong to different people, or
ii - ¢ paid to d, and forwarded the change to its new address e.

In many scenarios, we have to learn which addresses belong to the same entity.
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A Toy TXO Graph

Block 1 Block 2 Block 3

Past address use:
Possible but rare.

Address reuse: Possible but goes
aaainst community practice, happens r'ar‘ely.

Time ———)
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Transaction Graph

oTransaction graphs omit address nodes from the transaction network

and create edges among transactions only.
t1 g

om

Heterogeneous graph Transaction graph
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Disadvantages

o By omitting addresses, we lose the information that £ and t; are connected
by a,. The address reuse of a,, is hidden in the transaction graph as well.
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Disadvantages

oUnspent transaction outputs are not visible; we cannot know how many
outputs are there in tz and t,. Similarly, if t3 had an unspent output, we
would not learn this information from the graph. In Bitcoin, many outputs
stay unspent for years; the transaction graph will ignore all of them.

Time —
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Advantages

o First, we may be more interested in analyzing transactions than addresses. Many chain
analysis companies focus their efforts on identifying transactions that are used in e-crime.

o Second, the graph order (node count) and size (edge count) are reduced from the
blockchain network, which is useful for large scale network analysis.

o In UTXO networks, transaction nodes are typically less than half the number of address
nodes. For example, Bitcoin contains 400K-800K unique daily addresses but 200K-400K
transactions only. However, the real advantage of the transaction graph is its reduced
Size.

As we will explain in the next section, the address graph contains many more edges
than the transaction graph.
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UTXO Address Graph

oThe address graph omits transactions and creates edges between addresses
only.

oAddress nodes may appear multiple times, which implies that addresses may
create new transactions or receive coins from new transactions in the future.

Time =———)

Address graph
62
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UTXO Address Graph

oAddress graphs are larger than transaction graphs in node and edge counts.

oAs per the mapping rule, we cannot know how to connect input-output
address pairs. As a result, we must create an edge between every pair.

Creating an edge between all address pairs?
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UTXO Address Graph
oGraph size is not the only problem. The address graph loses the association

of input or output addresses.

oFor example, the address graph loses the information that edges a; and a,
were used in a single transaction; address graph edges would be identical if
the addresses had used two separate transactions to transfer coins to ag, a-

and ag.

-

~N

\_
f©_>

L —>
\_

Both create
the same
address
graph
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Disadvantages

Address graph: is it worth the trouble searching for graph motifs?
o No: Addresses are not supposed to re-appear in future.

o No: Closed triangles are very rare

o No: Output/input address sets do not have edges to each other — our tools

do not consider this, and search for edges in vain (linked transactions within
a block are possible but rare)

Graph Analysis with single node type:
Not always useful for the of Bitcoin
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The Chainlet Methodology Akcora, Cuneyt G., et al. "Forecasting bitcoin

price with graph chainlets." Pacific-Asia
Conference on Knowledge Discovery and Data
Mining. Springer, Cham, 2018.

o Rather than individual edges or nodes, we can |

use a subgraph as the building block in our
Bitcoin analysis.

o We use the term chainlet to refer to such
subgraphs.

Definition [K-Chainlets]:

Let k-chainletG, = (V,, E,, B) be a subgraph of G with k nodes of type {Transaction}.
If there exists an isomorphism between G, and G’, G’ €G, we say that there exists an
occurrence, or embedding of G, in G.

If a G, occurs more/less frequently than expected by chance, it is called a Blockchain
k-chainlet. A k-chainlet signature f;(G,) is the number of occurrences of G, in G.
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Blockchain Chainlets

Tx 1 Tx 2

o Chainlets have distinct shapes that
reflect their role in the network.

o We aggregate these roles to analyze
network dynamics.

s Tx 1 é M Tx 3 ‘ Tx 4

Three distinct types of 1-chainlets!
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Aggregate Chainlets

Ciy : chainlet with x inputs and y outputs.

o Transition Chainlets imply coins changing

. address: x =y.
Transition. Ex: Chainlet C,_,

y > X.

Q_,-(@Q o Split Chainlets may imply spending behavior:

Split. Ex: Chainlet

C But the community practice against address
152

reuse can also create split chainlets.

O o Merge Chainlets imply gathering of funds:
X >y.

Merge. Ex: Chainlet C,
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Aggregate Chainlets

Around here 2 pizzas were bought for 10 thousand bitcoins.

Spam attacks to increase block size.

1.2 V
1
= 0.8
i)
G
o
2 06
©
i)
3
O 04
]
(T
0.2
0
1 256 511 766 1021 1276 1531 1786 2041 2296 2551 2806 3061

—merge —split —transition

Day since 2009

Percentage of aggregate chainlets in the Bitcoin Graph (daily snapshots).
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Representing the Network in Time

o For a given time granularity, such as one day, we take snapshots of the
Bitcoin graph.
o Chainlet counts obtained from the graph are stored in an NxN matrix.

Outputs
0 0 0
%l é 2 &, fc
5 D B A }

Three distinct types of 1-chainlets!
0 0 g 1 j
N: How big should the matrix be?
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Extreme Chainlets o N can reach thousands; the matrix can be

outputs 1000 x 1000.
o On Bitcoin, % 90.50 of the chainlets have N
0 0 €= 0 of 5(x < 5andy < 5),and % 97.57for N

of 20.

Occurrence matrix

4 e 1
T\ #Ci, ifi <Nandj <N\
0

ifi<Nandj=N

inputs

o == o

Z -z
O[i,j] = 5 Z C,.; ifi=Nandj<N [
y:

Z Cyoz fi=Nandj =N
\y=N z=N y,

Extreme chainlets are the last column/row of the chainlet matrix.
They imply big coin movements in the graph!
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Chainlet Behavior
B [

Output address count

0.5 0.26 1.05

- 8.45

1.31 0.13 0.00 0.25
Percentages of all bitcoin Input
. address  0.76 3.81 0.38 0.05 0.04 o.11
chainlets. count

0.3 22 0.1 0.05 0.02 0.07

Most transactions involve
few addresses:

57.04% of transactions . 0.72
have one input and two

outputs.

0.22 1.06 0.05 0.02 0.02 0.05

2.36 0.11 0.05 0.04 0.45
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Account Graphs: Ethereum



Graphs Constructed

o Survey: A. Khan, "Graph

analysis of the Ethereum
blockchain data: a survey
of datasets, techniques,
and future direction", |IEEE
International Conference
on Blockchain 2022

paper

constructed graphs

| links to data and/or code

INFOCOM18 [36]

PLOS ONEI1S [37]

money flow graph, contract creation
graph, contract invocation graph

https://github.com/brokendragon
/Ethereum_Graph_Analysis

Complex Sys18 [38]

transaction graph

https://dataverse.harvard.edu/dataset.xhtml?
persistentld=doi:10.7910/DVN/XIXSPR

(full) ERC20 tokens transfer graph

not given

NTMSI18 [39] user-to-user, user-to-smart contract, not given
and smart contract deployment graphs

FC19 [40] (individual) ERC20 token not given
transfer graphs

ICDMW19 [41] Storj token transfer graph not given

Appl. Netw. Sci.19 [42] transaction graph not given

Inf. Sci.19 [43] transaction graph not given

WWW20a [44]

trace graph, contract graph,
transaction graph, token graph

https://github.com/sgsourav
/blockchain-network-analysis

SDM?20 [45]

(individual) ERC20 token
transfer graphs

https://github.com/yitao4 16/EthereumCurve

WWW20b [23] ERC20 token creator, holder, http://xblock.pro/#/
and transfer graphs

Sci Rep20 [46] (individual) ERC20 token not given
transfer graphs

ACM Meas. Anal. Comput. Syst.20 [47] ERC20 token creator, holder, and not given
transfer graphs for counterfeit tokens

Concurr. Comput. Pract. Exp.20 [48] transaction graph not given

IEEE Trans. Circuits Syst.20 [49]

transaction graph

https://github.com/lindan113/T-EDGE

Frontiers Phys.20 [50]

transaction graph

https://github.com/lindan113/T-EDGE

J. Complex Networks20 [51]

transaction graph

not given

Networking20 [9] user-to-user, contract-to-contract, not given
and user-contract graphs
SBP-BRiMS20 [52] (full) ERC20 tokens transfer graph not given

WWW21 [8]

trace graph, contract graph,
transaction graph, token graph

https://github.com/LinZhao89
/Ethereum-analysis

ECML PKDD?21 [10]

(individual) token transfer graphs,
stacked as a multi-layer network

https://github.com/tdagraphs

PAKDD21 [53]

transaction graph

https://github.com/fpour/SigTran

ACM Trans. Internet Techn.21 [55]

transaction graph

http://xblock.pro/#/

Blockchain21 [56]

(individual) ERC721 token
transfer graphs

https://github.com/epfl-scistimm
/2021-1EEE-Blockchain

IEEE Trans. Syst. Man Cybern. Syst.22 [54]

transaction graph

http://xblock.pro/#/
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Graphs Constructed

