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Abstract—We study the vertex-centric (VC) paradigm for
distributed graph processing, popularized by Google’s Pregel
system. Since then, there were several attempts to implement
many graph algorithms in a vertex-centric framework, as well
as efforts to design optimization techniques for improving their
efficiency. Many follow up works experimentally compared the
efficiency and scalability of existing VC systems. However, to the
best of our knowledge, there has not been any systematic study
to analyze the expressibility of the VC paradigm itself.

Our work addresses this gap in the following ways. We
consider multiple distributed algorithms for two important graph
problems: single-source shortest path and betweenness centrality.
We investigate, with thorough experiments, whether all these
algorithms can be efficiently implemented in a VC framework.
We find that all distributed algorithms (often the more efficient
ones) cannot be effectively implemented in the VC paradigm. We
conclude by discussing our recommendations on the road ahead.

Index Terms—vertex-centric (VC) paradigm; expressibility;
single-source shortest path; betweenness centrality;

I. INTRODUCTION

In order to achieve low latency and high throughput over

massive graph datasets, distributed solutions were proposed

in which the graph and its data are partitioned horizontally

across cheap commodity servers in a cluster. The vertex-

centric (VC) distributed programming model for large graphs

has been popularized by Google’s Pregel framework [29]. It

hides distribution related details such as data partitioning, com-

munication, underlying system architecture, and fault tolerance

behind an abstract API. Also known as the think-like-a-vertex

model, it requires that the user expresses the computation from

the perspective of a single vertex, by providing a high-level

vertex-compute() function.

In Pregel, which was inspired by the Bulk Synchronous

Parallel (BSP) model [41], graph algorithms are expressed as

a sequence of iterations called supersteps. Each superstep is

an atomic unit of parallel computation. During a superstep,

Pregel executes a user-defined function for each vertex in

parallel. The user-defined function specifies the operation at

a single vertex v and at a single superstep S. The supersteps

are globally synchronous among all vertices, and messages

are usually sent along the outgoing edges from each vertex.

In 2012, Yahoo! launched the Apache Giraph [1] as an open-

source project, which clones the concepts of Pregel.

With the inception of the Pregel framework, vertex-centric

distributed graph processing has become a hot topic in the

database community (for a survey, see [20], [25], [30], [43]).

Although Pregel provides a high-level distributed program-

ming abstract, it suffers from efficiency issues such as the

overhead of global synchronization, large volume of messages,

imbalanced workload, and straggler problem due to slower

machines. Therefore, more advanced vertex-centric models

(and its variants) have been proposed, e.g., asynchronous

(GraphLab [27]), asynchronous parallel (GRACE [42]), barri-

erless asynchronous parallel (Giraph Unchained [19]), gather-

apply-scatter (PowerGraph [16]), data parallel (GraphX [17],

Pregelix [6]), and subgraph centric frameworks (NScale [35],

Giraph++ [40]). Various algorithmic and system-specific opti-

mization techniques were also designed, e.g., graph partition-

ing and re-partitioning [26], [46], combiners and aggregators

[29], vertex scheduling [27], superstep sharing [19], finishing

computations serially [37], among many others.

In this work, we investigate some of the fundamental limi-

tations of the vertex-centric paradigm itself, by implementing

a few distributed graph algorithms that are difficult to be

expressed in the VC paradigm. Several graph problems have

multiple distributed algorithms, which vary in their efficiency.

We observe that not all distributed algorithms of a graph

problem can be implemented effectively in the vertex-centric

framework. In particular, we carefully limit the scope of

the paper and focus on two specific classes of algorithms:

bucketing-based and multi-phased.

Bucketing-based refers to an algorithm that relies on a

bucket structure to define priorities of vertices. Vertices are

processed in batch from the highest priority vertices to lowest

priority vertices. Vertices can be added and removed from

buckets during execution to update their priorities. Example

algorithms in this class include ∆-Stepping algorithm [32] for

single-source shortest path, weighted BFS [12], k-core [11],

and approximate set cover [9].

Multi-phased implies those algorithms which consists of

several distinct phases. Each phase itself may be iterative.

However, overall the algorithm’s execution follows the pre-

defined order of phases. Example algorithms that fall under

this category include distributed Brandes’ algorithm [5] for

betweenness centrality, finding bi-connected and strongly con-

nected components [45].

We find that often the more efficient distributed algorithm

of a graph problem under the above two categories cannot be

effectively implemented in the vertex-centric paradigm.



Notice that not all vertex-centric frameworks can imple-

ment these two classes of algorithms. For bucketing-based

algorithms, synchronous systems like Giraph [1] and GPS

[37] are necessary. This is because bucketing-based algorithms

require synchronization after each superstep to determine the

next bucket for processing. For multi-phased algorithms, sys-

tems which support global synchronization in certain but not

necessarily in all supersteps (in order to synchronize between

phases) are sufficient, such as Giraph Unchained [19].

