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ABSTRACT
Approximated algorithms are often used to estimate the frequency
of items on high volume, fast data streams. The most common ones
are variations of Count-Min sketch, which use sub-linear space for
the count, but can produce errors in the counts of the most frequent
items and can misclassify low-frequency items. In this paper, we
improve the accuracy of sketch-based algorithms by increasing the
frequency estimation accuracy of the most frequent items and re-
ducing the possible misclassification of low-frequency items, while
also improving the overall throughput.

Our solution, called Augmented Sketch (ASketch), is based on
a pre-filtering stage that dynamically identifies and aggregates the
most frequent items. Items overflowing the pre-filtering stage are
processed using a conventional sketch algorithm, thereby making
the solution general and applicable in a wide range of contexts.
The pre-filtering stage can be efficiently implemented with SIMD
instructions on multi-core machines and can be further parallelized
through pipeline parallelism where the filtering stage runs in one
core and the sketch algorithm runs in another core.

Keywords
data streams; sketch; approximated algorithms; data structures;
stream summary

1. INTRODUCTION
In scenarios such as real-time IP traffic, phone calls, sensor mea-

surements, web clicks and crawls, massive amounts of data are gen-
erated as a high-rate stream [10, 26]. Processing of such streams
often requires approximation through succinct synopses created in
a single-pass [8]. These synopses summarize the streams to give an
idea of the frequency of items, using a small amount of space, while
allowing to process the stream fast enough. Due to the smaller
size of the synopsis compared to the original stream size, there is a
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Figure 1: ASketch exchanges data items between the filter and the sketch
such that high-frequency items are kept in the filter.

trade-off among space, accuracy, and efficiency: reducing the space
increases the efficiency but affects accuracy.

In this paper, we study the problem of frequency estimation over
data streams that require summarization: given a data item as a
query, we estimate the frequency count of that item in the input
stream. In the literature, sketch data structures [3, 7, 11, 12, 18, 22]
are the solution of choice to address this problem. By using mul-
tiple hash functions, sketches summarize massive data streams
within a limited space. However, due to summarization, the ap-
proach can give inaccurate results. First, it can give an inaccurate
count for the most frequent items. Second, it can misclassify low-
frequency items and report them as high-frequency ones. Since the
high-frequency items are usually more relevant in many applica-
tions including load-balancing and heavy-hitter queries [9,35], it is
important to estimate the frequency of the most frequent items as
accurately as possible. In the literature, there are many examples
of where lower accuracy on the frequency estimation impacts the
subsequent analysis of the data. For instance, it was shown in [35]
that due to the lower accuracy provided by traditional sketches, an
algorithm trying to balance the load will result in biases and un-
balanced job distribution. Similarly, in case of natural language
processing (NLP) applications such as sentiment analysis, a typical
application of sketches is to compute the pointwise mutual informa-
tion (PMI), and subsequently find the top-k positive and negative
words [19]. Without an accurate ranking, words can easily be mis-
classified, leading to wrong interpretations. To find out the level of
accuracy of existing solutions, we constructed a Count-Min sketch
summary of size 128KB from a real-world IP-trace stream data,
originally containing 461M tuples. This results in the estimated
frequency of the most frequent item to be 18 018 217, whereas its



Stream Processing Throughput Frequency-Estimation Query Throughput Frequency-Estimation Error
Updates/milisecond Queries/milisecond Observed error (%)

Count-Min [11] 6481 6892 0.0024
Frequency-Aware Count [34] 6165 7551 0.0013

Holistic UDAFs [10] 17508 6319 0.0025
ASketch [this work] 26739 30795 0.0004

Table 1: ASketch vs. other sketch-based methods: ASketch is implemented on top of Count-Min with a filter capacity of 32 items. All methods are
allocated 128KB of space. The stream size is 32M, and the number of distinct data items is 8M. The stream data has a Zipf frequency distribution with skew
1.5. For details about various parameters, query setting, and evaluation metrics, see Section 7.

true frequency is 17 978 588. Similar margin of errors also occur
for other high-frequency items in the IP-trace stream, as well as
in other stream datasets that we experimented with. Although the
error may seem small, it can create problems in applications check-
ing thresholds, doing bookkeeping, and establishing ranking as just
discussed.

In addition, due to the one-sided error guarantee (i.e., the esti-
mated frequency of an item is at least as high as its true frequency)
ensured by many sketches, a low-frequency item can misleadingly
appear as a high-frequency item in the sketch synopsis. This is
indeed the case found in our empirical evaluation. When we con-
structed a 16KB Count-Min synopsis of a synthetic stream having
a Zipf frequency distribution, we find that 27 low-frequency items
are misclassified as very high-frequency items, with an average rel-
ative error in the order of 105 for these misclassified items. Such
misclassifications can be detrimental to various machine learning
applications. For instance, it was shown in [36] that since fre-
quent items mining is the first step of frequent itemsets mining,
even a small number of misclassified items leads to a large num-
ber of false-positive itemsets, which makes effective frequent item-
sets mining from summarized streams difficult. A similar situation
arises in sketch-based clustering and classifications, often used in
suspicious events detection, where a slight improvement in predic-
tion accuracy can result in a huge improvement [1, 2].

In this paper, we propose a way to solve these problems by com-
plementing existing techniques and without requiring a radically
different solution. ASketch (Augmented Sketch) is a stream pro-
cessing framework, applicable over many sketch-based synopses,
and coupled with an adaptive pre-filtering and early-aggregation
strategy. It utilizes the skew1 of the underlying stream data to
improve the frequency estimation accuracy for the most frequent
items by filtering them out earlier. It also improves the overall
throughput — while using exactly the same amount of space as
traditional sketches. The idea of ASketch is illustrated in Fig-
ure 1. All items in the stream pass through a filtering stage. The
filter retains the high-frequency items and the sketch processes the
tail of the distribution. The throughput improvement comes from
the skewed distribution and extremely fast lookup time of the fil-
ter (e.g., with vector instructions). Catching high-frequency items
with a filtering stage also improves the accuracy of the frequency
estimation for the frequent items. For example, ASketch of size
128KB reports the estimated frequency of the most frequent item
to be exactly 17 978 588 in the IP-trace stream. At the same time,
separation of high frequency items from the sketch reduces mis-
classifications. In our experiments, we do not find any instance of
misclassified low frequency items, when using an ASketch synop-
sis of the same size.

Our contributions can be summarized as follows.

• We explore the use of a filter to catch heavy hitters earlier and
remove them from the subsequent sketch data structure. The
resulting design, ASketch, shows how to implement such

1Manerikar et. al. [26] reported Zipf skew z≥ 1.4 in real-world datasets.

filter efficiently so that not only accuracy improves but also
overall throughput (Section 5).

• Since introducing a filter in front of a sketch data structure
changes the properties of the latter, we provide an extensive
analysis of ASketch, and how the different parameters of the
design affect accuracy and performance (Section 4).

• Modern hardware offers several possibilities for increasing
the efficiency of the filtering stage. In the paper, we explore
possible parallel implementations using separate cores, using
SIMD instructions, and in an SPMD (single program, multi-
ple data) parallel model (Section 6).

• The performance analysis showing the advantages of AS-
ketch, also shed light on the differences between existing
solutions and how the filter interacts with different forms
of sketches. We compare ASketch with Count-Min [11],
Holistic UDAFs [10], Frequency-Aware Counting [34],
and Space Saving [27] (Section 7).

2. RELATED WORK
The problem of synopsis construction has been studied exten-

sively [8] in the context of a variety of techniques such as sam-
pling [15], wavelets [16,17], histograms [20], sketches [3,7,11,12,
18, 22], and counter-based methods, e.g., Space Saving [27] and
Frequent [9]. Among all these techniques, sketches and counter-
based approaches are widely used for stream data summarization.
Sketches are typically used for frequency estimation. Counter-
based data structures are designed for finding the top-k frequent
items. Sketches keep approximate counts for all items, counter-
based approaches maintain approximate counts only for the fre-
quent items. Sketches can support top-k queries with an additional
heap [7] or a hierarchical data structure [8]. However, counter-
based approaches achieve faster update throughput than sketches
for the top-k estimation [9], as they do not count the frequency of
all items.

Several systems have been proposed either to improve the stream
processing throughput of sketches, e.g., Holistic UDAFs [10],
or to improve their query processing accuracy, e.g., Frequency-
Aware Counting [34] and gSketch [37]. ASketch improves
both accuracy and throughput with the help of pre-filtering and
early-aggregation of high frequency items. Approaches like Holis-
tic UDAFs and Frequency-Aware Counting use additional data
structures, increasing the overall storage requirement, which is of-
ten significant with respect to small-space sketch data structures.
As an example, we empirically compare in Table 1 the efficiency
and accuracy of ASketch with several existing techniques, e.g.,
Count-Min [11], Holistic UDAFs [10], and Frequency-Aware
Counting [34], while allocating the same amount of space. The
results demonstrate the advantages of ASketch.