Survey: A. Khan, " Graph
analysis of the Ethereum
blockchain data: a survey of
datasets, techniques, and
future direction ", IEEE
International Conference on
Blockchain 2022

Static graphs

Dynamic graphs

Temporal snapshot graphs
Directed graphs

Weighted graphs (?weight)
Simple and multi-graphs
Attributed graphs
Multi-layer networks

paper

constructed graphs

links to data and/or code

INFOCOM18 [36]

PLOS ONEI1S [37]

money flow graph, contract creation
graph, contract invocation graph

https://github.com/brokendragon
/Ethereum_Graph_Analysis

Complex Sys18 [38]

transaction graph

https://dataverse.harvard.edu/dataset.xhtml?
persistentld=doi:10.7910/DVN/XIXSPR

NTMS18 [39]

(full) ERC20 tokens transfer graph

not given

user-to-user, user-to-smart contract,
and smart contract deployment eraphs

Accounts (EOA, SC)

not given

Transactions

-

User-to-user graph
SC creation graph

SC invocationgraph

ContractNet/
Contract-to-contract graph

/

Tokens

N

Transactions graph/
Money-flow graph/
TransactionNet

J

/7~ Full ERC20 token transfer graph
Individual ERC20 token transfer graphs

\Tﬁken holder graph

~

Individual ERC721 token transfer graphs
TokenNet/ Token transfer graph

Token creator graph

}

J

TraceMet

Frontiers Phys.20 [50]

fransaction graph

https://github.com/lindanl 13/1-EDGE

J. Complex Networks20 [51]

transaction graph

not given

Networking20 [9] user-to-user, contract-to-contract, not given
and user-contract graphs
SBP-BRiMS20 [52] (full) ERC20 tokens transfer graph not given

WWW21 [8]

trace graph, contract graph,
transaction graph, token graph

https://github.com/LinZhao89
/Ethereum-analysis

ECML PKDD?21 [10]

(individual) token transfer graphs,
stacked as a multi-layer network

https://github.com/tdagraphs

PAKDD21 [53]

transaction graph

https://github.com/fpour/SigTran

ACM Trans. Internet Techn.21 [55]

transaction graph

http://xblock.pro/#/

Blockchain21 [56]

(individual) ERC721 token
transfer graphs

https://github.com/epfl-scistimm
/2021-1EEE-Blockchain

IEEE Trans. Syst. Man Cybern. Syst.22 [54]

transaction graph

http://xblock.pro/#/




Graphs between Accounts:

©)

©)

©)

©)

o Ethereum has two types of accounts:

> Externally owned accounts (EOAs) are accounts controlled by private
keys. If a participant own the private key of an EOA, the participant has

the ability to send ether and messages from it.

» Smart contract code controlled accounts have their own code, and

are controlled by the code.

User-to-User Graph
Smart Contract Creation Graph
Smart Contract Invocation Graph

ContractNet/ Contract-to-Contract Graph

22 [BO—F
Transaction or Token \_) Q/ Create/CallfKill/Fork \)

Create Contract

|

:

Fa)

Txor . Call or KN Create, .
Token (~ (R | ;}l Call, Kill P
or Fork

Transaction or Token Mining Reward

o T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhang, “Understanding
Ethereum via graph analysis,” in INFOCOM, 2018.

o A. Anoaica and H. Levard, “Quantitative description of internal activity on the
Ethereum public blockchain,” in NTMS, 2018.

o Q. Bai, C. Zhang, Y. Xu, X. Chen, and X. Wang, “Evolution of Ethereum: a temporal
graph perspective,” in IFIP Net. Conf., 2020.

o X.T. Lee, A. Khan, S. S. Gupta, Y. H. Ong, and X. Liu, “Measurements, analyses, and
insights on the entire Ethereum blockchain network,” in WWW, 2020.

o L. Zhao, S. S. Gupta, A. Khan, and R. Luo, “Temporal analysis of the entire
Ethereum blockchain network,” in WWW, 2021.
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Value transfered through user-to-user

Graphs between Accounts:

and user-to-smart contract

User-to-user and
user-to-smart contract

transactions (Wei)

o A.Anoaica and H. Levard, “Quantitative description of internal activity on

the Ethereum public blockchain,” in NTMS, 2018.

Xlﬂﬁ USDJ{‘ETH }(1[]“
6 M user-to-user 300 B smart contract deployment
“ B user-to-smart contract —e— USD/ETH exchange rate 1.25
=
_S —8— USD/ETH exchange rate
é 4 200 1.00
&
o 0.75
©
29 100 0.50
g
=
9
@ 0.23
000
0 w B - -= == wm 00D Ill 0.00
B user-to-user B smoart contract deployment
102 B ser-to-smart contract 1024
10% 1022
10%
| I I I I | | :
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Graphs Based on Transaction of Ether:

o Regular, or external transaction denotes a transaction
with the sender address being an EOA.

o Internal transaction refers to a transfer that occurs when
the sender address is a smart contract, e.g., a smart contract
calling another smart contract or an EOA.

o Token transfer is an event log for transfer of tokens only.

»Token transfers can be considered as internal transactions.
Internal transactions are not broadcast to the network in the
form of regular transactions.

o Transaction Graph/ Money Flow Graph/ TransactionNet

L 4 , @
L/ \—)
Transaction or Token
Txor . Call or Kill Create,
Token Q/- | <-"\>)| call, Kill

Transaction or Token or Fork
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Graphs Based on Transfer of Tokens:

o Full ERC20 token transfer graph

o Individual ERC20 token transfer graphs
o Individual ERC721 token transfer graphs
o TokenNet/ Token transfer graph

o Token creator graph

o Token holder graph
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Graph Analysis on Blockchain Graphs
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Motivation

o Blockchain is a fascinating ecosystem of humans and autonomous agents.
o Not like conventional social networks, where the players are human users.
o Not like cryptocurrencies, where all interactions are transfer of value/asset.

Blockchain network is closer to the Internet or Web, where users
interact with one another, as well as with programs.

We study a public permissionless blockchain network as a complex system, and we
choose Ethereum, the most prominent blockchain network, for this purpose.
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Ethereum

o Introduced an automation layer on top of a blockchain through contracts.
o Facilitates a decentralized computing environment across the blockchain.

Transaction-based state machine. Global state made up of
accounts. Transfer of value/information between accounts
cause transitions in the state. Recorded in the blockchain.

We target the network of interactions between the User and Contract accounts that
make up the global state of Ethereum, and study them as complex systems.
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Networks

© TraceNet © TransactionNet
v : user and smart contract addresses v : user and smart contract addresses
a : all successful traces/transactions a : all successful transactions by users
© ContractNet © TokenNet
v : only smart contract addresses v : user and smart contract addresses
a : all successful traces/messages a : all successful transaction of tokens

While TraceNet presents a global view of interactions, ContractNet focusses on
the multi-agent network of contracts. While TransactionNet depicts all of basic
ether transactions, TokenNet focusses on the rich and diverse token ecosystem.
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Network Data

Source : Google Cloud Platform BigQuery

Size of Dataset | Row Count

bigquery-public-data.Ethereum_blockchain. blocks 8GB | 7185509

—_ contracts 15.7 GB 12950995

transactions 190 GB 388018 489

. . traces 500 GB 974766 498

Data extracted/mined : Block #0 till #7185508 ogs 160GB | 289552838
oKens ¥

Blocks recorded upto 2019-02-07 00:00:27 UTC token transfers 58 GB | 173421940

Seven different tables in the Ethereum dataset.

Data cleaning : Removing failed traces and handling Null addresses appropriately.
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Basic Network Properties

TraceNet
ContractNet

TransactionNet
TokenNet

Vertices and Arcs, Self-Loops and Density

4 Vertices MultiDigraph Simple, undirected graph

# Arcs # Self-loops (% of Arcs) Density # Arcs # Self-loops (% of Arcs) Density
75807179 | 768813599 3036915 (0.40%) 1.34x10~" | 191901 321 178 241 (0,09%) 0,67 x10~"
11332750 | 317 967 546 2521670 (0.79%) 24.8x1077 19608 452 63 234 (0.32%) 3.05 X10~7
45527529 | 388018 489 515245 (0.13%) 1.87x10°’ 128 368 878 115007 (0.09%) 1.24x1077
30429099 | 173421940 326557 (0.19%) 1.87x1077 93 844 445 36 950 (0.04%) 2.03x1077

We observe that self-loop percentage in ContractNet MultiDiGraph is significantly
higher than that in the three other networks. Moreover, the number of self-loops
in its MultiDiGraph is almost 40 times than that in its own simple, undirected

graph, indicating that a lot of smart contracts make multiple calls to itself.
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Local Network Properties

Vertex Degree Distribution
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We compare power-law distribution model against (i) exponential, (ii) log-normal, (iii)
power-law with exponential cutoff, and (iv) stretched exponential or Weibull.

We see that for our larger networks, TraceNet and TransactionNet, three of the four

alternative heavy-tailed distributions are better fit than the power-law.
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Local Network Properties

Indegree and Outdegree Correlation

Indegree and outdegree of vertices in the four
network MultiDiGraphs.