In summary, we systematically study the expressibility

of the vertex-centric framework, so to equip graph system

researchers and practitioners with a good understanding of

the trade-offs of this paradigm, compared to other distributed

frameworks, such as the classic message passing interface

(MPI) for distributed computing. Our contributions can be

stated as follows.

• To the best of our knowledge, for the first time we im-

plement bucketing-based ∆-Stepping (for single-source

shortest path problem) and multi-phase Edmond et al.’s

(for betweenness centrality computation) algorithms in

the vertex-centric framework.

• We highlight the key expressibility limitations (e.g., more

work, many active vertices, large message overheads,

etc.) of VC paradigm in regards to both bucketing-based

and multi-phase algorithms. We conduct extensive ex-

periments to demonstrate these expressibility challenges

specific to vertex-centric paradigm, while also presenting

that such bottlenecks do not exist in traditional MPI

distributed systems.

The rest of our paper is organized as follows. We introduce

preliminaries and related work in Section II, expressibility

concerns in Section III, coupled with experimental results. We

then summarize our findings and conclude in Section IV.

II. BACKGROUND AND RELATED WORK

A. Vertex-Centric Paradigm

For ease of programmability of graph algorithms in parallel

and distributed environments, various programming models

have been proposed, including vertex-centric (VC) [29], sparse

matrix operations [8], Map-Reduce based [7], [14], [23], graph

domain specific languages [21], declarative programming [39],

and task-based models [34]. Among them, the VC paradigm

has received unprecedented interests in databases, data mining,

machine learning, and systems communities. While the exact

programming APIs for different VC systems [16], [17], [19],

[27], [29], [35], [36], [40], [42] somewhat vary, they all require

that the user expresses the computation from the perspective of

a single vertex, by providing a higher-order vertex-compute()
function.

Figure 1 depicts VC programming in Google’s Pregel

system. A Pregel computation consists of a sequence of

supersteps separated by global synchronization barriers until

the algorithm terminates (Figure 1(b)). Within each superstep,

the vertices compute in parallel, each executing the same user-

defined function that expresses the logic of the algorithm.
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Fig. 1: Vertex-Centric paradigm

A vertex can modify its state (active or inactive), receive

messages sent to it in the previous superstep, and send mes-

sages to other vertices (to be received in the next superstep)

(Figure 1(a)). The algorithm, as a whole, terminates when all

vertices are inactive and there are no messages in transit.

The execution of a Pregel program initiates running many

copies of the user program on a cluster of machines. One

of these copies acts as the master. It is not assigned any

portion of the graph, but it coordinates worker activities.

The master, in fact, determines how many partitions the

graph will have, and then assigns one or more partitions to

each worker machine. The master also instructs each worker

to perform a superstep. The worker iterates over its active

vertices, using one thread for each partition. The worker

calls vertex-compute() for each active vertex. Messages are

sent asynchronously, to enable overlapping of computation,

communication, and batching, but are delivered before the

end of the current superstep. When the worker finishes the

current superstep, it responds to the master, informing how

many vertices would be active in the next superstep. These

steps are repeated as long as some vertices are active, or some

messages are in transit.

The main benefit of VC programming model is that the users

only require to write a single vertex-compute() function for a

specific graph algorithm, without the knowledge of distributed

programming. The Pregel system has been cloned by many

open source projects, e.g., Apache Giraph [1], Apache Hama

[2], and GPS [36]. In addition to the basic VC paradigm as

demonstrated in Figure 1, several optimization techniques have

been included in these open source systems, to improve the

performance, as well as to support more complex distributed

graph algorithms. In the following, we discuss three optimiza-

tion techniques, which we shall employ in our experiments.

Combiner. Sending a message to a vertex on another machine

causes overhead. This cost can be reduced if the messages

intended for a vertex can be aggregated (via commutative

and associative operations), and only that aggregated value



matters for the vertex. As an example, messages in case of

a single-source shortest path algorithm (e.g., Bellman-Ford
[29]) consist of potential shorter distances to a receiving

vertex. Since this receiving vertex is only interested in the

minimum among them, such algorithm greatly benefits by

using a combiner.

Aggregator. An aggregator ensures global communication,

monitoring, and coordination. Each vertex can provide a value

to the aggregator at the end of the current superstep, the

aggregator combines those values with a reduction operation,

and the resulting value is made available to all vertices before

the next superstep. For algorithms in which a global coordina-

tion is necessary (e.g., distributed ∆-Stepping algorithm [32]

for the single-source shortest path problem), an aggregator is

required.