The idea of separating high-frequency items from skewed data
distribution is not new [15]. Modern processors employ caches on
top of main memory to capture the locality of access and to improve
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Figure 2: Count-Min.

the overall throughput. Skimmed Sketch [14] observed that major
part of the error in join size estimation with sketches appears due
to the collisions of high frequency items with low frequency items,
and therefore, proposed to skim-off the high frequency items in a
post-processing manner with the help of a heap [7].

The pre-filtering and early-aggregation strategy has been effec-
tively used in many applications, e.g., duplicate elimination [23],
external merge sort [5], Space Saving synopsis construction [32],
etc. String matching techniques are utilized to improve XML pre-
filtering so that the memory consumption and processing time de-
creases [21]. In [24], pre-filtering has been effectively used to prune
irrelevant events from the ones that are being monitored in a com-
plex event detection application. In both of these cases [21, 24],
pre-filtering is used to eliminate data. ASketch uses a pre-filtering
strategy to separate common items from the less common ones for
sketch data structures.

3. PRELIMINARIES
A data stream of running length n is a sequence of n tuples. The

t-th tuple is denoted as (kt, ut), where kt is a data-item key used
for hashing and ut is a frequency value associated with the data
item. Usually the values for kt are drawn from a large domain (e.g,
IP addresses, URLs, etc.) and the value ut is a positive number2,3;
hence, the frequency counts of data items increase monotonically.

Sketches are a family of data structures for summarizing data
streams. Sketches bear similarities to Bloom filters [6, 31] in
that both employ hashing to summarize data; however, they dif-
fer in how they update the hash buckets and use these hashed
data to derive estimates. Among the various sketches available
[3, 7, 11, 13, 18, 22, 25], it has been shown [9, 33, 34] that Count-
Min [11] achieves the best update throughput in general, as well as
high accuracy on skewed distributions. Therefore, we shall discuss
ASketch on top of Count-Min. Nevertheless, ASketch is generic
and can be applied in combination with other sketches. To demon-
strate it, we also evaluate the performance of ASketch with other
underlying sketches. Next, for the ease of presentation, we intro-
duce Count-Min.

Count-Min. In Count-Min, hashing is used to approximately
maintain the frequency counts of a large number of distinct items
in a data stream. We use w pairwise independent hash functions,
each of which maps onto uniformly random integers in the range
[0 . . . h − 1]. The data structure itself consists of a 2-dimensional
array with w · h cells of length h and width w. Each hash function
corresponds to one of w 1-dimensional arrays with h cells. The
hash functions are used to update the counts of different cells in
this 2-dimensional data structure (Figure 2).

In order to estimate the count of an item, we determine the set

2Sketches, as well as ASketch, also allow us to model the removal of data items
(see Appendix). However, for simplicity, we shall currently assume a strict distribu-
tions [29], that is, the stream updates are positive.

3For simplicity, we assume ut = 1. Our analysis can easily be extended for
larger values of ut.

of w cells to which each of the w hash-functions maps onto, and
compute the minimum value among all these cells. Let ct be the
true value of the count being estimated. The estimated count is
at least equal to ct, since we are dealing with non-negative counts
only, and there may be an over-estimation because of collisions
among hash cells. As it turns out, a probabilistic upper bound to
the estimate can be determined [11]. For a data stream with N as
the sum of the counts of the items received so far, the estimated
count is at most ct +( e

h
)N with probability at least 1−e−w. Here,

e is the base of the natural logarithm.

4. MOTIVATION FOR FILTERING AND
AGGREGATING FREQUENT ITEMS

We analytically compare the frequency estimation error, fre-
quency estimation time, and stream processing throughput of both
Count-Min and ASketch. Let us denote by N the aggregate of the
counts of all items in the data stream.
Count-Min Properties. Consider a Count-Min with w pairwise
independent hash functions, each of which maps onto uniformly
random integers in the range [0 . . . h − 1]. The time required to
insert an item in Count-Min is ts = O(w). This is also same
as the time required to answer a frequency estimation query. The
expected error in the frequency estimation [11] is at most ( e

h
)N ,

with probability at most e−w, where e is the base of the natural
logarithm.

How is a Filter Accommodated in an ASketch? ASketch aug-
ments the traditional Count-Min with a filter. Let us assume that
the filter consumes sf space, while the time required to insert an
item (as well as query an item) in the filter is tf . Usually, sf is
very small and due to the hardware conscious implementation of
the filter (explained in Section 6.1), tf << ts. To accommodate
the filter in ASketch, the space from the underlying sketch data
structure is reduced so that the overall space for ASketch stays the
same as that of the Count-Min alone. Reduction of space from the
underlying sketch can be achieved either by reducing the number
of hash functions, or by reducing the range of each hash function,
or by both. More specifically, let w′ and h′ be the number of hash
functions and the range of each hash function in ASketch, respec-
tively. Then, we have: sf + w′h′ = wh. In our implementation,
we fix w′ = w, and reduce h′ to (h− sf

w
), due to two reasons: (1)

Usually, h > w. Hence, for the same amount of change in h or w,
the former will have a lower impact in reduction of storage space
consumed by the underlying sketch. Therefore, updating h is more
flexible to accommodate various sizes of filter in ASketch. (2) By
having the same w number of hash functions for both Count-Min
and ASketch, we keep the error bound probability e−w identical.

Impact of the Filter on Throughput of ASketch. ASketch up-
date time (as well as query time) can be expressed as: tf +
filterselectivity ∗ ts. Here, tf and ts are update times of the filter and
the sketch, respectively. We define filterselectivity as the ratio of the
count of data items that overflow the filter with respect to the total
count of all data items. In the case of ASketch updates, there is an
additional factor which involves exchanging of data items between
the filter and sketch (described in our Algorithm 1). Experiments
show that the number of exchanges is rather small with respect to
the overall stream size and hence, we ignored it here, but analyze
it in more detail in the Appendix. We evaluate the impact of this
factor empirically in Section 7.

Clearly, for ASketch, we increase the processing time by tf ;
however, in return, we reduce the sketch processing time by a factor
of filterselectivity. A small size of the filter (i.e., sf ) and vectorized
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Figure 3: Filter selectivity: data stream with Zipf distribution, stream size
32M, number of distinct data items 8M. We vary the filter size |F |, i.e., the
number of high-frequency items stored in the filter.

execution (explained in Section 6.1) keeps tf small, in the range
of a few assembly instructions. Therefore, filterselectivity essentially
determines the overall effectiveness of ASketch.

Let us assume that out of N aggregated stream-counts, N1

counts are processed by the filter and (N − N1) = N2 counts
are processed by the sketch. Therefore, filterselectivity = N2

N
. How-

ever, most real world streams exhibit skew [26]. For a Zipf distri-
bution, we can measure the filterselectivity easily in the closed form
by summing up the frequency counts of the top-k items [4, 32].
To demonstrate the potential effectiveness4 of the ASketch frame-
work, we have plotted the filter size (|F |) and the filterselectivity, i.e.,
N2
N

in Figure 3 on a data stream of 32M items with Zipf distribu-
tion. For a skew of 1.5, the top-32 data items account for 80% of
all frequency counts, i.e., only N2

N
= 20% items are forwarded to

the underlying sketch data structure. Therefore, we expect that the
overall stream processing time of ASketch would be smaller than
traditional sketches. One interesting observation from Figure 3 is
that increasing the filter size beyond a certain threshold does not
reduce the filterselectivity significantly. However, increasing the fil-
ter size, depending on the filter implementation (explained later in
Section 6.1), may increase the filter processing time (tf ). There-
fore, the filter in ASketch must consume a small space in order to
achieve the maximum throughput gain.

Impact of the Filter on Accuracy of ASketch. ASketch improves
the frequency estimation accuracy for the frequent items that are
stored in the filter. In fact, if one can store the exact frequency
counts for the items in the filter, their frequency estimation error
would be zero. For the items that are stored in the sketch, we re-

4Note that the k-items in the filter are not always guranteed to be the top-k fre-
quent items; but based on the empirical results (Table 5), we achieve high accuracy for
the top-k frequent items.

duce their collisions with the high-frequency items, as the items
stored in the filter are no longer hashed into the sketch. This re-
duces the possibility that a low-frequency item would appear as
a high-frequency item, therefore reducing the misclassification er-
ror. However, in order to accommodate space for the filter, we now
utilize a sketch structure which has a smaller size than that of the
original Count-Min. This increases the frequency estimation error
for low-frequency items stored in the sketch, often within a tolera-
ble margin (see Theorem 1). Nevertheless, as mentioned earlier, it
is often the frequency estimation accuracy for the high-frequency
items which is more critical in actual applications (e.g., frequent
pattern mining, outlier detection, load-balancing, and heavy-hitter
detection) and ASketch significantly improves the frequency es-
timation accuracy for the high-frequency items stored in the filter.
Let us assume that the frequency estimation queries are obtained by
sampling the data items based on their frequencies, that is, the high-
frequency items are queried more than the low-frequency items in
a skewed stream. Then, the expected error in frequency estima-
tion due to ASketch is given by: ( e

h−
sf
w

)N2(N2
N

), whereas the ex-

pected frequency estimation error due to Count-Min will be: ( e
h

)N
for the same amount of storage space. Clearly, ASketch will result
in a smaller expected error, since N2(N2

N
) << N in a skewed

stream.