=~ 50% have similar in and out. 10°; mmssn—n———
1077
~ 30% have significantly higher in (ICO smart 1072
contracts appear a lot in the to_address). . 1072
Q10743
= 20% have significantly higher out (mining 1072 ;
. . -6 = Trace net
pools and mixers generally appear a lot in the 107" — =+ Contract net
10-7 ==+ Token net
from_address). 10-8 Transaction net

L . _ 10-¢ 10-% 102 10° 102 10* 10°
This is similar to the Web, involving hubs and Outdegree to indegree ratio

authorities, and it is unlike the case of
standard social networks. 87



Local Network Properties

Centrality value
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Vertex centrality aims at scoring, ranking, and identification of important vertices.
We identify the most central vertices from the innermost core of the largest

strongly connected component and find that high-degree vertices in blockchain
networks are also most central based on betweenness, closeness, and PageRank.
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Global Network Properties

Reciprocity and Assortativity

Reciprocity: Measure of vertices Network (#vertices, #arcs)

Reciprocity | Assortativity

~N

being mutually linked in network. TraceNet (76M, 198M)

ContractNet (11M, 22M)

. . . TransactionNet (46 M, 130M)
Assortativity: Measure of vertices TokenNet (30M, 95M)

being linked to similar-degree ones.

0.06
0.21
0.03
0.03

\§

-0.13
-0.64
-0.12
-0.13

J

Unlike social networks, all four of our blockchain networks are Disassortative.

Negative assortativity implies relatively more scenarios of addresses (vertices)
with different degrees transacting with each other in the blockchain networks.



Global Network Properties

Strong and Weakly Connected Components

Simple, directed networks

# Strongly connected

Largest strongly connected

# Weakly connected

Largest weakly connected

(#vertices, #arcs) components component (#vertices, #arcs) components component (#vertices, #arcs)
TraceNet (76M, 198M) 35215062 40M. 116M 7324 76M. 192M |
ContractNet (11M, 22M) 9013 144 2M, 4M 12 555 11M, 20M
TransactionNet (46M, 130M) | 15560 831 30M, 76M 8 181 46M, 128M
TokenNet (30M, 95M) 16 980001 13M, 56 M 54271 30M, 94M

Number of WCC is significantly lesser than the number of SCC in their respective
networks, due to lesser bidirectional edges between majority pairs of vertices.

ContractNet has the least # of SCC in the networks, indicating relatively stronger
connectivity within smart contracts. Similar to the Web, the blockchain networks
have a single, large SCC, with about 98% of the remaining vertices within reach.
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Global Network Properties

Core Decomposition

k-core is the maximal Largest Weakly Connected Component Innermost core
(#vertices, #arcs) (#vertices, #arcs)

subgraph, where each TraceNet (76M, 192M) (221, 12 058)

vertex is connected to ContractNet (11M, 20M) (1071, 143 352)

(682, 55 926)
(475, 57 124)

TransactionNet (46M, 128M)
at least k other vertices TokenNet (30M, 94M)

within the subgraph.

ContractNet and TokenNet have larger core indices for vertices in the innermost
cores, indicating higher density of their innermost cores. ContractNet’s innermost
core is the largest, implying more vertices participating in denser substructures.
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Global Network Properties

Triangles, Transitivity, Clustering Coefficients

e e . . . Largest strongly connected comp. Largest weakly connected comp.
Tra nS|t|V|ty IS q uite IOW. (Simpleundéted%‘ (Simple,_undirected)
. . # Triangles T C # Triangles — 1 Y ¢
This suggests thatinthe  tracenet 4008794 10.0><10"T 0.099 | 5813165 1.2><10‘; 0.077
. ContractNet 405 265 38.0xX10 0.212 871359 6.7X10" 0.078
b I ocC kC h dain n etWO r kS' WE TransactionNet 1908 138 8.3 X 10_? 0.064 4550517 12.4X 10_? 0.100
do not have a conducive TokenNet 2 803 894 8.6x10~7 ) 0.209 5296 640 L 5.5%1077 ) 0.175

environment for creation
of triangles. Indeed, non-social networks have lower transitivity coefficients.

High-degree vertices are often “loner-star”, that is, connected to mostly low-
degree vertices, resulting in lack of community structure in blockchain graphs.
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Global Network Properties

Higher-Order Motifs Counting

f

Motif density

\

#

r

Motif density

~

The most frequent motifs in the #
blockchain graphs are primarily 0—0—0 13669
chain and star-shaped. Counts H~—~0 17081

for more complex patterns,
e.g., cliques and cycles, are less.

>;<: 387 816

We check the density of a motif, the ratio of its count to its count in a complete
graph having same number of vertices as the innermost core. The densities for

.

1x1071
3x1073

12x1073

J

A 2214
E:I 60 297
g 2578

.

%1072
9%1073

4x1074

J

more complex patterns are quite less, indicating lack of community structure.
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Global Network Properties

Articulation points, Adhesion, Cohesion, Average path lengths, Radius, Diameter

# Articulation points | Largest strongly conn. comp. | Largest weakly conn. comp. Largest weakly connected component
(% of all vertices) Adhesion Cohesion Adhesion Cohesion Avg. path length 'y Radius | Diameter
TraceNet 1214137 (1.6%) 1 1 1 1 5.25 5002 8 267
ContractNet 28309 (0.2%) 1 1 1 1 5.94 14 27
TransactionNet 1337527 (2.9%) 1 1 1 1 5.33 5002 8 267
TokenNet 75513 (2.5%) 1 1 1 1 \ 3.87 ) 82 164

Adhesion and Cohesion for all blockchain networks are 1, indicating that removal
of the only one vertex or only one arc disconnects the respective SCCs and WCCs.

Interestingly, similar to social networks, blockchain graphs are also small-world.
However, in both our larger networks, TraceNet and TransactionNet, there are
vertices which are far apart, making the radius and the diameter quite large.
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Temporal Network Properties

Progress of Core Decomposition in Token Networks
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We study temporal evolution of the number of cores in token subgraphs against
the corresponding evolution of price of the token in the cryptocurrency market.
Observations clearly show a significant relationship between activity and price.
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Summary of Observations

In/Out-degree characteristics are very similar to the Web (hub/authority).
The blockchain networks are disassortative, having very low transitivity.
Complex motifs occur quite less, indicating lack of community structure.
Removal of one vertex or arc can disconnect the entire largest SCC/WCC.
Blockchain networks are surprisingly small-world and well-connected.
Networks contain a single, large SCC, with 98% of the vertices reachable.
both ContractNet and TokenNet yield larger core indices for vertices in the
networks innermost cores, indicating higher density of their innermost cores.
o Significant relationship between temporal relationship of inner cores of
prominent token networks and the price of the tokens in the market.

the Web

social network I

O O O O O O O

financial

https://github.com/sgsourav/blockchain-network-analysis

Future work may include analysis of prominent token networks in terms of activity signatures to forecast
trading behavior and token prices. Identifying influential vertices and complex motifs may also detect
fraudulent activities.
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Motivation and Research Questions

o Investigate the evolutionary nature of
Ethereum interaction networks from a L. Zhao, 5. 5. Gupta, A. Khan, and R. Luo, "Temporal
. analysis of the entire Ethereum blockchain
temporal graph perspective network,” in WWW, 2021.

o Address 3 main questions:

> How do Ethereum network evolve over time?

» How network properties changes over time, what is
the right “time granularity” for such temporal
analysis?

» Detect meaningful communities and forecast the

survival of communities in succeeding months.
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Evolution of Ethereum Network (Vertex)

o The number of new vertices and arcs
added is almost of the same order of
total number of vertices and arcs at
that time => Ethereum interaction
networks growing at a fast speed.
(highly active network).

o Vertices which are disappeared keep
increasing.
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Network Growth Model

The increasing percentage (3™ column)
indicates:
o As the Ethereum network matures, more
accounts remain active.

o And more than half of new vertices
participate in interaction with old vertices.

Table 3: TransactionNet: New ve

ing with old vertices

# new verlices with

# new verlices withoul

year # old verlices | # new verlices arc Lo old verlices are Lo old verlices
(% of new verlices) (% of new vertices)
2017 163982 14789934 5646964 (38.18%) 9142970 (61.82%)
2018 3599770 28583252 14279239 (49.96%) 14304013 (50.04%)
2019 5060613 21240780 14807280 (69.71%) 6433500 (30.29%)

Table 4: ContractNet: New v¢rtices connectinglwith old vertices

# old vertices

# new verlices

# new verlices with
arc to old vertices

# new verlices withoul
arc to old verlices

year
(% of new verlices) (% of new vertices)
2017 1859 3070553 182920 (5.96%) 2887633 (94.04%)
2018 426000 7196954 2927928(40.68%) 4269026 (59.32%)
2019 1108567 8266061 \ 6086678(73.63%) y 2179383 (26.37%)
_——
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Network Growth Model

o Correlation between old vertex degree in previous
year (2018) to its number of new connections in the
current year (2019).

o High degree vertices are highly likely to have more
new vertex connections in next year.

o The observation indicates that the Ethereum graphs
follow the preferential attachment growth model.
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Average Activity Period of Vertices

o Active period = duration (month) from
its first transaction to the last transaction
between Jan 2016 and Dec 2019.

o ContractNet: 91% has no more than 6
month active period.

o TransactionNet: Longer active period.

o In general, 88% of accounts have an
active period of no more than 6 months,

and up to 68% of accounts are only active

within a month.
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Temporal Evolution of Network Properties

o Investigate network properties changes over time to understand how the network is

connected and changed over time.

o Reveal any anomaly (beyond average) occurred in a specific time duration.

o A good time granularity as the shortest time duration by which we can detect an anomaly.
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Figure 8: Time granularity analysis for reciprocity; ContractNet 2016
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Temporal Evolution of Network Properties

o Oct 2016: Plenty of positive news on Ethereum in the media = a lot of tokens were deployed on

the network, which increased the number of one-directional arcs to the token contracts.
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Detection of ContractNet Communities

o Multilevel algorithm scales well over large-scale datasets and

produce good-quality communities.