Master-Compute. In GPS [36] and in later versions of Giraph

[1], an optional master-compute() function is executed by

the master between supersteps to perform serial computation,

and for coordination in algorithms that are composed of

multiple phases (e.g., distributed Brandes’ algorithm [5] for

betweenness centrality problem).

B. Performance Comparison of VC Systems

With the explosion of distributed vertex-centric graph pro-

cessing systems, many follow up works empirically compared

the efficiency and scalability of the existing vertex-centric

systems. We survey bulk of these experimental works as

follows.

Han et al. [20]. One of the early works that empirically

compared several VC systems by measuring the running time,

maximum memory usage, total network usage, and scalability

of different graph algorithms in these systems.

Lu et al. [28]. For existing VC systems, they measured the

effects of individual optimizations, as well as experimented

with five categories of graph algorithms, and graphs having

different characteristics (power law, small world, large diam-

eter, etc.).

Guo et al. [18]. This work employed additional perfor-

mance metrics, e.g., raw processing power, resource utiliza-

tion, setup overhead, horizontal/vertical scalability, to experi-

mentally compare several VC systems.

Satish et al. [38]. The authors compared the performance of

VC systems with respect to hand-optimized MPI algorithms

as a reference, and also provided quantitative suggestions for

the improvement of these systems.

Gao et al. [15]. They focused on five experimental design de-

cisions, e.g., data distribution, data organization, programming

model, synchronization, and message model.

Capota et al. [10]. This work analyzed choke points of VC
systems, coupled with benchmark datasets generation and an

advanced benchmarking harness.

In addition to the aforementioned experimental works, there

are many surveys and tutorials, e.g., [22], [25], [30], [43], com-

paring state-of-the-art VC systems. Yan et. al. [45] studied VC

TABLE I: Properties of datasets

Dataset #Vertices #Edges Characteristics Category
Road-US 23 947 347 58 333 344 directed, weighted road network

Web-UK 39 459 925 936 364 282 directed, unweighted webgraph

Orkut 3 072 606 223 534 301 undirected, unweighted social network

KKI 1 827 240 40 876 288 directed, weighted biological network

Synthetic 6 000 000 600 016 480 directed, weighted E-R random graph

implementations of connected component-based graph prob-

lems with the notion of balanced practical Pregel algorithms.

McSherry et. al. [31] measured the running times of single-

threaded implementations of several graph algorithms using

a high-end 2014 laptop, and compared them with the pub-

lished results for state-of-the-art distributed graph processing

systems. We earlier reported time-processor based complexity

results of fifteen VC algorithms [24]. Our current work is

different from all these prior works, since we investigate a

fundamental limitation of the vertex-centric paradigm itself —

from the perspective of expressibility, that is, often the more

efficient distributed algorithm of a graph problem cannot be

effectively implemented in the VC paradigm.

C. Experimental Setup

1) Datasets: We summarize our datasets in Table I. Many

of these datasets have been extensively used in past research

on VC graph processing systems, including [15], [17], [18],

[20], [37], [40].

Road-US: We download the full USA road

network dataset from the 9th DIMACS Challenge

(http://www.diag.uniroma1.it/challenge9). An edge weight

denotes physical distance from source to target vertex in the

road network.

Web-UK: The uk-2005 Web graph

(http://law.di.unimi.it/datasets. php) is a collection of UK

Web pages, which are represented as vertices. A hyperlink in

page u to page v is denoted by an edge between them.

Orkut: Orkut is an on-line social network where users form

friendship with each other. We obtain the dataset from [33].

KKI: We download the Kki2009 679 1 bg brain network

from http:// openconnecto.me/graph-services. The edge weight

represents the number of fiber tracts that connect one vertex

to another.

Synthetic: We generate synthetic graphs using GTgraph [4].

Random graphs are generated following the Erdős-Rényi (E-R)

model, since the ∆-Stepping algorithm has a solid theoretical

analysis of its complexity over random graphs [32]. The

edge generation probability is adjusted so that the number of

vertices and edges are proportional to the number of servers.

Only the statistics of the largest synthetic graph is shown in

Table I.

2) Cluster Configuration: We perform experiments on a

cluster of 6 servers, each having dual E5-2620 V3 CPUs

(2.4GHz), 12 physical cores, and 24 threads (with hyperthread-

ing), 64GB RAM, OS is Ubuntu 16.04 LTS, interconnected by

10Gbits/s Ethernet. We use all 12 cores and 24 threads in each

server during our experiments.
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3) Distributed Platforms: For our experiments with VC

paradigm, we deploy the latest release 1.2.0 of Apache Giraph

on YARN [1]. While it has been shown in [28] that other

VC systems, e.g., GPS [36] and Pregel+ [44] exhibit better

performance over Giraph, that is not our primary focus in this

work. The limitations of the VC paradigm from the perspective

of expressibility, that we investigate in this paper, are also

applicable to these systems.