In the following theorem, we provide a probabilistic bound of
the increase in error for the low-frequency items that reside in the
underlying Count-Min sketch of ASketch, due to the reduction in
Count-Min sketch size.

THEOREM 1. The increase in error ∆E for a low-frequency
item that resides in the underlying Count-Min sketch of ASketch,
due to the reduction in Count-Min sketch size, is bounded with
probability of at least 1− e−w as follows:

∆E ≤ (
esf

wh(h− sf
w

)
)N (1)

The proof can be found in the Appendix. However, one can ver-
ify that the upper bound is reasonably small even for a large size
stream. In reality, the increase in error for the low-frequency items
is even smaller, because the high-frequency items which constitute
a significant fraction of the aggregated stream frequency, are stored
in the filter, and they are not hashed into the sketch.

Summary. For a fixed ASketch size, we summarize the trade-offs
among filter size, throughput, and frequency estimation accuracy.

• By having a larger filter, one can potentially store more
high-frequency items in the filter; and this, in turn, will re-
sult in better frequency estimation accuracy for more high-
frequency items. However, if we consider the expected fre-
quency estimation error (given in Table 2), it consists of the
errors due to both high-frequency and low-frequency items in
the data stream. Since the high-frequency items are queried
more than the low-frequency items, we find that the expected
error initially decreases with the increasing filter size; but be-
yond a threshold filter size, it stops decreasing. This is be-
cause with increasing filter size, while we have better accu-
racy for more high-frequency items, we also introduce more
error over the low-frequency items due to the reduced size of
the underlying sketch.

• For the implementations considered, increasing the filter size
increases the filter processing time tf , without too much gain
in the filterselectivity. Therefore, beyond a threshold filter size,
the throughput starts decreasing.



We empirically explore these trade-offs in Section 7.

5. ALGORITHM FOR ASKETCH
ASketch exchanges data items between the filter and the sketch,

so that the filter stores the most frequent items of the observed input
stream. Such movement of data items is a challenging problem for
several reasons. First, one needs to ensure that the exchange proce-
dure does not incur too much overhead on the normal stream pro-
cessing rate. Second, it is difficult to remove the item, along with
its frequency count, from the underlying sketch. This is because
Count-Min only provides an over-estimation of the true frequency
of an item; if we remove the over-estimated frequency count of an
item from the sketch, it may violate the one-sided accuracy guar-
antee provided by the sketch. We illustrate this problem with an
example:

EXAMPLE 1. Let us assume that the data item A is currently
stored in Count-Min and the hash cell corresponding to some hash
function Hi provides the smallest frequency estimation for A. The
removal of A from the sketch, along with its estimated frequency,
will result in a count value of 0 in the hash cell corresponding to
Hi(A). Now, consider all items B that are also currently stored in
Count-Min, such that Hi(B) = Hi(A). After the removal of A
from the sketch, the estimated frequency of all such B will become
0, an underestimation of their true frequencies.

In ASketch, we want to maintain the one-sided accuracy guar-
antee of Count-Min, i.e., the estimated frequency of an item re-
ported by ASketch must always be an over-estimation of its true
frequency. We achieve this accuracy guarantee by introducing two
different counts in the filter as described below.

Algorithm Description. ASketch consists of two data struc-
tures: filter (F ) and sketch (CMS). The filter stores a few high-
frequency items and two associated counts, namely new_count
and old_count for each of the items that it monitors. The
new_count denotes the estimated (over-estimation) frequency of
an item that is currently stored in the filter. The difference between
new_count and old_count represents the (exact) aggregated fre-
quency that have been accumulated during the time a particular
item resides in the filter. The sketch is implemented as the classi-
cal Count-Min, which is a two dimensional array with length (i.e.,
range of each hash function) h and width (number of hash func-
tions) w, as shown in Figure 2.

The stream processing algorithm is shown in Algorithm 1. Every
incoming tuple in the stream is represented as (k, u), where k is the
key of the data item, and u is a frequency value. We first perform a
lookup for the key k in the filter (lines 1-6, Algorithm 1). If k does
not exist in the filter and there is an empty cell in the filter, then k is
inserted in the filter with its old_count set to 0, and new_count as
u (lines 4-6). Next time, whenever we find the key in the filter, we
only update its new_count value without changing the old_count
value (lines 2-3). If k is not found in the filter, and the filter is full
(lines 7-18, Algorithm 1), then the data item is sent to the sketch.
We insert the item in the sketch with the traditional sketch updating
protocol, that is, k is hashed into w different rows by w different
hash functions, where every hash function maps k in a range of h
hash values (line 8).

Whenever we insert an item in the sketch, we get an estimate
(over-estimation) of its true frequency. Now, we additionally keep
track of the smallest frequency value (i.e., new_count) of any item
currently stored in the filter. Thus, if the estimated frequency of
the last item inserted into Count-Min is higher than the smallest

Algorithm 1 Stream processing algorithm for ASketch
Ensure: insert tuple (k, u) into ASketch
1: lookup k in filter
2: if item found then
3: new_count[k]→ new_count[k] + u
4: else if filter not full then
5: new_count[k]→ u
6: old_count[k]→ 0
7: else
8: update sketch with (k, u)
9: if (estimated freq[k] > min freq[F ]) then

10: find minimum freq item ki in F
11: if (new_count[ki]-old_count[ki])>0 then
12: update sketch with (ki,new_count[ki]-old_count[ki])
13: end if
14: add k to filter
15: new_count[k]→ estimated freq[k]
16: old_count[k]→ estimated freq[k]
17: end if
18: end if

Algorithm 2 Query processing algorithm for ASketch
Ensure: estimate frequency of item k using ASketch
1: lookup item k in filter
2: if item found then
3: return new_count[k] from filter
4: else
5: return estimated freq[k] from sketch
6: end if

frequency value in the filter, we initiate an exchange (lines 9-17,
Algorithm 1). The last item that was hashed into the sketch is now
moved to the filter with both its old_count and new_count set
as its estimated count obtained from the sketch. However, we do
not make any change in the values inside the sketch. To accom-
modate this item in the filter, the item with the smallest frequency
in the filter is now inserted into the sketch; but we only hash its
(new_count-old_count) frequency into the sketch (lines 11-12).
This is because its old_count frequency can either be 0, which in-
dicates that the item was never placed into the sketch; otherwise,
its old_count frequency is already contained in the sketch since
the time the item was last moved from the sketch.

The key insight here is that we can exactly capture the hits for an
item that is currently stored in the filter by using its (new_count-
old_count) value. This has three benefits: (1) By accumulating
this count in the filter, we save the cost of applying multiple hash
functions in the sketch, and thus, improve the throughput. (2) As
high-frequency items in a skewed data stream remain in the fil-
ter most of the time, we get more accurate frequency counts for
these items. (3) The misclassification rate for the low-frequency
items as high-frequency items also decreases, since the aggregate
of the (new_count-old_count) values of the high-frequency items
are not hashed into the underlying sketch .

The query processing algorithm is shown in Algorithm 2. For
an incoming query requesting for the frequency of an item k, the
algorithm first performs a lookup in the filter, and if finds the item,
then returns the new_count (line 2-3); otherwise, the estimated
frequency from the underlying sketch is returned (line 5).

Exchange Policy. In this section, we discuss the efficiency of the
exchange policy. First, we need to keep track of the smallest fre-
quency count in the filter. The efficiency of this step depends on
the underlying data structure and the hardware implementation of
the filter, which will be discussed shortly in Section 6.1. Second,
we empirically found that we require a relatively small number of
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Figure 4: Example of stream processing by ASketch.

exchanges compared to the overall stream size in order to ensure
that the high-frequency items are stored and early aggregated in
the filter. As an example, even for the Uniform distribution (i.e.,
skew is 0), we need only about 40K exchanges for a stream of size
32M, ASketch size of 128KB, and filter size of 32 items (Figure 9).
When the skew increases, the number of exchanges decreases as
shown in our experimental results. Third, and perhaps more impor-
tantly, can our exchange policy trigger multiple exchanges between
the filter and the sketch? Our exchange mechanism may indeed ini-
tiate multiple exchanges; for example, when the lowest-frequency
item from the filter is moved to Count-Min, its estimated frequency
(which will now be an over-estimation due to hash-based colli-
sions) could be higher than that of the second least-frequent item in
the filter. This will initiate yet another exchange. However, a care-
ful examination reveals that multiple exchanges that happen as an
after-effect of the first exchange are unnecessary and they introduce
additional errors in the frequency estimation. Hence, whenever we
hash an item in Count-Min because it was not found in the filter
(or because the filter was full), we always restrict ourselves to at
most one exchange between the filter and the sketch. The following
lemma guarantees an upper bound on the number of times an item is
inserted into the underlying sketch in the presence of our exchange
policy, thereby ensuring the overall efficiency of ASketch.