:
o Consider multi, undirected version of graph . N
o # vertices and arcs in each community obtained over
ContractNet 2018 and 2019 networks.
o The size of the communities follows power-law: a few large
communities followed by a long-tail of remaining small j%
= S

communities.

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory and Experiment 2008, 10 (2008), 10008.
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Community Continuation Prediction

:giﬂ_g_ Average e |

o Data preparation: window size of 3 months and slide stride of 1 month. < ﬂ-’f'm
0.6

o Training dataset: the network properties of communities existing in 3- &

3—month blocks

Logistic Regression prediction accuracy for
ContractNet 2019

month period dataset.

o Aim: predict whether the communities still exists in next 1 month. 03

' ﬁ\d':curécy —
Average g

o Model: Logistic Regression & Random Forest. gf-'-?
E{].ﬁ-

0.5

3—month blocks

Random Forest prediction accuracy for
ContractNet 2019




Summary of Observation

o Ethereum interaction network grows at a fast speed.
o Networks follow the preferential attachment growth model.

o User accounts remain active much longer than smart contracts.

o Reveal anomalies occurred in a specific time duration and correlate them with external
‘real-life’ aspects of network.

o Detect meaningful communities in Ethereum network using multilevel algorithm.

o Forecast the continuation of communities in succeeding months leveraging on the
relevant graph properties and ML models. Achieving up to 77% correct predictions for
continuation.

https://github.com/LinZhao89/Ethereum-analysis
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Address Clustering, Coin Mixing, Traceability
and Obfuscation



Coin-mixing, Obfuscation, and Money Laundering

o Why? Foremost, ordinary citizens need privacy in cryptocurrency.

o Criminals need to sell their coins for fiat currency — on online
exchanges which require customer identification.

o Law enforcement can find the person behind an address by
asking for customer information from exchanges.

o Criminals need to launder their coins before they sell them.

How to not get caught when you launder money on blockchain?
CG Akcora, S Purusotham, YR Gel, M Krawiec-Thayer, M Kantarcioglu
arXiv preprint arXiv:2010.15082



Clustering on UTXO Blockchains

Where do the bitcoins at
address a come from?
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Clustering on UTXO Blockchains

Where do the bitcoins at
address a come from?

Possibly, from nine addresses!

Fungibility: Is a specific bitcoin
worth a bitcoin everywhere?
Taint analysis studies a bitcoin’s

d history

o Can we tell which addresses are controlled by the same user, entity,
organization?

o In order to answer this question, we need to link addresses.
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https://twitter.co
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status/136135490
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Heuristics

Heuristics are used to detect which input and output addresses
are controlled by the same user.

a¢ o c ®
b °: N

Considering amounts may helpin  Schemes exist to use multiple rounds
basic cases (at least some coins at ¢ of flows with equal amounts to hide
and d came from a). tracks.

Meiklejohn, Sarah, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker, and
Stefan Savage. A fistful of bitcoins: characterizing payments among men with no names. In Proceedings of the
2013 conference on Internet measurement conference, pp. 127-140. ACM, 2013
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Heuristics

1- Idioms of Use: posits that all input addresses in a transaction should belong
to the same entity because only the owner could have signed the inputs with
the associated private keys.

a
b

C
® @
¢ .

Addresses a, b, and c belong to the same user.
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Heuristics

2- Transitive Closure: extends Idioms of Use: if a transaction has
inputs from a and b, whereas another transaction has from a and c,
b and c belong to the same user.

®
-

Addresses a, b, ¢, d, and e belong to the same user.
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Heuristics

The heuristic posits that the one-time change (output) address— if
one exists— is controlled by the same user as the input addresses.

3- Change address: the following four conditions must be met:

(1)the output address has not appeared in any previous transaction;

(2)the transaction is not a coin generation;

(3)there is no self-change address in the outputs;

(4)all the other output addresses in the transaction have appeared in
previous transactions.

Pay/rrlent address

g - ::Q
Spending O

address Change address
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Traceability Problems and Privacy Coins

o Privacy coins break the mapping between input-output addresses, and
even hide the transaction amounts.
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Monero

o Monero (April 2014) uses ring signatures and allows users to mix other
transaction outputs as (fake) inputs, so that the mapping between inputs and
outputs are blurred.

o Transaction structure is transaction output based (TXO), amounts could be visible
or hidden. Alphabay adopted Monero in 2016.

ul Confidential Transaction — amounts are not discloszed.
Inputs (3) Outputs (2)
Amount Key Image Amount Public Key

+  0.008000000000 d587442d855e 1 beaTa3cE05dablabfdcddc 50582508 TeFcaded Hoabs 0.000000000000 95cidasfbtd|eaf| bidbeTEbIe3FEE5TI0329c 35712 The 20 ca2Ta2 2 5abe 1 b

43¢
. 0.000000DOoO0D 8201437957808 e4ab42f 74083 beb 1 d TS5 00 1b9h2d584fa64ET5acdd 185

+  0.000000000000 Tc2874b12494282d7T544/0809256338624cc2017 18ace | cal B45466d13
begd

+  0.010000000000 572e2ackas0c01b51fIeb12a030eb0c 5 6eb186900FeT2F030ade5d47 100
831d

117



Monero

Hiding transaction amount, sender and receiver address behind
mixins. Reds are actual used addresses, blues are mixins.




ZCash

/Zcash can hide both transaction amounts and user
entities, however less than 10% of all transactions
were done by using z-addresses.

Kappos, G., Yousaf, H., Maller, M. and Meiklejohn, S., 2018. An
empirical analysis of anonymity in zcash. In 27th USENIX
Security Symposium (USENIX Security 18) (pp. 463-477).
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Zcash

Hiding transaction amount, sender and receiver address behind zero
knowledge proofs.

ﬁ 1

~ Shielded pool

Address types:. t-address . z-address
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Obfuscation Efforts

o Obfuscation: hiding coin movements in the network to finally
cash out of the system by using an online exchange.

o Three regimes with increasing sophistication:
» 2009-2013: Hiding patterns. Assumes that analyst cannot trace payments in the large network,
» 2013-now: Coin-mixing,

» 2018-now: Shapeshifting. Moving coins to privacy coins and bringing them back.

Narayanan, Arvind, and Malte Md&ser. Obfuscation in bitcoin: Techniques and politics. arXiv
preprint arXiv:1706.05432 (2017).
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Obfuscation Efforts 1 — Peeling Chains

o In a peeling chain, a single address begins with a relatively large amount
of bitcoins.

o A smaller amount is then “peeled” off this larger amount, creating a
transaction in which a small amount is sent to one address and the
remainder is sent to a one-time change address.

o This process is repeated— potentially for hundreds or thousands of
hops— until the larger amount is pared down.

Di Battista, Giuseppe, Valentino Di Donato, Maurizio Patrignani, Maurizio Pizzonia, Vincenzo
Roselli, and Roberto Tamassia. Bitconeview: visualization of flows in the bitcoin transaction
graph. In Visualization for Cyber Security (VizSec), 2015 IEEE Symposium on, pp. 1-8. IEEE, 2015.
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Obfuscation Efforts 1 — Peeling Chains

q
5B 0.5B
. Exit to
0.5B fiat
currency

Repeated patterns are frequently found on the
Bitcoin blockchain (spam transactions in the
figure)

iy McGinn, Dan, David Birch, David Akroyd, Miguel Molina-Solana, Yike Guo,
TR e and William J. Knottenbelt. Visualizing dynamic bitcoin transaction
patterns. Big data 4, no. 2 (2016): 109-119.
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Obfuscation Efforts 2- Coin Mixing

o A measure to prevent matching addresses to users is known as Coin Mixing, or
its improved version, CoinJoin.

o The initial idea in mixing was to use a central server to mix inputs from multiple

users.
1B 1B ‘

2B 2B 2B 2B
2B 2B 2B 3B
5B 4B

Ruffing, Tim, Pedro Moreno-Sanchez, and Aniket Kate. CoinShuffle: Practical
decentralized coin mixing for Bitcoin. In European Symposium on Research in Computer
Security, pp. 345-364. Springer, Cham, 2014. 124



Obfuscation Efforts 2- Coin Mixing

o A measure to prevent matching addresses to users is known as Coin Mixing, or
its improved version, CoinJoin.

o The initial idea in mixing was to use a central server to mix inputs from multiple

users.
1B 1B ‘

2B 2B 2B 2B
2B 2B 2B 3B
5B 4B

Ruffing, Tim, Pedro Moreno-Sanchez, and Aniket Kate. CoinShuffle: Practical
decentralized coin mixing for Bitcoin. In European Symposium on Research in Computer
Security, pp. 345-364. Springer, Cham, 2014. 125



Obfuscation Efforts 3 - Shape Shifting

o Shapeshifting is moving exchanging bitcoins for Zcash/Monero, moving the coins
within the privacy coin securely and bringing them back to bitcoin.