To demonstrate expressibility limitations, we show that

often the more efficient distributed algorithm of a graph prob-

lem cannot be effectively implemented in the VC paradigm.

However, such algorithms can be efficiently implemented over

the classic message passing interface (MPI) for distributed

computing, resulting in more performance gain in MPI plat-

forms. For MPI, we deploy the OpenMPI version 1.10.2.

Following Giraph, we perform hash partitioning of the

graph. While Giraph provides its own API for vertex-

compute(), we implement our codes in MPI using C++.

III. EXPRESSIBILITY ANALYSIS OF VC PARADIGM

We set to enquire the expressibility of the VC paradigm

by considering two distributed algorithms for the single-

source shortest path (SSSP) problem: ∆-Stepping [32] and

Bellman-Ford [29]. We show that the former is more efficient,

however cannot be effectively implemented with the VC

paradigm, thereby demonstrating expressibility limitations of

VC compared to traditional message-passing (MPI) distributed

systems. Next, we consider both VC and MPI implementations

of Edmond et al.’s distributed algorithm [13] for between-

ness centrality (BC) computation. Since BC requires multiple

SSSP evaluations, expressibility concerns of the VC paradigm

are further magnified in this setting.

A. Single-Source Shortest Path Computation

An edge-weighted, directed graph G = (V,E,W ) consists

of a set V of n vertices, E ⊆ V × V is a set of m directed

edges, and W : E → R≥0 assigns a non-negative, real-valued

weight W (e) to every edge e ∈ E. Given a source vertex

s ∈ V , the single-source shortest path (SSSP) problem finds

the paths with minimal weight from s to all other vertices, if

such a path exists. The weight of a path is defined as the sum

of edge weights along this path, and we only report minimum

distances from s to all other vertices.

We consider two most notable distributed algorithms for the

SSSP computation: Bellman-Ford and ∆-Stepping.

Algorithm 1 Distributed Bellman-Ford Algorithm

Require: source vertex s in graph G = (V,E,W )
Ensure: minimum distances from s to all other vertices

1: initialize distance array, distance[v] = ∞, for all vertices v ∈ V
2: distance[s] = 0 [relax s]
3: s sends (distance[s] + edge weight) along all outgoing edges
4: for i from 1 to |V | − 1 do
5: updated = false
6: receive messages along incoming edges of all vertices
7: for M in messages do
8: v = M.destination
9: if M.distance < distance[v] then

10: distance[v] = M.distance [relax v]
11: updated = true
12: v sends (distance[v] + edge weight) along all outgoing

edges
13: end if
14: end for
15: terminate if no vertex is updated (i.e., updated = false)
16: end for

1) Bellman-Ford Algorithm: The Bellman-Ford algorithm

is originally a sequential algorithm. However, as it runs in (n−
1) iterations, and in each iteration the edges can be traversed

in any arbitrary order, it can be easily parallelized. Although

it exposes a great amount of parallelism, it is not efficient: the

sequential version runs in O(mn) time.

Therefore, distributed Bellman-Ford is often optimized (1)

by only performing update over outgoing edges if the distance

of the source vertex has just been updated (line 9), and

(2) by terminating early if no update is performed in the

last iteration (line 15). The pseudocode for the optimized

distributed Bellman-Ford algorithm in the MPI paradigm is

depicted in Algorithm 1. The message contains the destination

vertex id and its new distance. This algorithm can also be

easily implemented in the VC paradigm (e.g., Pregel [29]). In

fact, it is even simpler in the VC paradigm because the user

does not have to write code to manually check if no distance

update is carried out over the entire graph in some iteration,

and the algorithm should be terminated early. Instead, the user

simply calls voteToHalt() on all vertices, and the algorithm

will terminate when no message is generated in a superstep

(i.e. no distance update over the graph).

Although the optimized distributed Bellman-Ford algo-

rithm is already more efficient than its original form, it still

wastes a lot of work by multiple relaxation of the same vertex,

as shown below.

Example 1: Consider the graph in Figure 2, and the source

vertex is 0. After vertex 1 is relaxed in iteration 1, it sends

message to vertex 3 and vertex 3 will be relaxed to the distance

20 in iteration 2. However, 20 is clearly not the shortest

distance from vertex 0 to vertex 3. Indeed, vertex 3 will be

relaxed again in iteration 3 when it receives a message of

distance 6 from vertex 4.

2) ∆-Stepping Algorithm: To reduce the amount of wasted

work in Bellman-Ford, while still maintaining sufficient

amount of parallelism, the ∆-Stepping algorithm can be used.