LEMMA 1. Let us assume that some data item has been ap-
peared total t times in the stream. Then, the number of times we
insert that data item in the underlying sketch by following ASketch
algorithm is no more than t.

Proof of the lemma follows from the fact that, in the best case, data
items are early-aggregated in the filter before being inserted into
the sketch. Coupled with the characteristics of our exchange policy,
that is, (1) we do not perform multiple exchanges between filter and
sketch for each insertion in the sketch, and (2) if the difference be-
tween the new_count and the old_count for the lowest-frequency
item in the filter is zero, we do not perform any update in the sketch
(line 11, Algorithm 1); we ensure that the above lemma is satisfied.
While we demonstrate in our experiments (Section 7) that the num-
ber of exchanges is usually very small, we also provide theoretical
bounds on the exchange policy in the Appendix.

Below, we demonstrate the key steps of our stream processing
algorithm (Algorithm 1) with an example.

EXAMPLE 2. In Figure 4, we show in three steps how a data
tuple (C, 1) is inserted into ASketch. Since the filter is full and it

does not contain the data item C, the sketch is updated. We shaded
the affected cells due to this update in Figure 4 (b). However, the
estimated frequency of C, which is 9, is higher than the smallest
frequency stored in the filter (i.e., 8 for item A). Hence, we move C
into the filter with both its old_count and new_count assigned to
its estimated frequency ( is shown in Filter in Figure 4 (c)). We do
not change anything in the sketch cells due to the movement of C.
Finally, we insert A into the sketch; however, only the difference of
its (new_count-old_count) 6, is inserted into the sketch (is shown
in Count-Min in Figure 4 (c); affected cells are highlighted). Al-
though, the current estimated frequency of A is 10, which is larger
than the current smallest count in the filter, we do not initiate any
other exchanges.

6. ASKETCH ON MULTI-CORE
We now discuss the implementation of ASketch in modern

multi-core hardware with an emphasis on (1) SIMD parallelism in
the filter implementation, (2) pipeline parallelism in the ASketch
framework, as well as (3) SPMD parallelism by implementing AS-
ketch as a counting kernel in a multi-core machine.

6.1 Filter with SIMD Parallelism
Continued from the discussion in Section 4, we are aiming for

a filter that is small in size. It must support the following two op-
erations efficiently: (1) lookup based on the key of the data item;
(2) find the item with the minimum new_count value. We consid-
ered several alternatives (explained below). An empirical compari-
son can be found in Section 7.

The Space Saving [27] algorithm also requires efficient support
of the aforementioned two operations. The authors used a Stream-
Summary data structure coupled with a hash table. The hash table
is used for the lookup operation and the stream-summary, a linked
list which keeps all the items sorted based on their count values,
helps the second operation. Therefore, we used it as the first design
alternative. However, this implementation has a high space over-
head as it may require up to four pointers per item. Due to the large
memory overhead, for the same filter size budget, it can monitor
fewer items and thus performs poorly.

On modern hardware, often for small data structures, a linear
scan performs better than a hash-based lookup, as it avoids random
access and pointer chasing [32]. A linear scan is also amenable
to vectorized execution. Therefore, we considered two array-based
implementations, namely, Vector and Heap. For both implemen-
tations, we use three arrays with (id, new_count, old_count) val-
ues. The vectorized search on id to find the location of an item is
shown in Algorithm 3. This is an implementation of linear scan
with SIMD instructions5. The __builtin_ctz is a hardware specific
high performance function implemented in assembly provided by
GCC.6 This particular function returns the count of trailing zeros
in a binary representation of a number which is used to find the
location of the hit. Vector also uses a linear scan for finding the el-
ement with the minimum count. We find that the Vector performs
very efficiently with a skew more than 2 in a Zipf-distribution.

The Heap incurs additional overhead for maintaining the heap.
However, the benefit is that the lookup of the item of minimum
count becomes inexpensive. We evaluated two min-heap imple-
mentations, namely, Strict and Relaxed. For every hit in the filter,
Strict-Heap rearranges the data structure so that it maintains the

5Details about SSE2 intrinsics can be found in https://software.intel.com/en-us/
node/514275.

6Details can be found in https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html.



Algorithm 3 Filtering with SSE2 SIMD intrinsics for a filter of 16
items. Implementation of linear search on the filter_id array.

/∗ l oad t h e i n p u t i t e m ∗ /
c o n s t __m128i s _ i t e m = _mm_set1_epi32 ( i t em ) ;
/∗ p o i n t t o t h e f i l t e r i d a r r a y ∗ /
__m128i ∗ f i l t e r = ( __m128i ∗ ) f i l t e r _ i d ;
/∗ s e a r c h 16 e l e m e n t s ∗ /
__m128i f_comp = _mm_cmpeq_epi32 ( s_ i t em , f i l t e r [ 0 ] ) ;
__m128i s_comp = _mm_cmpeq_epi32 ( s_ i t em , f i l t e r [ 1 ] ) ;
__m128i t_comp = _mm_cmpeq_epi32 ( s_ i t em , f i l t e r [ 2 ] ) ;
__m128i r_comp = _mm_cmpeq_epi32 ( s_ i t em , f i l t e r [ 3 ] ) ;
/∗ check whe ther i t e m i s found ∗ /
f_comp = _mm_packs_epi32 ( f_comp , s_comp ) ;
t_comp = _mm_packs_epi32 ( t_comp , r_comp ) ;
f_comp = _mm_packs_epi32 ( f_comp , t_comp ) ;
i n t found = _mm_movemask_epi8 ( f_comp ) ;
/∗ i f f ound r e t u r n t h e p o s i t i o n ∗ /
i f ( found ) re turn _ _ b u i l t i n _ c t z ( found ) ;
e l s e re turn −1;

heap. We do not find it as efficient as the Relaxed-Heap alter-
native which reconstructs the heap only when there is a hit on the
item with the minimum count. Based on our empirical evaluation,
the Relaxed-Heap provides the best performance among all de-
sign choices when the skew is low or even moderate (e.g., skew
< 2 in a Zipf distribution).

6.2 Pipeline Parallelism: Filter and Sketch
The benefits of filtering are more pronounced when the filter and

sketch are decoupled and run on separate cores. In such an imple-
mentation, shared memory access is replaced with a message pass-
ing interface between the two processors. As shown in Figure 1, the
exchange of data items between the two data structures now hap-
pens through messages. Such design has been shown to be a good
fit for modern hardware [32], as it avoids locking in the context of
shared memory access. In ASketch, core C0 contains the filter and
consumes the input tuples. As soon as there is a miss in the filter
(line 7 in Algorithm 1), it forwards the item to core C1 that main-
tains the sketch. C0 also forwards the minimum count whenever
the minimum count changes. When the estimated frequency in C1

is higher than the minimum count in C0 (line 9 in Algorithm 1),
C1 sends the item back to C0 and the filter is updated. The key
benefit of this form of parallelism is that, as soon as C0 forwards
an item to C1, C0 can process new items. Therefore, we expect
to see further improvements in both update and query throughput.
This decoupling also allows the filter to have a small memory foot-
print and, hence, it may as well happen that the filter can even fit
into the registers of the processor C0 and may further improve the
throughput.

6.3 SPMD Parallelism: ASketch as a Kernel
ASketch can be parallelized in an SPMD model where each pro-

cessor will execute ASketch as a sequential counting kernel. Simi-
lar form of parallelism was considered by Thomas et al. [34] in the
context of cell processor. We want to demonstrate the scalability
of ASketch and compare its throughput with that of Count-Min
when used as a kernel. We assume a multi-stream scenario where
every core is consuming a different stream and applying the tuples
to its own kernel. As frequency estimation is commutative in na-
ture, when there is a query, each kernel replies its response which
is later combined to produce the final result. As it is a point query,
such a combination from multiple kernels is quite inexpensive. As
pointed out in [34], there are also other forms of parallelism possi-

ble for sketches. For example, the sketch can be partitioned which
would allow us to accommodate larger sketch sizes. However, it
would also require all the sketch to process every incoming tuple
both at update and query time. Therefore, we do not explore this
form of parallelism in this paper.