& ShapeShift

shape

O address

. transaction

Time ——)

Bitcoin

20.58 m o ose
oS X

12008
VT

\ Y4
H oA

.-
0 —
- ?

?
. Shielded pool

Address types:o t-address . z-address

Zcash

Time —

& ShopeShift
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Counter-Counter Measures - Antinalysis

Antinalysis

“Worried about dirty
funds in your BTC
address? Come check
out Antinalysis, the new
address risk analyzer”
— a darknet market.

Antinalysis Result

Attention:

This page is based on data fetched on 2021-07-30T02.23:11.000Z conceming address 1CDLUMQoB8YMyxwnFG2q2inKfeNEGedgV5SE and will be accessible at this url until
2023-07-30T02:23:11.000Z. Do NOT conduct a lookup on the address again unless you wish to update the data on this address, your request balance will be deducted if you do

g

Overall Risk Score: 20.60%
(This score is only an estimate, please go through the details below. We generally recommend only considering a score lower than 25% as safe. Though it's also recommended
that none of the percentages in the extreme risk category are over 5%)

Extreme Risk High Risk Moderate Risk Low Risk Mo Risk Unidentified
Detailed Fund Composition:
(the percentages indicate the percentage of the total address funds in each category)
Extreme Risk 3.30%
» Darknet Markets 2.70%
Funds originated from known wallets of illegal darknet marketplaces.
= Darknet Services 0.10%
Funds originated from known wallets of other illegal darknet services.
» Ransom Proceedings 0.00%
Funds originated from ransomware activity proceedings.
+ Stolen Crypto 0.10%
Funds identified as stolen assets.
» Scam Proceedings 0.10%
Funds originated from identified addresses related to crypto scams.
» Address Blacklist 0.00%
Funds originated from addresses related to other identified illegal activities.
= Mixing Services 0.30%

AMLBot

Medium risk address ! 30.1%

Risk score

B Download PDF

BTC Address: 1CDLUMged YMyownF G2 2k feNEfe4gVSE

Low risk

Exchange ML Risk Low 27.3%

P2P Exchange ML Risk Low 6.9%
B Paymem 2.4%
B Wallet 1%

Medium risk

Atm 0.1%
B Exchange ML Risk High 39.4%
B Exchange ML Risk Moderate 3.4%
W Exchange ML Risk Veeryhigh 13.3%
B Gambling 0.2%

P2P Exchange ML Risk High 0.4%

© High Risk

B Dark Market 2 6%
B Dark Service 0.1%
B Mixer 2%

B Scam 0.1%
B Stolen Coins 0.1%

Attention! Since resulls include highly risky sources (Dark Market, Dark Service, llliegal
Service), we suggest escalating additional Investigation regardiess of the general risk
score

Investigate address
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Locating Payments — Tx Fingerprinting

o What is difficult about transaction fingerprinting (matching sale amounts to
transaction amounts)?

In 2-3 hops from

1e+07 - - _
distance certain addresses
e
-5 (e.g., ransomware
7 - 3 i
B 10r06- addresses) of interest,
S too many bitcoin
4]
** addresses are caught
{er05- in the search net.
2010 2012 2014 2016

Date
We used the Wannacry ransomware addresses in this analysis. 128



Amount Matching (Fingerprinting)

o What is difficult about transaction fingerprinting?

le=02- - Amounts can be
* chosen carefully to
¢ complicate
I transaction detection.
- Do not use too
‘e specific amounts like
Te et 0.1457 btc.

1e—-04 - * %,

frequency

)
|

o

@
]

:

@

Figure: Amounts in all Bitcoin
transactions.
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Amount Matching (Fingerprinting) : -<g

o What is difficult about transaction fingerprinting?

""""""""""""" * 57.04% of all transactions are one input, two

. ......... - output chainlets

Output address count

Patterns can be

i1, 5 026 1
_ ; o> 2 e chosen carefully —
0.09 0.25 using transactions
Input with one input and
address >% two outputs in every
count

0.3 2.2 0.1 0.05 0.02 0.07 payment pUtS you IN a

large privacy pool.
0.22 1.06 0.05 0.02 0.02 0.05

. 0.72 2.36 0.1 0.05 0.04 0.45
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Topological Data Analysis on Blockchain Graphs



Why TDA?

What is the true shape
of this data?
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Why TDA?

o Is there a set of tools which detects the shape of the object underlying a
dataset?

o Persistent Homology of TDA is a way to watch how the homology of a
filtration (sequence) of topological spaces changes so that we can understand
something about the space.
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TDA on Point Clouds

Let X be a discrete set in some metric space.

o Now, we fix an increasing sequence of scales ¢; < €, <
.- < €, and construct a chain of nested Vietoris-Rips
complexes called a finite VR filtration VR, S VR, S -+ ©

VR¢ , where VR, , k=1,.., n.

We expect that features with a longer lifespan, i.e. persistent
features, have a higher role in explaining structure and
functionality of the data than features with a shorter lifespan.
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Topological Data Analysis — Persistent Homology

o To extract summaries of such topological features at a mesoscopic level, we use Betti
numbers.
o Betti-p number of a simplicial complex C of dimension d, denoted by 8, (C), is defined as

(# of connected componentsof C p =0
o Bp(C) =3 # of 1-D holes or tunnelsof C p =1

\ # of 2-D holes or cavitiesof C p = 2

VR

VR4

€1=0 Po=20 P:=0 B2=0 €=0.28 Po=8 Bi=1 B.=0 £3=0.52 Bo=1 PB1=1 PB=0 €4=1.02 Bo=1 Pp1=0 Po=1

Betti numbers at increasing dissimilarity scales. 135



Topological Data Analysis of Blockchain — Ethereum Case

o LetG = (V,E,w) be a weighted graph, with the node set I/ and edge set
E and w: E = R™ is a function encoding dissimilarity between two nodes

connected by an edge.

o To account for dissimilarity between two disconnected nodes, we introduce
the weight @:V XV - R*

o wy, (W,v)€EE
uv o (u,v)&eE.

Dissecting Ethereum blockchain analytics: What we learn from topology and geometry of the Ethereum
graph?

Y Li, U Islambekov, C Akcora, E Smirnova, YR Gel, M Kantarcioglu

Proceedings of the 2020 SIAM international conference on data mining, 523-531.
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Topological Data Analysis of Blockchain — Ethereum Case

o In the context of a weighted network, we define w,,,, as
(Ayy — Amin) - (@ — b)]_l
(Amax o Amm)

where A4,,,, is the weight of the edge (total amount of tokens
traded) between nodes u and v. Values of a and b create a scale.

wWyy = [14

o Anin and A, 4, are the smallest and the largest edge weights,
respectively.
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Topological Data Analysis of Ethereum Networks

o In this context, we introduce a novel notion of Betti functions which relate these counts to
the scale parameter viewed as continuum.
o The Betti-pfunction B,;: R* - {0,1,2,3,..},p =0, ..., d, associated with {C,}.cp+ is
defined as
By:€ = B,(Ce).
o Sequence of Betti numbers are finite dimensional realizations of Betti functions.

elem amiiege

= Ewl 1 signafure

T T T T T L) T T T T T T T
02 D00 15000 200D 20N 0 2000 400 BXOD EODD  A0OOD 12000 - 03 10030 15000 20000 20003 30000

Fifiratian thash Lk Fiffrabion ies rald Filirabian e tald 1 3 8



Topological Data Analysis of Ethereum Networks

o The Betti functions can be regarded as a functional summary statistic of the
network’s topological structure.

Tronix: 2018 Feb 05 Tronix: 2018 Feb 06
o Due to the functional dependency 5 5
among Betti numbers at different scales, : :
it is important to view {B),(€x)};=1 as a : ’
function as opposed to a vector in R". 3 T = I
Tronix: 2018 Feb 07 Tronix: 2018 Feb 08

14 14

o This point of view allows us to utilize
methods from functional data analysis
such as a concept of functional data
depth. 5 1' : B ; :

scale scale

Betti 1 function
Betti 1 function

(=



Topological Data Analysis of Ethereum Networks

Scale at which Betti-0
starts to decrease

Betti-2: 2D
holes do not
persist

0.75

m B0
mB1
mB2

0.25

0.00

0 1 2 3
Scale

Betti-2: early 2D holes

disappear
The biggest connected component of

Corresponding Betti functions.
the Storj network (for a single day).
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Topological Data Analysis of Ethereum Networks

o Consider Betti functions {B,, }_, associated with an evolving token
transaction network overdayst =1, 2, ...,T.

o Although each day visually looks different, some days present a clear
anomaly in terms of their shape.