In this method, vertices are placed into buckets according to



Algorithm 2 Distributed ∆-Stepping Algorithm

Require: source vertex s in graph G = (V,E,W ), the value of ∆
Ensure: minimum distances from s to all other vertices

1: initialize distance array, distance[v] = ∞, for all vertices v ∈ V
2: initialize bucket array, bucket[i] = φ, for 1 ≤ i ≤ |V |
3: add s to bucket[0] [relax s]
4: distance[s] = 0
5: i = 0
6: while not all buckets are empty do
7: initialize an empty deleted set
8: while bucket[i] is not empty do
9: for v in bucket[i] do

10: v sends (distance[v] + edge weight) along light edges
11: remove v from bucket[i]
12: add v to deleted
13: end for
14: receive messages along incoming edges of all vertices
15: for M in messages do
16: v = M.destination
17: if M.distance < distance[v] then
18: remove v from bucket[⌊distance[v]/∆⌋] [relax v]
19: add v to bucket[⌊m.distance/∆⌋]
20: distance[v] = M.distance
21: end if
22: end for
23: end while
24: for v in deleted do
25: v sends (distance[v] + edge weight) along heavy edges
26: end for
27: for M in messages do
28: v = M.destination
29: if M.distance < distance[v] then
30: remove v from bucket[⌊distance[v]/∆⌋] [relax v]
31: add v to bucket[⌊m.distance/∆⌋]
32: distance[v] = M.distance
33: end if
34: end for
35: i = i+ 1
36: end while

their priority during relaxation. The bucket id is calculated as

⌊distance[v]/∆⌋, where distance[v] is the tentative distance

of v from the source vertex s, and ∆ is a user-defined input

parameter. Vertices that are in lower buckets are processed

before the ones that are in higher buckets. Therefore, even if

a vertex’s distance is updated in a round, the vertex may not

send this new distance to its neighbors if it does not belong

to the non-empty bucket with the lowest id.

Example 2: By assigning a priority based on the tentative

distance, the ∆-Stepping algorithm avoids the unnecessary

relaxation from vertex 1 to vertex 3 in Figure 2 (which happens

with Bellman-Ford). Consider the case when we set ∆ to 3.

When vertex 1 and 2 are relaxed from vertex 0, vertex 1 is in

bucket 3 (i.e., ⌊10/∆⌋ = 3), and vertex 2 is in bucket 0 (i.e.,

⌊2/∆⌋ = 0). After that, vertex 4 will be added to bucket 1 via

relaxation. Now when vertex 4 relaxes its neighbor, vertex 3’s

distance will be directly set to 6. Note that vertex 1 never gets

the chance to set vertex 3’s tentative distance to 20 because

its bucket id is too high.

Another important optimization in the ∆-Stepping algo-

rithm is the introduction of light and heavy edges. Light edges

Algorithm 3 ∆-Stepping+VC: vertex-compute() of ∆-

Stepping in VC

Require: source vertex s in graph G = (V,E,W ), the value of ∆,
minimum aggregator agg, current superstep id superstep id

Ensure: minimum distances from s to all other vertices
1: if superstep id == 0 then
2: if vertex.id == s then
3: initialize distance to 0
4: send distance to all neighbors
5: else
6: initialize distance to ∞
7: end if
8: initialize bucket to ∞
9: vote to halt

10: else if superstep id% 2 == 1 then
11: for M in messages do
12: if M.distance < distance then
13: distance = M.distance
14: bucket = ⌊distance/∆⌋
15: end if
16: end for
17: if bucket == ∞ then
18: vote to halt
19: else
20: send bucket to aggregator agg
21: end if
22: else
23: get minimal bucket from aggregator agg
24: if bucket == minimal bucket then
25: send distance to all neighbors
26: bucket = ∞
27: vote to halt
28: end if
29: end if

refer to edges whose weights are smaller or equal to ∆, while

heavy edges refer to those whose weights are larger than ∆.

The idea is that when relaxing along light edges, previously

removed vertices may be added again to the current bucket

with a shorter distance. By sending along heavy edges only

at the end (lines 24-26, Algorithm 2), it is guaranteed that the

vertices’ distances in the current bucket are settled, and they

need to send along heavy edge only once.

The value of ∆ can be adjusted to find a balance between

efficiency and the amount of parallelism. When ∆ = 1 it is

same as Dial’s implementation of Dijkstra’s algorithm, and

when ∆ = ∞ it coincides with the Bellman-Ford algorithm.

Similar to Bellman-Ford, the ∆-Stepping algorithm can be

easily parallelized because the vertices in the same bucket can

be processed in any order. Algorithm 2 shows how it could

be implemented in the MPI paradigm. The message contains

the destination vertex id and its new distance.

∆-Stepping in VC Paradigm. When implementing ∆-

Stepping over VC, we realize that it is not straightforward.