7. EXPERIMENTAL RESULTS
We present experimental results with two real-world and one

synthetic dataset. We evaluate ASketch update efficiency, query
processing throughput, and accuracy of frequency estimation
queries and compare it with that of Count-Min [11], Frequency-
Aware Counting [34], Holistic UDAFs [10], and Space Sav-
ing [27]. We also provide a sensitivity analysis of ASketch by
varying several parameters such as skew of the frequency distribu-
tion, filter type, and filter size.

7.1 Experimental Setup
Datasets. We summarize the datasets used below.
IP-Trace Network Stream. We used the IP-packet trace in an
anonymous LAN for generating edge streams. The edge frequency
is the total number of communications between two corresponding
IP-addresses. Total stream size is 461 millions with 13 millions
distinct edges. The maximum frequency of an edge is 17 978 588.
This dataset is similar to a Zipf distribution of skew 0.9.
Kosarak Click Stream. It is an anonymized click-stream data of
a hungarian on-line news portal.7 The data set is relatively small
containing 8M clicks with 40 270 distinct items. The maximum
frequency of an item is 601 374. This dataset has a skew similar to
a Zipf distribution of 1.0.
Synthetic Dataset. We generate a synthetic stream dataset from the
skewed Zipf distribution with a stream size of 32M and the number
of distinct items of 8M. We vary the skew from 0 to 3. For ease of
discussion, we divide the skew range into three parts [26], and we
refer to them as follows: low-skew range (0 to 1), mid-skew range
or real-world skew range (1 to 2), and high-skew range (2 to 3).
Query and Parameters Setting. We evaluate frequency estimation
queries: given a data item, estimate its frequency. The queries are
obtained by sampling the data items based on their frequencies,
that is, the high-frequency items are queried more than the low-
frequency items in a skewed stream. We also perform an evaluation
of the top-k frequent items query: determine the top-k frequent
items, where k is given by the filter size of our ASketch synopsis.

We vary ASketch size from 16KB to 128KB [9, 11]. Our main
focus is to operate from either the L1 or the L2 cache. Therefore,
most of the experiments are done with an ASketch size of 128KB.
The filter size (|F |) is varied from 0.1KB (8 items) to 12KB (1024
items). To keep the total synopsis size constant, we also varied the
underlying sketch size. However, for a specific size of the sketch,
we find that the accuracy is more sensitive towards h (i.e., range
of each hash function) than towards w (i.e., the number of hash
functions), especially with w ≤ 8. Therefore, in most of our ex-
periments, we have set w = 8 for all the sketch data structures,
and varied h to compensate for the space of our filter. Finally, we
compare the performance of four different filter implementations
of ASketch as discussed in Section 6.1.
Evaluation Metrics. We measure efficiency using two metrics.

• Stream processing throughput, expressed in items per mil-
lisecond, measures the average number of incoming data tu-
ples that are processed per millisecond.

7Obtained from http://fimi.ua.ac.be/data/.
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Figure 5: Experiments on the Synthetic dataset; ASketch with Relaxed-Heap filter; filter size |F | =32 items (∼0.4KB); total synopsis size 128KB.

• Query processing throughput, expressed in queries per mil-
lisecond, counts the average number of frequency estimation
queries that can be answered per millisecond.

We evaluate the accuracy of frequency estimation queries with
the two following metrics [11].

• Observed error is measured as the difference between the es-
timated frequency and the true frequency, accumulated over
all the items queried. We express it as a ratio over the aggre-
gated true frequency of all the data items queried, i.e.,

Observed Error =

∑
i∈Query

|estimated freq.i − true freq.i|∑
i∈Query

true freq.i

• Relative error for one frequency estimation query is defined
as the difference between the estimated frequency and the
true frequency, divided by the true frequency of that data
item. In our results, we report the average relative error over
a pre-specified number of data items queried. Formally,

Avg. Rel. Error =
1

|Query|
∑

i∈Query

|estimated freq.i − true freq.i|
true freq.i

One may note that the average relative error is biased towards
the low-frequency items, due to their lower true frequency
values in the denominators of the above equation.

Finally, we analyze the effectiveness of our top-k frequent items
query by using Precision-at-k:

Precision-at-k =
true top-k frequent items in the top-k reported items

k

Comparing Methods. We compare the accuracy and efficiency of
ASketch with three state-of-the-art stream processing approaches8,
by assigning the same total space to all these methods.

• Count-Min (CMS) [11] applies w pairwise independent
hash functions on the key k of an incoming tuple (k, u). In
most of the experiments, we fixed w = 8 and varied h based
on the total size of the synopsis.

• Frequency-Aware Counting (FCM) [34] improves the ac-
curacy of Count-Min by using only a subset of the w hash
functions for hashing each data item. Given a data item, the
algorithm first applies two separate hash functions to com-
pute an offset and a gap, which determines the subset of
Count-Min hash functions to be used for hashing the data
item. In addition, FCM varies the number of hash functions
used for a high-frequency and a low-frequency item (e.g., w

2

hash functions for a high-frequency item and 4w
5

hash func-
tions for a low-frequency item as considered in [34]). Finally,
it also uses a MG counter data structure [28] to identify the
high-frequency items. For fairness, in our experiments, we
have fixed the MG counter size in such a way that it stores
the same number of high-frequency items as that in our filter.
For lookup in the MG counter, we use the same hardware-
conscious SIMD-enabled lookup code that we use for the fil-
ter lookup in ASketch.

• Holistic UDAFs (H-UDAF) [10] performs run-length aggre-
gation in a low-level table before flushing the items into a
sketch. We use a low-level table that is capable of storing the
same number of data items as that in our filter, whereas the
underlying sketch is implemented as Count-Min sketch. For
the lookup in the low-level table, we use the same code that
we use for the filter lookup.

We used publicly available source code of CMS from [11]. We
implemented the codes of FCM and H-UDAF, since they are not
publicly available.

Machine description. We performed all the experiments on a
2.27GHz Intel Xeon L5520 machine with 8 cores. The CPU core
has 32KB L1 cache, 256KB L2 cache, and 8MB L3 cache. The
operating system was Linux kernel 3.8.5. All the algorithms are
implemented in C and compiled using gcc 4.7.2 with -O3 optimiza-
tion. Each experimental result is averaged over 100 runs.

7.2 ASketch Performance Comparison

7.2.1 Frequency Estimation queries
We first compare ASketch with Count-Min, Frequency-Aware

Counting, and Holistic UDAFs. We consider the Relaxed-Heap
filter implementation for ASketch since it performs well over all
skew ranges, as illustrated later in our sensitivity analysis experi-
ments (Section 7.5)

� Stream Processing Throughput. The result of the stream pro-
cessing throughput comparison for all the approaches is shown
in Figure 5(a). Count-Min performs almost the same over all
skew ranges, since the algorithm applies the same number of hash
functions irrespective of the skew. Frequency-Aware Counting
throughput is lower than that of the Count-Min in low-skew range;
which is caused by the overhead of MG counter and the two addi-
tional hash functions. However, for high-skew, hashing frequent
items to a smaller number of hash cells compensates this over-
head. Therefore, Frequency-Aware Counting throughput catches
up with that of Count-Min when the skew increases. Benefits

8While Space Saving [27] can be adapted to process frequency estimation
queries, usually it does not perform well in frequency estimation. We show com-
parision with Space Saving separately in Figure 11.



Count-Min Size Max. # Misclassifications
16KB 27
24KB 5
32KB 8

Table 3: Misclassification statistics of Count-Min on the Synthetic data
(Zipf skew 1.5). We report the maximum number of low-frequency items
misleadingly appearing as high-frequency items over 100 runs. In our ex-
periments with ASketch, such misclassifications did not occur.
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Figure 6: Average relative error over non-frequent items that appeared
highly-frequent in Count-Min: Synthetic data with Zipf skew 1.5.

of early-aggregation is clearly visible in the throughput graph of
Holistic UDAFs. In low and moderate skew ranges, the low-
level aggregate table in Holistic UDAFs works as an overhead, and
early-aggregation does not provide any benefit. Hence, its perfor-
mance drops below that of Count-Min. As the skew increases, the
throughput of the algorithm also increases. At a high-skew > 2.5,
a few flushings are required and thus the algorithm achieves high
throughput. ASketch also behaves similarly. Even at low skew, the
added overhead of filter does not deteriorate the performance sig-
nificantly, compared to Count-Min. ASketch starts superseding
Count-Min as soon as the skew reaches 0.8. With further increase
in skew, the throughput of ASketch increases by almost an order of
magnitude compared to Count-Min. In addition, we find that AS-
ketch outperforms Holistic UDAFs in the real-world skew range
(1∼2), due to the overhead of flushing from the low-level aggregate
table for Holistic UDAFs.