Tronix token PowerLedger token

ion of central samples Proportion of central samples
=01*=05 1 .

1.2

o~ . .
— Betti-1 signature — = Betti-1 signature

o We use a notion of rolling band depth:
RDW(Bp,t): =
= MBD (Bp,tpr,t» Bpt—1s - Bp,t—w+1)-

0.8

0.6

0.4

o We introduce a concept of Betti
signature which is defined as the

02

0.0

deepest or most central Betti function. S S

Filtration threshold Filtration threshold



Next: Predictive Models BYQ% i W @

TRON STOR] AUGUR

Problem Definition: Given the transaction network of an Ethereum token and time series of the token price in fiat
currency, predict whether the token price will change more than 6 in the next h days. Identify the maximum
horizon value h such that the prediction accuracy is at least p.

20004

20

15004

count
-
th

.

Anomalous Token Count
=

5004

ol .H.ull..“hm

11/0617 1200417 01/01118 01/29/18 02/26/18 03/26M18 04/23H18

A histogram of absolute price returns of 31 tokens Date
R; = (Price; — Price;_1)/(Price;_1).

L]
04 02 00 02 04 L
0

priceReturn

Number of (price) anomalous tokens in time.
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https://ethereumcurves.github.io/tokens/bytom.html
https://ethereumcurves.github.io/tokens/tronix.html
https://ethereumcurves.github.io/tokens/reputation.html
https://ethereumcurves.github.io/tokens/storj.html

TDA in UTXO Networks

Ransomware is a type of malware that infects a victim's data
and resources and demands ransom to release them.
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Why Now?

The combination of strong and well-implemented
cryptographic techniques to take files hostage, the Tor
protocol to communicate anonymously, and the use of
a cryptocurrency to receive unmediated payments
provide altogether a high level of impunity for
ransomware attackers.

Paquet-Clouston,

https://arxiv.org/abs/1804.04080
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The Anatomy of a Ransom Payment

4
Transaction arbitrated by a blockchain Company’s Hackers’
exchange — the ransomed company is address address
buying coins. shape

Q address
. . " .transactiun
. AN t >0.5B
78
. ‘_ . ,/l— h\‘
--- Time  =—— ,,,"

o There is a considerable time (e.g., 20 hours) gap between t; and t,.
o Searching this exact pattern catches many true positives.
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Public Network

Bitcoin transaction network is public — we can see all coin transfers.

Transaction

-= Address
/,’ [ |

I

I
I
/
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Our Tasks

Can we identify ransomware victims automatically?

Our two tasks!

Can we discover new
ransomware families?

On Bitcoin
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Our Data

Our ransomware dataset is a union of datasets from three widely
adopted studies:

Montreal, Princeton and Padua.

The combined dataset contains 24,486 addresses from 27 ransomware
families.

Huang, D.Y., Aliapoulios, M.M., Li, V.G., Invernizzi, L., Bursztein, E., McRoberts, K., Levin, J., Levchenko, K.,
Snoeren, A.C. and McCoy, D., 2018, May. Tracking ransomware end-to-end. In 2078 IEEE Symposium on
Security and Privacy (SP) (pp. 618-631). IEEE.

Paquet-Clouston, M., Haslhofer, B. and Dupont, B., 2019. Ransomware payments in the bitcoin
ecosystem. Journal of Cybersecurity, 5(1).

Conti, M., Gangwal, A. and Ruj, S., 2018. On the economic significance of ransomware campaigns: A
Bitcoin transactions perspective. Computers & Security, 79, pp.162-189.
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Network Snapshots

We divide the Bitcoin network into 24-hour long
windows by using the UTC-6 timezone as reference.

On the Bitcoin network, an address may appear
multiple times.

An address u that appears in a transaction at time ¢t
can be denoted as al,.

150



Notation

Let {a, },,e,+ be a set of addresses and let
each address a,, be associated with a pair
(X,,,V,,), Where X,, € R"is a vector of its
features and y,, is its label.

The label y,, can designate a white (i.e.,
non-ransomware) address or a
ransomware address.
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White vs. Dark Addresses

Let f4, ..., [, be labels of known ransomware

families which have been observed until time point
L.

We set f, to be the label of addresses which are
not known to belong to any ransomware family,
and we assume them to be white addresses.

Assumption: those addresses that we do not know as
ransomware are white (non-ransom) addresses.
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Why the Window?

The window approach serves two purposes:

o The induced 24-hour network allows us to
capture how fast a coin moves in the network.

o Temporal information of transactions, such as
the local time, has been found useful to cluster

criminal transactions.
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Features

On the heterogeneous Bitcoin network, in each snapshot
we extract the following six features for an address:

Income of an address u is the total amount of coins
outputto u: Iy = )¢ cro Ay (n).

Neighbors of an address u is the number of transactions
which have u as one of its output addresses: ‘Ful‘.

Income and neighbors do not consider position of the address in

the network!
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Features

We desighed graph features to quantify specific
obfuscation patterns used by ransomware operators:

o Loop counts how many transactions i) split their coins; ii)
move these coins in the network by using different paths
and finally, and iii) merge them in a single address.

o Weight quantifies the merge behavior, where coins in
multiple addresses are each passed through a succession
of merging transactions and accumulated in a final

address.
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Features

Count represents information on the number of
transactions, whereas the weight feature
represents information on the amount (what
percent of starter transactions’ output?).

Length quantifies mixing rounds on Bitcoin, where
transactions receive and distribute similar
amounts of coins in multiple rounds with newly
created addresses to hide the coin origin.
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Table 1: Most frequent feature values in ransomware addresses.

len Wei Nei Cou Loo INC  # addresses OverallRank
0 0.5 2 1 0 1 327 1
0 0.5 2 1 0 1.2 250 113
0 1 2 1 0 1 189 4
0 1 1 1 0 0.5 178 9
) 0.5 2 1 0 0.8 160 116
0 1 1 1 0 1 146 3
0 1 2 1 0 1.2 127 121
0 0.5 2 1 0 1.25 119 327
0 0.5 1 1 0 0.5 118 6
0 1 1 1 0 2 117 18




Most Payments are N-1 or N-2!

Length O: The first transaction involving these coins
in the day.

Weight 1: All output goes into the address.

Neighbor 1: One transaction makes a payment into
the address.

Count 1: One starter transaction reaches the
address.

Loop O: No obfuscation, coins are directly paid.
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Experiment 1: Detecting Undisclosed Payments

Naive approach: Similarity search all history. Not so bad!

- False Positive o
== True Positive

100 A

751

Addresses
..‘. o0

N
o &)
[ [
@
®
¥
®

2012 2014 2016 2018

Date
However, this naive approach creates 21,371 FP addresses overall.
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Topological Analysis

We apply Topological Data Analysis
for ransomware payment
detection and compare our node
classification results to ML
techniques.

-2
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Problem

Network node classification with past labeled data.

1.Naive Cosine similarity search

2.Transition and co-spending heuristics

3.Tree based methods: XGBoost, Random Forest
4.Clustering: DBSCAN, K-means

5. TDA Mapper
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TDA Mapper

The key idea behind Mapper is the following:

o Let U be a total number of observed addresses and
{x,}0_, € RP be a data cloud of address features.

o Selecta filter function&: {¥,}0_, - R.

o LetI be the range of ¢, thatis, I = |m, M| € R, where m =
min, & (x,) and M = max,&(x,).

163



Features

O

Now place data into overlapping bins by dividing the
range I into a set S of smaller overlapping intervals of
uniform length.

Let u; = {u: {(x,) € I;} be addresses corresponding
to features in the interval I; € S.

For each u; perform a single linkage clustering to
form clusters {uj }.
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TDA Mapper

o If current addresses are contained in clusters that also contain
many past known ransomware addresses, by association, we
deem these current addresses potential ransomware addresses.

o We filter the TDA mapper graph by using each of our six graph
features. As a result, we get six filtered graphs C73, ..., CJg for

each time window.

o Afterwards, we assign a suspicion, or risk score to an address a,,.
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Experiment 1: Detecting Undisclosed Payments

o ML Methods: TDA gives the best F1. For each ransomware
family, we predict 16.59 false positives for each true positive.

o In turn, this number is 27.44 for the best non-TDA models.