Since the users are not allowed to create any global data struc-

ture, the bucket structure cannot be implemented as described

in the original algorithm. Instead, the users can store each

vertex’s current bucket id as a vertex attribute. To calculate the

id of the lowest non-empty bucket, a minimum aggregator (i.e.,

that reduces its input values to the minimum value) is used.
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In the vertex-compute() function, a vertex only processes

itself if it belongs to the current bucket being processed. The

pseudocode for the vertex-compute() function is shown in Al-

gorithm 3. Since in the VC paradigm communication happens

only between supersteps, the pattern of Send-Receive-Relax

in Algorithm 2 has to be broken into 2 supersteps (lines 10-

17 for one stperstep, and lines 18-25 for another superstep)

in order to be implemented in the VC paradigm. Superstep 0

(lines 1-9) is a special superstep used to initialize the algorithm

as all computations have to be embedded into the vertex-

compute() function, and the user cannot write a separate

preprocessing function to initialize it. The vertex stores its

distance and bucket, and the message contains only the new

distance of an edge’s destination vertex (its id is specified

when sending, but not visible on the receiver’s end as per the

design of the VC paradigm).

Note that unlike Algorithm 2, here we do not distinguish

between light and heavy edges for efficiency reasons. If we

are to separate the relaxation along light and heavy edges, a

master-compute() function has to be implemented to handle

more complicated algorithm state coordination. For example,

when the minimum bucket id changes, the master would detect

the change and instruct workers to process heavy edges instead

of going directly for light edges in the new minimum bucket.

While this reduces the amount of messages along the heavy

edges, it also increases the running time of the algorithm.

Thus, for ∆-Stepping in VC paradigm, we do not distinguish

between light and heavy edges.

Although such an implementation preserves the semantics

of the ∆-Stepping method, it loses certain efficiency due to

the lack of the actual bucket structure. The efficiency loss

happens in two ways.

First, suppose in superstep i, vertices receive messages, and

update their bucket ids. Now they would need to compute the

updated minimum bucket id to proceed. To do that, they need

to send their ids to the aggregator. As the aggregator only

works between supersteps, the vertices have no choice but to

stay active going into superstep (i + 1). Only in superstep

(i + 1), they can decide whether they should send message

to their neighbors based on the updated minimum bucket id.

In other words, each iteration in the original ∆-Stepping

algorithm now requires two supersteps in VC, in the first

superstep vertices having the minimum bucket id are identified

(lines 18-25), and in the next superstep, their neighboring

vertices are relaxed (lines 10-17).

Second, when a vertex has a bucket id larger than the current

minimum, it still has to remain active until the turn comes

to process that bucket. Consider the graph in Figure 2 with

∆ = 3, vertex 1 and 2 will receive messages in the second

superstep, and set their bucket id to 3 and 0, respectively.

Although vertex 1 will not be processed in the next superstep,

it has to stay active. This is because if it is inactive, it can

only be activated again by a message from vertex 0. However,

as vertex 0 is inactive after it is removed from the buckets and

that it has no incoming edge, it will never be able to activate

vertex 1. In both situations, remaining active means that we

cannot call voteToHalt() on such vertices.

Note that in the VC paradigm, the voteToHalt() function

not only helps with algorithm termination, but it also helps

improve algorithm performance. When voteToHalt() is called

on a vertex, and no meesage is sent to it in a superstep, the

vertex-compute() function will not be called on it in the next

superstep, and its vertex state does not need to be read from

memory. As many graph algorithms are data-intensive, the less

it reads from memory, the better the performance will be. In

the implementation of ∆-Stepping over VC, to ensure the

correctness of the algorithm, many vertices require to be active



TABLE II: Single-source shortest path results: MPI vs. VC. We show memory usage and network traffic of different distributed algorithms.
∆-Stepping+VC does not finish in 5 hours per vertex in the Road-US dataset over Giraph.

Dataset

MPI Giraph MPI Giraph

Memory (GB) Memory (GB) Network traffic (GB) Network traffic (GB)

Bellman ∆-Stepping ∆-Stepping Bellman ∆-Stepping Bellman ∆-Stepping ∆-Stepping Bellman ∆-Stepping

-Ford +VC -Ford +VC -Ford +VC -Ford +VC

Road-US 153.3 148.4 162.8 63.2 - 386.3 14.6 15.0 848.7 -

KKI 8.2 8.6 13.2 20.0 20.8 0.18 0.18 0.18 0.14 0.14

Synthetic 78.1 58.4 61.8 67.9 62.2 24.9 4.0 4.0 34.3 4.6

in supersteps when they should, in fact, not be processed.

In summary, ∆-Stepping, which is an algorithm with better

efficiency, no longer remains that efficient when implemented

in the VC paradigm. This illustrates that bucketing based

algorithms, which require a global bucket data structure,

cannot be effectively implemented with the VC paradigm. We

further demonstrate this issue with experimental results in the

following section.