� Query Processing Throughput. The query processing through-
put is shown in Figure 5(b). The query items are selected uni-
formly from the incoming stream, that is, in a skewed data stream,
the high-frequency items are queried more often compared to their
low-frequency counterparts. Our results attest to the benefits of
ASketch. Our filter is capable of answering most of the queries.
But for Holistic UDAFs, the low-level aggregator alone is not ca-
pable of answering any query. It always requires to retrieve the fre-
quency estimate from the underlying sketch. One may also note
that Frequency-Aware Counting performs slightly better than
Count-Min, since the former uses a smaller number of hash func-
tions for answering frequency estimation queries [34]. Figure 5(b)
shows that ASketch improves the query processing throughput by
an order of magnitude over the existing approaches when the skew
is more than 1.

� Avoiding Large Estimation Error. One negative aspect of
Count-Min is that if a low-frequency item always collides with
the high-frequency items by applying each one of the hash func-
tions, it then incurs a significant frequency estimation error for
that low-frequency item. In such cases, the low-frequency item
can be misclassified as a high-frequency item, which is often detri-
mental in many applications [2, 19, 30]. Although increasing the
size of the sketch reduces the probability of such misclassifica-
tion, we find that for relatively small-sized sketches inside the L1
cache, this situation occurs consistently when a significant number
of non-frequent items get misclassified as a high-frequency item.
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Figure 7: Observed error among ASketch, Count-Min, and Holistic
UDAFs: synopsis size is 128KB.

Skew × Improvement × Improvement
(Synopsis 64KB) (Synopsis 128KB)

0.8 1.0 1.0
1.0 1.3 1.3
1.2 2.3 2.2
1.4 5.3 5.2
1.6 11.0 10.8
1.8 28.0 23.9

Table 4: Times improvement in observed error for ASketch over Count-
Min: total synopsis sizes are 64KB and 128KB.

We present the maximum number of such misclassifications over
100 runs in Table 3. The corresponding average relative error in-
troduced by those misclassified items are shown in Figure 6. Simi-
lar situations are very unlikely to occur in ASketch as it separates
the high-frequency items from the low-frequency items. This is
clearly visible in Figure 6. We can see that the average relative er-
ror of Count-Min can be three order of magnitude higher than that
of ASketch.

� Error Comparison with Count-Min and Holistic UDAFs. We
recall that any improvement by the ASketch is orthogonal to the
underlying sketch. Therefore, we first compare our ASketch tech-
nique with Count-Min and Holistic UDAFs, since we have used
Count-Min as the underlying sketch for both ASketch and Holis-
tic UDAFs. The error comparison results using the percentage ob-
served error are presented in Figure 7. We focus mainly on the
skew range of 0.8 to 1.8 due to two reasons. (1) This is almost
same as the real-world skew range. (2) For a skew higher than 1.8,
the observed error by ASketch is often zero; and for a skew be-
low 0.8, the observed errors by these three methods are very much
comparable. One may observe that as we increase the skew, AS-
ketch starts performing better than both Count-Min and Holistic
UDAFs. Holistic UDAFs relies on the underlying sketch for an-
swering the queries, therefore the performance is almost the same
as that of Count-Min. For example, with skew 1.4, the observed
error by both Count-Min and Holistic UDAFs is (4 × 10−3)%,
while the observed error by ASketch is (9×10−4)%. Considering
the fact that the true frequencies of the most frequent items are in
the order of 106 ∼ 107, which are aggregated in the denominator
to compute the observed error percentage, ASketch significantly
improves the frequency estimation accuracy for the high-frequency
items. In Table 4, we further show the times of improvement in
observed error that ASketch achieves over Count-Min for two dif-
ferent synopsis sizes, i.e. 64KB and 128KB. ASketch improves the
observed error about 25 times compared to Count-Min and Holis-
tic UDAFs, while using the same amount of storage space.

� Error Comparison with Frequency-Aware Counting (FCM).
To demonstrate the generality of ASketch, we implement it on top
of a sketch that uses the FCM principle. While running the ex-
periments with FCM, we found that FCM performs much better
in terms of the accuracy of frequency estimation queries, in com-
parison to the Count-Min. The main error improvement of FCM
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Figure 8: Observed error comparison between ASketch and FCM: Syn-
opsis size is 128KB, ASketch-FCM is the ASketch that uses an underlying
sketch based on FCM.

Skew (Zipf) Precision-at-k
0.4 0.74
0.6 0.96
0.8 0.99
≥1.0 1.0

Table 5: Accuracy comparison of ASketch for top-k frequent item
queries. Here, ASketch size is 128 KB, filter size is |F | = 0.4KB.

comes from the fact that it uses two additional hash functions to
compute an offset and a gap, and picks a w1 < w number of sketch
hash functions to apply for a particular data item. This reduces
the number of collisions and improves the overall accuracy of the
sketch. However, this approach is also compatible with ASketch.
Therefore, we replace the underlying Count-Min implementation
in ASketch, and incorporated an FCM-like sketch. The result of
this comparison is shown in Figure 8. We find that we achieve sim-
ilar levels of improvement as we have achieved before with respect
to Count-Min. For example, with skew 1.6, our observed error is
13 times smaller than that of FCM. The result does emphasize the
generality of ASketch as it can take advantage of any improvement
in the underlying sketch.

7.2.2 Top-k Frequent Items Queries
For strict distributions [29], ASketch directly supports top-k

queries where k is defined by the size of the filter. The result of
precision-at-k for ASketch is shown in Table 5. As shown in the
table, ASketch achieves high accuracy. For a skew (Zipf) of 1.0
and higher, the algorithm achieves a precision-at-k value of 1.0.
The algorithm also exhibits high precision even at relatively small
skew.

7.2.3 Number of Exchanges for ASketch.
In Figure 9, we present the statistics about the number of ex-

changes that happens between the filter and the sketch data struc-
tures in ASketch. As expected, the number of exchanges reduces
as the skew increases. This indeed helps in improving the ASketch
throughput with increasing skew in the input stream, as shown ear-
lier in Figures 5(a) and 14. However, even with Uniform distri-
bution (i.e., zipf = 0), we need only about 40K exchanges for a
stream of size 32M. Our experimental evaluation indicates that the
exchange of data items is not an issue.

7.3 Experiments on Real-World Datasets
� Stream Processing Throughput Comparison. The stream pro-
cessing throughput on the IP-trace data is shown in Figure 10(a).
Here, ASketch-FCM is the ASketch implementation where the
underlying sketch is implemented by following the FCM principle.
The throughput of ASketch is 5% higher than that of the Count-
Min. Since IP-trace data is in the low-skew range, it is expected
that ASketch will not outperform Count-Min by a significant mar-
gin. However, ASketch-FCM achieves almost 30% more through-
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Figure 9: Average number of exchange with varying skew for ASketch:
Synthetic dataset; Relaxed-Heap filter of size |F | =32 items (∼0.4KB);
ASketch size is 128KB.

put than that of Count-Min. It also outperforms Holistic UDAFs
by almost 40%, since with low skew, the low-level aggregate ta-
ble in Holistic UDAFs works as a performance bottleneck due
to the excessive flushing from the table. In comparison to FCM,
ASketch-FCM also achieves 40% more throughput. This is be-
cause of two reasons. (1) As explained earlier in Section 7.2.1, we
consider a modified version of the FCM where we do not use the
MG counter — the MG counter incurs a significant performance
overhead for the original FCM technique [34]. (2) We accumu-
late a large number of frequency counts in the filter that are not
hashed into the underlying sketch. In case of FCM, all the fre-
quency counts are hashed into the sketch data structure.

The stream processing throughput for the Kosarak click stream
is shown in Figure 10(c). The Kosarak click stream has slightly
higher skew than the IP-trace stream. As a result, ASketch
achieves almost 20% more throughput than Count-Min. The
performance of Count-Min is skew independent, therefore, the
throughput numbers are similar to that of IP-trace stream. Skew
also helps Holistic UDAFs but ASketch achieves almost 10% bet-
ter throughput than that of Holistic UDAFs. Similar to the IP-trace
stream, FCM throughput is slightly lower than that of Count-Min
due to the overhead of the MG counter. Finally, ASketch-FCM
outperforms all other approaches by accumulating larger number
of frequency counts in the filter. It achieves almost 70% better
throughput than that of FCM.

� Frequency Estimation Error Comparison. The result of fre-
quency estimation error comparison with the IP-trace stream is
shown in Figure 10(b). We show both implementations of AS-
ketch — one with Count-Min as the underlying sketch; another
one with FCM as the underlying sketch (abbreviated as ASketch-
FCM). ASketch achieves almost 20% better observed error than
both Count-Min and Holistic UDAFs. Holistic UDAFs achieves
almost the same error as that of Count-Min, since it uses the un-
derlying sketch to answer all queries. FCM achieves better accu-
racy than that of Count-Min as well as from ASketch. However,
ASketch-FCM improves the accuracy of FCM by more than 22%.