RS Method I N TP FP EN TN #w Prec Rec F1 PLR

Locky TDA'S"® 240300 451 2350 50 8221 11 0.161 0.900 0.273 0.192
COSINE 90 300 2395 41681 3990 146369 194 0.054 0.375 0.095 0.057

Crypto TDA'§"%® 240 600 217 3087 155 11200 15 0.066 0.583 0.118 0.070
Wall DBSCAN 5 240 600 728 18960 794 16913 59 0.037 0.478 0.069 0.038

Crypto TDA 0717 240 300 439 9686 212 22129 34 0.043 0.674 0.081 0.045
Locker DBSCAN 15 60 300 935 42771 295 11316 67 0.021 0.760 0.042 0.022

Cerber TDA'D'™*® 120300 187 5174 459 23027 29 0.035 0.289 0.062 0.036

XGBOOST 240 300 1606 47307 7279 374169 436 0.033 0.181 0.056 0.034

Crypt TDA "% 90300 77 2460 271 11057 14 0.030 0.221 0.053 0.031

XXX COSINE 30 600 589 20872 610 42952 65 0.027 0.491 0.052 0.028




Experiment 2: Predicting a New Family
In CryptXX we catch

RS Method Prec Rec TN FP TP FN PLR tWO addresses, one is
CryptXXX  TDA( 2”2 0500 0.026 917 @37 1o a TPl

COSINE 0.046 0342 654 2 25 0.049
Locky COSINE 0.098 0.138 795 37 4 25 0108  |n general, we

TDAD 0?1995 0.047 0.586 489 343 17 12 0.049

predict 27.53
false positives for

CryptoWall TDA( 2°'%%% 0.0625 0.500 810 165 11 11  0.067

TDAY 2219 0.061 0.500 805 170 11 11 0.0647

0.05]0.95 each true
Cerber DAY 9%109% 0,029 0214 849 100 3 11 0.030 N
DAY 2%1%% 0,023 0.642 570 379 9 5 0.023 positive
DMALocker DBSCANg > 0.019 0.875 120 367 7 1 0.019
DBSCANg 15 0.015 0875 4450 7 1 0015
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Through some black-magie-Topological Data Analysis methods

In locating ransomware addresses

We predict 16.59 false positive ransom addresses
for each true positive.

In identifying new ransomware families.

We predict 27.53 false positive ransom addresses
for each true positive.

Among 600K Bitcoin addresses daily!



Data and Article

UClI

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

BitcoinHeistRansomwareAddressDataset
Download: Data Folder, Data Set Description

Abstract: BitcoinHeist datasets contains address features on the heterogeneous Bitcoin network to identify ransomware payments.

Data Set Characteristics:

Multivariate, Time-Series

Number of Instances:

2916697

Area:

Computer

Attribute Characteristics:

Integer, Real

Number of Attributes:

10

Date Donated

2020-06-17

BitcoinHeist: Topological data analysis for Ransomware prediction on the bitcoin blockchain

Cuneyt G. Akcora, Yitao Li, Yulia R. Gel, Murat Kantarcioglu.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020.
https://www.ijcai.org/proceedings/2020/612
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Machine Learning on Blockchain Graphs



Machine Learning on Blockchain Graphs

D. Lin, J. Wu, Q. Yuan, and Z. Zheng. Modeling and understanding Ethereum transaction records via a complex
network approach. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 67, NO. 11, NOVEMBER
2020.

D. Lin, J. Wu, Q. Yuan, and Z. Zheng. T-EDGE: Temporal WEighted MultiDiGraph Embedding for Ethereum transaction
network analysis. Front. Phys., 2020, Sec. Social Physics.

F. Poursafaei, R. Rabbany, and Z. Zilic. SIGTRAN: Signature vectors for detecting illicit activities in Blockchain
transaction networks. PAKDD 2021.

J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen. Who are the phishers? Phishing scam detection on Ethereum via
network embedding. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 2020.

L. CHEN, J. PENG, Y. LIU, J. LI, F. XIE, and Z. ZHENG. Phishing scams detection in Ethereum transaction network. ACM
Trans. Internet Technol. 2021.

T. Yu, X. Chen, Z. Xu, and J. Xu. MP-GCN: a phishing nodes detection approach via graph convolution
network for Ethereum. Appl. Sci. 2022.
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Graphs Representation Learning

08 » 1] o0 | Node classification
08l @ge ® . ® ] Link prediction

ol ® e L o d Graph classification
e @ | Entity resolution

s _' Question Answering

i i i i i i i i
-1.0 -05 0.0 0.5 1.0 15 2.0 2.5

Node embedding/ vectors Downstream tasks

Matrix factorization

Random walk sampling + Skip-Gram learning J
Graph convolutional neural networks (GCN) (
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Machine Learning on Blockchain Graphs

D. Lin, J. Wu, Q. Yuan, and Z. Zheng. Modeling and Random walk sampling + Transaction (link) prediction
understanding Ethereum transaction records via a complex . .

network approach. [EEE TRANSACTIONS ON CIRCUITS AND Skip-Gram learning

SYSTEMS II: EXPRESS BRIEFS, VOL. 67, NO. 11, NOVEMBER

2020.

D. Lin, ). Wu, Q. Yuan, and Z. Zheng. T-EDGE: Temporal — Random walk sampling + Transaction (link) prediction
WEighted MultiDiGraph Embedding for Ethereum transaction . .

network analysis. Front. Phys., 2020, Sec. Social Physics. Sklp-G ram lea rning

F. Poursafaei, R. Rabbany, and Z. Zilic. SIGTRAN: Signature —— Random walk sampling + Detecting illicit activities (node
vectors for detecting illicit activities in Blockchain transaction . . > .

networks. PAKDD 2021. Skip-Gram learning + Feature classification)

J. Wu,, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen. Who arethe - Random walk sampling + Phishing scams detection (node
phishers? Phishing scam detection on Ethereum via network . . . .

embedding. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND Skip-Gram learning classification)

CYBERNETICS: SYSTEMS 2020.

= Gnl2 2 PIENE, U6 (I, s W % AIE, Be 12 AnlENS, 1506 Graph convolutional neural  Phishing scams detection (node
scams detection in Ethereum transaction network. ACM Trans. . .

Internet Technol. 2021, networks (GCN) classification)

1,05 GG, 2 WU, BING) I, 20, (OB B U] (15155 Graph convolutional neural  Phishing scams detection (node
detection approach via graph convolution network for . .

Ethereum. Appl. Sci. 2022. networks (GCN) classification)
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Random Walk Sampling + Skip-Gram Learning

o Transform a graph into a set of random walks through sampling methods, treat each random walk as a sentence,

and then adopt word2vec (Skip-Gram) to generate node embeddings from the sampled walks.

Node embedding/ vectors

Iy 2 rd
. e e o Skip-Gram learning ii; ;} : :d
f £ H—.—: X ._:- : v
i 2%%/ >> m—) T e—) T
’ v . vy
p:V—R’
Graph Random walk sampling Corpus
V]
”gmaxﬁz 2, logp(upily) o DeepWalk (KDD 2014)

J=1l —w<isw

o LINE (WWW 2015)
o Node2vec (KDD 2016)
lDSP(“ﬂ“jH} = IDEJ{*?’M(“;H} "?’our{ﬂj}} o HUGE (|CDE 2021)

+ Z By~ Pr(u) [10g o (=@in (1+i) - Pout (1x)) ]
=1

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013. Distributed representations of words and phrases and their compositionality. In NeurIPS

A. Grover and J. Leskovec. 2016. Node2vec: scalable feature learning for networks. In KDD.
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Random Walk Sampling + Skip-Gram Learning on Blockchain Graphs

o Challenges

Dynamic/ temporal
Multi-graph

Value on edges

Other node and edge features

YV VYV

o L-length temporal walk: A sequence of | nodes together with a sequence of (L-1) edges traversed in non-
decreasing timestamps

o Temporal Biased Sampling (TBS): Sampling method biases the selection towards edges that are closer (or later) in
time to the previous edge.

o Weighted Biased Sampling (WBS): Sampling method biases the selection towards edges with a higher value of
transaction amount, implying a larger similarity between the two accounts.

D. Lin, J. Wu, Q. Yuan, and Z. Zheng. Modeling and understanding Ethereum transaction records via a complex network approach. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II:
EXPRESS BRIEFS, VOL. 67, NO. 11, NOVEMBER 2020.
D. Lin, J. Wu, Q. Yuan, and Z. Zheng. T-EDGE: Temporal WEighted MultiDiGraph Embedding for Ethereum transaction network analysis. Front. Phys., 2020, Sec. Social Physics.

J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen. Who are the phishers? Phishing scam detection on Ethereum via network embedding. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS: SYSTEMS 2020. 1 7 6



Random Walk Sampling + Skip-Gram Learning on Blockchain Graphs

r SIGTRAN: Generating Node Representation L
e ol o B
e L : i .'. SR Ea ey = struetural o e — —
Blockcha: '- : ." e '.+ e regional a Leaming - i s 2 NO(IC..
i W Node Network Representations | Classifier
I . L Ped mpeer— . Sae Features J : F.
" _T neighborheod
Feic Grd‘j X Velwuri\\\ T transactional
{ Lle'l.llll'\_.'