3) SSSP Experimental Results: We present experimental

results to demonstrate expressibility challenges of the VC
paradigm in Figure 3. We employ three of our datasets

having edge-weights: Synthetic, US-Road, KKI. We report

SSSP running time per vertex, and each experimental result is

averaged over 100 randomly selected vertices in the graph.

We run Bellman-Ford and ∆-Stepping+VC in both MPI

and Giraph, whereas original ∆-Stepping runs only in MPI

(since it cannot be executed over VC in its original form). By

following [32], the optimal value of ∆ is selected empirically.

Starting with a small value of ∆ (e.g., ∆=1), we iteratively

consider multiples of 2 (for smaller ∆), or powers of 2 (for

larger ∆), until there are too many ∆-paths and ∆ has become

too large to finish an iteration. In particular, we set ∆ =32 768

for KKI, Road-US, and 100 for Synthetic.

We observe that ∆-Stepping and ∆-Stepping+VC are

consistently faster than Bellman-Ford in MPI – which is

expected, since they are more efficient distributed algo-

rithms compared to Bellman-Ford [32]. However in Giraph,

∆-Stepping+VC often provides limited speedup (or, even

slower) compared to Bellman-Ford. We find similar obser-

vations over different datasets (Figures 3(a) and 3(b)), as

well as with different number of servers 1 (Figures 3(c)

and 3(d)). Moreover, the running times of all algorithms are

higher in Giraph, compared to those in MPI. In particular,

∆-Stepping+VC does not finish in 5 hours per vertex in the

Road-US dataset due its higher diameter, and therefore, several

vertices need to remain active over many supersteps. These

results illustrate that ∆-Stepping, which is an algorithm with

better efficiency, no longer remains that efficient (even less

efficient than Bellman-Ford) in VC paradigm.

We further delve into the number of active vertices at

different supersteps of ∆-Stepping+VC algorithm. As we

reasoned earlier, many of these active vertices do not need to

be processed at every superstep in the original ∆-Stepping.

We, therefore, report the percentage of the number of working

vertices (i.e., vertices that indeed require to be active in

1Figures 3(c) and 3(d) report weak scalability, since we vary the number of vertices

and edges in the Synthetic graph proportional to the number of servers.

∆-Stepping) over total number of active vertices in ∆-

Stepping+VC, at various supersteps. We show our results

with the Synthetic graph and six servers in Figure 4. We

find that in many supersteps, particulary at initial stages, the

working vertices percentage is close to zero, indicating that

much work is wasted in the VC paradigm. Our empirical

findings attest that bucketing-based algorithms perform more

work than necessary in the VC paradigm. We note that the

local minima in Figure 4 indicate change of buckets. This is

because the processing of a bucket finishes when no vertex is

re-relaxed into the current bucket.

We present memory usage and network traffic of different

distributed algorithms for SSSP in Table II. We observe that

in terms of both memory usage and network traffic for ∆-

Stepping+VC, MPI implementation and Giraph are compara-

ble. However, we also find that in MPI, ∆-Stepping consumes

less memory compared to ∆-Stepping+VC. This is because

in ∆-Stepping, we do not have to store the bucket id for every

vertex, while in ∆-Stepping+VC one requires to store it as

an attribute for each vertex. Recall that in the VC paradigm,

we can only implement ∆-Stepping+VC, and not the original

∆-Stepping algorithm, resulting in higher memory footprint

for bucketing-based algorithms in VC framework.

B. Betweenness Centrality Computation

Betweenness centrality (BC), which also works in a

weighted, directed graph, is a metric for measuring the relative

importance of vertices based on the number of shortest paths

among all vertex pairs that pass through a vertex. Formally,

for a graph G = (V,E,W ) and a vertex v, the betweenness

centrality score v is defined as
∑

s6=t6=v∈V
δst(v), where

δst(v) = σst(v)
σst

, σst(v) is the number of shortest paths

between s and t that pass through v, and σst is the total number

of shortest paths between s and t.

1) Sequential Brandes’ Algorithm: We first describe the

Brandes’ algorithm [5], which is an efficient sequential

algorithm for solving the BC problem. Brandes’ algorithm

focuses on finding the partial contribution to BC values of

all vertices from each source vertex s. First, the algorithm

runs an SSSP algorithm (BFS for unweighted graph, and

Dijkstra for weighted graph) to compute, for each vertex v,

the predecessors Ps(v) and the number of shortest paths σsv . It

then uses these information to compute the dependency δs◦(v)
of a source vertex s on each vertex v, which represents the