The frequency estimation results over the Kosarak click stream
are shown in Figure 10(d). ASketch outperforms both Count-Min
and Holistic UDAFs by achieving almost 32% less observed er-
ror. Holistic UDAFs achieves almost the same error as that of
Count-Min because it always uses the underlying sketch for an-
swering queries. As expected, FCM achieves better accuracy than
that of both ASketch and Count-Min. However, ASketch-FCM
outperforms FCM by achieving almost 48% less observed error. It
illustrates that the improvement of ASketch is orthogonal to the
underlying sketching technique.

� Space Saving for Frequency Estimation. The Space Sav-
ing [27] can be modified to answer frequency estimation queries as
follows. If an item is currently monitored by the algorithm, its
count can directly be used as the corresponding estimate. Oth-
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(c) Stream processing throughput on the Kosarak click stream
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(d) Observed error comparison on the Kosarak click stream

Figure 10: Experiments on real-world datasets: ASketch with Relaxed-Heap filter implementation; filter size |F | =32 items (∼0.4KB); ASketch size is
128KB. ASketch-FCM is the ASketch that uses an underlying sketch based on FCM.
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Figure 11: Observed error comparison of ASketch with Space Saving
on the Kosarak click stream: ASketch with Relaxed-Heap filter; filter
size |F | =32 items (∼0.4KB); ASketch size is 128KB. ASketch-FCM is
ASketch with FCM based underlying sketch.
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Figure 12: Stream processing throughput comparison of Parallel AS-
ketch and Parallel Holistic UDAFs with varying skew (Zipf) on the Syn-
thetic dataset; ASketch with Relaxed-Heap filter is used as a baseline;
filter size |F | =32 items (∼0.4KB); total synopsis size is 128KB.

erwise, there are two approaches that can be followed. The au-
thors in [27] suggested not to underestimate the value of the fre-
quency and therefore, we can use the frequency of the item with
the minimum count as an estimate. However, the authors in [9] sug-
gested to use 0 as the estimate of frequency for such items. In both
cases, Space Saving performs poorly for frequency estimation in
comparison to a same-sized sketch. To demonstrate this, we have
used Space Saving to process frequency estimation queries on the
Kosarak dataset, and compare this result with ASketch (presented
earlier in Figure 10(d)). The result of this comparison is shown
in Figure 11. Here, Space Saving(min) is the one where we use
the minimum value as the estimate, and Space Saving is the one
where we use 0 as the estimate. Clearly when 0 is used as estimate,
Space Saving performs better. However, both implementations of
ASketch achieve a much lower error in comparison.
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Figure 13: Throughput comparison between ASketch and Count-Min
when they are used as counting kernel with varying number of cores: each
synopsis size is 128KB. Here, the stream size is 1 billion tuples and the
number of distinct items is 100 million, Zipf skew 1.5.

Filter Type Observed Error (%)
Stream Summary 0.0005

Vector 0.0002
Relaxed-Heap 0.0002

Strict-Heap 0.0002

Table 6: Accuracy comparison with various filter implementations in
ASketch: Vector, Stream-Summary, Strict-Heap, and Relaxed-Heap.
ASketch size is 128KB, filter size |F | = 0.4KB, skew (Zipf)=1.5.
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Figure 14: Stream processing throughput comparison with various filter
implementations in ASketch: Vector, Stream-Summary, Strict-Heap,
and Relaxed-Heap. ASketch size is 128 KB, filter size |F | = 0.4KB.
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Figure 15: Sensitivity analysis, w.r.t., filter sizes in ASketch: ASketch size is 128KB; Synthetic data; Zipf skew 1.5; Relaxed-Heap filter. Here, CMS
refers to the throughput and error of Count-Min alone, shown as a point of reference for other measurements.

7.4 Experiments on Parallel ASketch
� Throughput Benefit of Pipeline Parallelism. ASketch with
pipeline parallelism (we refer to as Parallel ASketch), is the one
where one core runs the filter and another core runs Count-Min
algorithm. The throughput benefit of this algorithm is visible in
Figure 12, especially in the skew range of 1.2 and higher. The core
running the filter can start processing the next item as soon as it has
forwarded the item to the core running the sketch. In fact, Paral-
lel ASketch achieves almost twice the throughput of ASketch at
a skew of 1.8. However, for a skew higher than 2.4, the through-
put advantages diminish as a few items overflow. Parallel Hollistic
UDAFs in Figure 12 is the implementation that is parallelized in
a pipeline manner. Pipeline parallelism also benefits Parallel Hol-
listic UDAFs as the first core, after flushing the low-level aggre-
gator table, can immediately start processing next items from the
input stream. However, Parallel ASketch achieves almost twice
the throughput of parallel Parallel Hollistic UDAFs at a skew of
1.8.

� ASketch as a Counting Kernel. We run this experiment on an
Intel Sandy-Bridge machine with 32 cores arranged in a four-socket
configuration. The clock frequency is 2.40 GHz; therefore, single
thread throughput is slightly higher in Figure 13 than those pre-
sented earlier in Figure 5(a). Although we do not carefully optimize
the implementation for NUMA architecture, the linear scalability
with increasing number of cores is clearly visible. The throughput
advantage of ASketch over Count-Min is also obvious from the
figure. For example, a 32 core configuration for ASketch achieves
almost 4 times better throughput.

7.5 ASketch Sensitivity Analysis
Here, we analyze the performance of ASketch by varying two

important parameters: the filter implementation and the filter size.

� Impact of the Filter Implementation. We compare the trade-
offs of four different filter implementations: Vector, Stream-
Summary with hash table, Strict-Heap, and Relaxed-Heap.
Here, we fix the total ASketch size to 128KB and fix the filter
size as 0.4KB. We present the impact of varying the filter imple-
mentations on ASketch accuracy for frequency estimation queries
in Table 6. Since Stream-Summary has more space overhead per
item, it can accommodate only 4 items with a 0.4KB filter size; the
other three filter implementations have exactly the same space over-
head per item, and each of them can store 32 items within 0.4KB
filter. Therefore, the Vector and both the heap-based implemen-
tations have the same accuracy; while the Stream Summary has
lower accuracy.

The stream processing throughput of these four implementations
are given in Figure 14. Vector performs better at a higher skew
range (>2.0), since there is no overhead of maintaining the data

structure, and almost all the hits go to the filter. However, it does
not perform well for a skew <2.0, due to the lookup cost of the
smallest count present in the filter (see line 9, Algorithm 1), which
requires a linear scan on the filter.

Stream-Summary, in general, does not perform very well over
all skew ranges due to its expensive data structure maintenance
costs, e.g., hash evaluations, pointer chasing, collision resolutions,
and also the maintenance of a doubly linked list. Nevertheless, be-
cause of the constant time access to the item with the minimum
frequency count, Stream-Summary achieves better throughput at
a lower skew than Vector.

Heap implementations perform better with skew <2.0, which
also includes the real-world skew range. Particularly, Relaxed-
Heap performs better than Strict-Heap, since less maintenance
cost is required in the former. Both heap implementations perform
better than Vector in low and medium skew ranges due to a fast
access to the item with the minimum frequency count at the root
of the heap. This is why we used Relaxed-Heap based ASketch
while comparing with existing approaches.

� Impact of the Filter Size. We present the impact of filter size
over ASketch throughput and accuracy in Figures 15(a) and 15(b),
respectively. Here, we used Relaxed-Heap. As explained earlier
in Section 4, increasing the filter size beyond a threshold size (e.g.,
0.4KB in our current setting) increases the filter processing time
without too much gain in the filtering rate. Thus, beyond a thresh-
old filter size, the overall ASketch throughput decreases. On the
other hand, with increasing filter size, while we have better accu-
racy for more high-frequency items, we also introduce more error
over the low-frequency items due to the reduced size of the under-
lying sketch data structure. Therefore, we find that the observed
error stops improving after a threshold filter size, e.g., 3KB in our
current setting (Figure 15(b)).