SIGTRAN embedding to detect illicit nodes on a blockchain network

o SIGTRAN extracts a set of useful features which are fused with the corresponding node representations produced
by a node embedding method

o SIGTRAN features: structural features (in-degree, out-degree, total-degree); transactional features (amount and
time interval of the transactions); regional and neighborhood features (number of edges, features in the egonet)

F. Poursafaei, R. Rabbany, and Z. Zilic. SIGTRAN: Signature vectors for detecting illicit activities in blockchain transaction networks. PAKDD 2021.
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Graph Convolutional Neural Networks (GCN)

\ /
N \ ¥
A\ S\ R
\ H"“—-._
\ " .
.’/f, o
..,("
Layer 1 Layer 2

F/(X.A) = (D 2AD'2F-1(X, A)W})

T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks”, ICLR, 2017.

layer £+ 1

hf+1 = fG-CNN ( hf ) {hﬁ 1J— Z})

Source: https://graphdeeplearning.github.io/project/spatial-convnets/
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https://graphdeeplearning.github.io/project/spatial-convnets/

Graph Convolutional Neural Networks (GCN) on Blockchain

Back propagation

Output
|

1!
S \ o~
SRR >
1 / LightGBM
_+.

[
Feature X Normalizing
T

Subgraph sampling Embedding layer Classification

Node embedding and classification based on graph convolutional network and autoencoder

o In the first step, apply a random walk to sample the subgraph. The orange dots are randomly selected and
represent the starting point for the walk.

o For the obtained subgraphs, features (degree, transaction amount and frequency, no of neighbors, etc.) are
extracted and min-max normalized as the feature matrix X.

o The adjacency matrix and X are fed into GCN with encoder and decoder stage for embedding.

o As the output of GCN, Z and features’ matrix X are concatenated to get the final result for classification.
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Applications of Blockchain Data Analytics and
Open Problems



Target Applications

o Bulk of the works conducted graph analysis to gain insights into transaction and token
transfers.

o Some of them considered downstream tasks, e.g., node classification, link prediction,
anomaly detection, token price prediction.

o Most tools for blockchain data are related to e-crime or financial (e.g., price, investor)
analytics.

o From ransomware payment detection to sextortion discovery, transaction graph analysis
has proven useful to study blockchain address importance and to cluster them.

Oggier, F., Datta, A. and Phetsouvanh, S., 2020. An ego network analysis of sextortionists. Social Network
Analysis and Mining, 10(1), pp.1-14.

Bistarelli, S., Mercanti, |. and Santini, F., 2018, August. A suite of tools for the forensic analysis of bitcoin

transactions: Preliminary report. In European Conference on Parallel Processing (pp. 329-341). Springer,
Cham.
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Applications

oPrice prediction
» Cryptocurrencies, tokens, NFTs.

oUnsupervised learning
» Address clustering: detecting influential investors, exchange addresses.
» Transaction clustering: linking transactions to an entity (P2P network solutions).

oSupervised learning
» Address type detection: ransom receiving, money laundering addresses.
» Transaction type detection: pump and dump, darknet market transactions.
»Smart contract type prediction: Ponzi schemes.

Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M. and Savage, S.,
2013, October. A fistful of bitcoins: characterizing payments among men with no names.
In Proceedings of the 2013 conference on Internet measurement conference (pp. 127-140).
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Price, Risk, and Volatility

oRelationship between transaction networks of multiple cryptocurrencies and
health of crypto eco-system.

oNetwork features of cryptocurrencies transactions as a proxy for market
sensing.

oEnsemble forecasting of fiat currencies with cryptocurrencies features.

Baur, D.G., Hoang, L.T. and Hossain, M.Z., 2022. Is Bitcoin a hedge? How extreme volatility can
destroy the hedge property. Finance Research Letters, p.102655.

Mokni, K., 2021. When, where, and how economic policy uncertainty predicts Bitcoin returns and
volatility? A quantiles-based analysis. The Quarterly Review of Economics and Finance, 80, pp.65-73.
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Learning and Labels

oSupervised learning: we have external labels on nodes or edges

oWhat are our node labels:
»known ransomware coin receiving/forwarding addresses
s http://chartalist.org/btc/TaskTypePrediction.html

*How do we know these addresses? Some companies release them
when ransomed.

»potential darknet market addresses
*https://www.gwern.net/DNM-archives#fgramsd?2|

**How do we identify these addresses? We match market item price
amounts of a day to output amounts in btc transactions of the day.
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http://chartalist.org/btc/TaskTypePrediction.html
https://www.gwern.net/DNM-archives

https://mwww.gwern.net/DNM-archives . T -

DARKNET MARKET ARCHIVES (2013-2015)

SITE Mirrors of ~89 Tor-Bitcoin darknet markets & forums 2011-2015, and related material.
ME | Bitcoin, | Silk-Road, | shell, | R, | dataset
2013-12-01-2021-03-20 - finished - |certainty: highly likely - |importance: ¢ - |backlinks

CHANGES

NEWS

SUPPORT ON Download Dark Net Markets (l—DNM) are online markets typically hosted as

PATREON Research Tor hidden services providing escrow services between buyers &
2.1 Possible Uses sellers transacting in [Bitcoin B or other cryptocoins, usually for
2.2 Works using this dataset drugs or other illegal/regulated goods; the most famous DNM was
2.3 Citing

Silk Road 1, which pioneered the business model in 2011.
2.4 Donations . .
From 2013-2015, I scraped/mirrored on a weekly or daily ba-

Contents sis all existing English-language DNMs as part of my research into
-l CreAll Caneee their |usage®, |lifetimes/characteristics®, & |legal riskiness®;
3.2 Interpreting & analyzing .
o ) these scrapes covered vendor pages, feedback, images, etc. In ad-
3.3 Individual archives . i .
3.3.1 Aldridge & Decary-Hetu dition, I made or obtained copies of as many other datasets & doc-
SR1 uments related to the bNMS as I could.
3.3.2 AlphaBay 2017 This uniquely comprehensive collection is now publicly re-
(McKenna & Goode) j . )
3 3.3 DNStats leased as a 50GB (~1.6TB uncompressed) collection covering 89
13,4 Grams DNMS & 37+ related forums, representing <4,438 mirrors, and is
3.3.5 Kilos available for any research.
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Open Problems

o Investigating graph properties, embeddings, and anomalous patterns.
» Stablecoins’ price stabilization mechanisms (Luna Terra).

o Multilayer graphs would be an expressive model of real-world activities such as external
and internal transactions, token transfers, dApps and DeFi usage.

o Conducting graph analysis in an OLAP (online analytical processing) manner for accounts
» miners, mining pools, mixers, exchanges, phishing accounts, ICO contracts, gambling
games.

o Due to highly dynamic nature of accounts and transactions, employed ML models must
deal with data and model drifts.
» Drift detection, incremental learning, machine unlearning and continuous learning
would be useful.
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Check out the Ethereum toolbox — open-sourced at:
https://github.com/voonhousntu/ethernet

& Chrome Fila Edit View

History Bookmarks Profles Tab Window Help

.\ . Ju pyter demo_notebook Last Checkpoint: 12 minutes ago (unsaved changes)

File Edit View Insert Cell Kernel Help

B + = @B 4 & PRin B C W Markdown v| @

9. Analysis

In this section, we will demonstrate how a user can analyse the token_transfers graph created from step 4.1 .

&0 @XM

lrusted

In this simple analysis demonsitration, we will be using the Neo4j Graph Data Science Library to extract some graph characteristics/metrics.

We will mainly be demonstrating how one can:

1. Get the degree-centrality (in-degree) of a graph
2. Get the degree-centrality (out-degree) of a graph
3. Get the strongly connected component metrics of a graph

4. Determine which strongly connected component each address/node belongs to of a graph

13
9.1. Install dependencies

First install the required dependencies.

In [ ]: # Install Neo4j driver
!pip3 install neo4j
# Install pandas
!pip3 install pandas

9.2. Declare helper classes to connect to Neo4j

Declare a helper class to connect and submit queries to Neodj easily.

In [ ]: import pandas as pd
from neo4j import _ version__ as neo4j_version

# Set maximum number of rows to be displayed
pd.set_option("display.max rows", 100)

# Print Neo4j version

A

Logout

Python 3 O

V. H. Su, S. S. Gupta, A. Khan.
Automating ETL and mining
of Ethereum blockchain
network, WSDM 2022.
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https://github.com/cakcora/Chartalist

¥ main - ¥ 2 branches ) 0tags Go to file Add file ~ m About 8

Sponsored by the Canadian NSERC
Q kia73sha New example added --ETH-- c@71c56 on Aug 25 {0 29 commits Discovery Grant RGPIN-2020-05665: Data
Science on Blockchain and the National
I chartalist Added Chartalist 4 months ago Science Foundation of USA under award
number ECCS 2039701 Blockchain Graphs

B =xamples Mew example added --ETH-- 2 months age ] .
as Testbeds of Power Grid Resilience and

[ .gitignore Added Chartalist 4 months ago Functionality Metrics.

’\
O |
" Chartalist

\

Chartalist is the first blockchain machine learning ready dataset platform from unspent
transaction output and account-based blockchains.



Thanks for attending!

Reach us at

arijitk@cs.aau.dk
cuneyt.akcora@umanitoba.ca

https://twitter.com/cuneytgurcan https://twitter.com/rijitk
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