8. CONCLUSIONS
In this paper, we present ASketch — a filtering technique com-

plementing sketches. It improves the accuracy of sketches by in-
creasing the frequency estimation accuracy for the most frequent
items and by reducing the possible misclassification of the low-
frequency items. It also improves the overall throughput. ASketch
outperforms the existing stream processing algorithms with an or-
der of magnitude higher throughput and about 25 times higher ac-
curacy, while using exactly the same amount of space. We further
incorporate parallelism in ASketch to support even higher stream-
ing rate, e.g., pipeline parallelism improves the ASketch through-
put almost twice in the real-world skew range. ASketch also ex-
hibits linear scalability in the case SPMD parallelism. In future
work, it would be interesting to employ ASketch in a wide variety
of machine learning and data mining applications where sketches
are currently used.
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APPENDIX
A. DELETION OF ITEMS

Removal of an item from sketches is often necessary in many
applications such as the conclusion of a packet flow, or the return
of a previously bought item. Traditional sketches allow us to model
removal of items as an update with negative counts [9]. Particularly,
in the Count-Min, a negative-count-update can be performed in the
same way as a positive-count-update, as long as the overall count
of an item never goes negative. In the following, we shall illustrate
how ASketch supports negative-count-updates.

Let us assume that the negative-count-update with the current
tuple is k, that is, the item’s overall frequency count needs to be
reduced by an amount of k. If the item is not found in the filter, we
directly apply the Count-Min technique to reduce its count by k
from the sketch. On the other hand, if the item is found in the filter
and its (new_count-old_count) is greater than or equal to k, then
we only reduce its new_count by k. However, complexity arises
if the item is found in the filter, but its (new_count-old_count)
is smaller than k. Let us denote by (new_count-old_count)= 4
for that item. In such cases, we subtract k from its new_count,
(k − 4) from its old_count, and finally we also reduce its count
by (k − 4) in the underlying sketch. It is important to note that
after processing a negative-count-update, we do not initiate any ex-
change of items between the filter and the sketch. The exchange is
performed only in the successive positive-count-updates, if neces-
sary.

B. ADDITIONAL EXPERIMENTS

B.1 Accuracy of Low-Frequency Items for
ASketch

One of the key design issues of ASketch data structure is the
size of the Filter. We have evaluated the impact of the filter size in
Section 4, analytically and in Section 7.5, experimentally. We have
demonstrated that increasing the filter size beyond certain threshold
will decrease the stream processing throughput without any gain in
accuracy of high frequency items. Therefore, we have used a small
sized filter. To accommodate the filter data structure in ASketch,
the same amount of space is reduced from the underlying sketch.
As pointed out earlier, this reduction of space is very small to have
any significant effect over accuracy of the low-frequency items. To
demonstrate this, we have plotted the average relative error over
all the low-frequency items in Figure 16. Even though the average
relative error is more biased towards the low-frequency items, we
do not see any differences in between Count-Min and ASketch.
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Figure 16: Average relative error comparison over all low-frequency items
between ASketch and Count-Min. Stream size is 32M and alphabet size is
8M; synopsis size is 128KB.

To further emphasize that we do not introduce a high error in a
few low-frequency items, we find the top-10 items with the highest
accumulative error (i.e., difference between the actual count and

estimated count). We show the average accumulative error over
these top-10 items for both Count-Min and ASketch in Table 7. As
shown in the table, there is almost no difference in the accumulative
error of the top-10 error items.

Skew Count-Min ASketch
0.8 8013 8088
1.0 6761 6750
1.2 3541 3567
1.4 1399 1280
1.6 499 441
1.8 156 122

Table 7: Average accumulative error for top-10 error items between AS-
ketch and Count-Min. Stream size is 32M and alphabet size is 8M; synop-
sis size is 128KB.

B.2 Comparison of Predicted vs. Achieved
Filter Selectivity

Analytically, we have predicted the filterselectivity on a Zipf dis-
tribution in Section 4. To demonstrate that we achieve high
filterselectivity with ASketch, we ran the experiment on Zipf distri-
bution with 32M input items and tracked the number of items that
are processed by the underlying sketch data structure (N2). We
compute the filterselectivity as the ratio of N2 over the total num-
ber of input items (N ), and plotted it in Figure 17. There are
slight differences among the values which are almost not visible
in the figure (e.g., for skew of 1.0, predicted is 0.75, and achieved
is 0.76). For highly skewed distributions, the high-frequency items,
after few updates in the sketch, gets exchanged into the filter, and
then regular updates to the filter keeps them in the filter.
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Figure 17: Filter selectivity: Predicted vs. Achieved filterselectivity; data
stream with Zipf distribution, stream size is 32M, the number of distinct
data items is 8M. Here, we fixed the filter size |F | = 32 high frequency
items.

C. ADDITIONAL ANALYSIS

C.1 Proof of Theorem 1
When the range of each hash function is h, on an average N/h

items are hashed into each cell. When we allocate a size sf to the
filter, the range of each hash function reduces by sf/w. Therefore,
Nsf/hw items get accumulated in the remaining h− sf/w cells.
In other words, the expected value of the increase in the count for
low-frequency items is given by ∆E =

Nsf
wh(h−sf/w)

. Hence, by
applying Markov inequality, we get:

P (∆E ≥ (
esf

wh(h− sf
w

)
)N) ≤ 1/e (2)



Since we use w pairwise independent hash functions, the overall
probability that the above happens is smaller than e−w. Hence, the
theorem follows.

C.2 Exchange Policy
As depicted in Figure 9, if there exists skew in input data, the

number of exchanges drops significantly (less than 100 exchanges
for a skew of 3). In order to construct an average case scenario with
uniform distribution, let us assume that no hit happens in the filter.
Given that the filter monitors |F | items, and the range of hash func-
tion in the sketch is h, one may require |F | exchanges on an average
for every h items. The intuition behind this is that once |F | items
are exchanged, the count of each cell in the hash function needs
to be increased by 1 for the next set of |F | exchanges. Therefore,
with a stream size of N , the average number of exchange would
be N |F |/h. For example, in a setup where |F | = 32, h = 4084,
and w = 1, with 32M stream size in uniform distribution, one may
require up to∼250K exchanges. However, in practice, we consider
multiple hash functions in the sketch (i.e, w > 1), and minimum of
those w values are used to estimate the frequency of an item. Also,
if there are hits in the filter, the number of exchange would further
decrease. Thus, the observed number of exchanges shown in Fig-
ure 9 is much lower than ∼250K, more specifically ∼40K for the
uniform distribution.

Next, we construct a scenario with uniform distribution such that
minimum number of exchanges will occur. Let us assume, |F | =
32, h = 4084, w = 1, stream size: N = 32M, and domain size:
M = 8M. Therefore, each item occurs N

M
= 4 times. Assuming

these N counts get evenly distributed in each cell of the underlying
sketch, the count of each cell will be N

h
= 7832. The counts of each

cell will come from M
h

= 1958 different items. Now, we consider
a scenario where these 1958 different items constitute the first 7832
counts in the stream, and they all get mapped to one particular cell
in the sketch. Assuming no hits in the filter, there will be about
7832 exchanges for these items, and each item in the filter will
have a count close to 7832. Now, assuming that the rest (N − N

h
)

counts get evenly distributed in rest of the h−1 = 4083 cells, there
will be only few more additional exchanges due to the items with
counts less than 7832 in filter. In summary, in best case, there will
be in the order of N

h
= 7832 exchanges. Our achieved number

of exchanges are ∼40K, which is much higher than the best case;
however, much lower than the average case.

Below, we provide two additional lemma to derive the worst case
bounds on the number of exchanges for ASketch. However, the
probability of occurring such worst case scenarios are very small
because the stream requires to be particularly ordered.

LEMMA 2. Assuming no collision inside the sketch (i.e., the
sketch is big enough to hold accurate count for all distinct keys),
total number of exchanges cannot be more than N

2
, where N is the

total stream size.

First, we construct an example when this happens. Let there be
only two distinct items in a stream, and they are coming in the fol-
lowing sequence: ABBAABBAABB. Assume that the filter
size is 1, and the two items A and B do not collide in the sketch.
This will result in b(N − 1)/2c exchanges for a stream of size
N . In particular, every item has an exact count in the sketch based
on our assumption. We move an item from the sketch to the filter
only when its count obtained from the sketch is larger than the cur-
rent minimum count stored in the filter. Therefore, after an item is
evicted from the filter and before it moves back again to the filter,
the item will require at least 2 more hits while staying in the sketch.
This is true for any item in the stream. Therefore, the maximum
number of exchanges is N

2
.

LEMMA 3. Assuming there are collisions in the sketch (i.e., the
sketch width h << M , the number of distinct items), total number
of exchanges can be N , where N is the stream size.

We again construct a scenario when this happens. Let there be
only two distinct items in a stream, and they are coming in the
following sequence: ABBABABABABA. Assume that the
filter size is 1, and each hash function in the sketch hashes both A
and B to the same cell, i.e., Hi(A) = Hi(B) for all i ∈ (1, w).
Hence, A and B always collide in the sketch. This results in N −2
exchanges for a stream of size N . We ensure that there will be no
more than N exchanges, because at most one exchange can happen
after one insertion in the sketch. Since the total number of insertion
in the sketch is bounded by N following Lemma 1, the maximum
number of exchanges cannot be more than N .