partial contribution to the BC value of vertex v from a fixed



Algorithm 4 Brandes’ Algorithm for BC Computation

Require: graph G = (V,E,W )
Ensure: BC value of all vertices

1: create BC value array CB and initialize to 0
2: for s ∈ V do
3: initialize empty stack S = φ
4: create predecessor array P and initialize to empty list
5: initialize shortest path count array σ[v] = 0, for all v ∈ V
6: initialize distance array distance[v] = ∞, for all v ∈ V
7: σ[s]=1; distance[s]=0
8: create empty min priority queue Q and enqueue s with

distance 0
9: while Q is not empty do

10: dequeue v from Q
11: push v to S
12: for each neighbor w of v do
13: if distance[w] > distance[v] + edge weight then
14: distance[w] = distance[v] + edge weight
15: enqueue w to Q with distance distance[w]
16: σ[w] = 0
17: P [w] = ∅
18: end if
19: if distance[w] == distance[v] + edge weight then
20: σ[w]+ = σ[v]
21: append v to P [w]
22: end if
23: end for
24: end while
25: create dependency array and initialize to 0
26: while S is not empty do
27: pop w from S
28: for each v in P [w] do

29: dependency[v]+ = σ[v]
σ[w]

· (1 + dependency[w])
30: end for
31: if w 6= s then
32: CB+ = dependency[w]
33: end if
34: end while
35: end for

source vertex s, as given below.

δs◦(v) =
∑

t∈V

δst(v) =
∑

w:v∈Ps(w)

σsv

σsw

· (1 + δs◦(w))

The pseudocode for Brandes’ algorithm is shown in Al-

gorithm 4. Consider the graph in Figure 2. When the source

vertex is vertex 0, after the SSSP phase is performed, vertex

3 would have vertex 4 as its predecessor, and both vertices

have a σ value of 1, i.e., σ03 = 1, and σ04 = 1. Next, when

calculating dependency, vertex 4’s dependency is updated by

vertex 3 to be 1 (vertex 3 has a dependency of 0 as it is a

leaf vertex in the shortest path DAG without any successors,

and dependency values are initialized to 0). Indeed, among all

shortest paths from source vertex 0, only the path to vertex

3 passes through vertex 4, and that is the only shortest path

from vertex 0 to vertex 3.

2) Distributed Edmond et al.’s Algorithm: The Bran-
des’ algorithm can be easily parallelized by running it from

different source vertex s simultaneously. Although such an

algorithm can achieve perfect linear speedup due to its em-

barrassingly parallel nature, the size of the input graph is

Algorithm 5 Distributed Edmond et al.’s Algorithm

Require: graph G = (V,E,W )
Ensure: BC value of all vertices

1: create BC value array CB and initialize to 0
2: for s ∈ V do
3: run ∆-Stepping, and store list of predecessors for all vertices
4: compute successors from predecessors
5: count number of shortest path using successor set
6: compute dependency and accumulate BC values
7: end for
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Fig. 5: Expressibility issues with VC paradigm: Edmond et al.’s
algorithm in MPI is several orders of magnitude faster than that in
Giraph. In Road-US, Giraph does not finish in 500 hours. Moreover,
working vertices percentage is smaller than 20% in all supersteps
(Synthetic dataset), which indicates that much work is wasted in the
VC paradigm.

ultimately limited by the capacity of each machine. Therefore,

here we instead consider Edmond et al.’s algorithm [13], that

partitions the graph across machines, and is space-efficient.

Edmond et al.’s algorithm is based on the sequential Bran-
des’ algorithm, and consists of four phases. In the first phase,

it uses the ∆-Stepping algorithm to find all predecessors of

each vertex. In the second phase, the successors are computed

based on the predecessors. In the third phase, it counts the

number of shortest paths for each vertex using the set of

successors. In the last phase, it traverses the shortest path DAG

in the reverse direction to calculate the dependency δs◦(v) for

all vertices. For the last two phases, the graph is traversed in

a level-synchronous fashion. An overview of Edmond et al.’s

algorithm over message-passing (MPI) paradigm is shown in

Algorithm 5.

Consider the graph in Figure 2 with source set to 0. After

∆-Stepping, vertex 3 has vertex 4 as its predecessor. In the

second phase, vertex 4 has vertex 3 as its successor. Then,

in the third phase, vertex 3’s σ03 value is computed to be

1, because vertex 4 is its only predecessor, and vertex 4

has a σ04 value of 1. In the last phase, Edmond et al.’s
algorithm accumulates dependency for vertex 3’s predecessors,

and vertex 4’s dependency is set to 1. Essentially, Edmond

et al.’s algorithm splits Brandes’ algorithm into more phases

for better efficiency in a distributed setting.

Edmond et al.’s Algorithm in VC Paradigm. Similar to

the case of implementing ∆-Stepping in the vertex-centric

paradigm, implementing Edmond et al.’s algorithm in this

paradigm also introduces inefficiencies.



First, due to the dependency on the ∆-Stepping algorithm,

its inefficiency is inherited.

Second, extra inefficiencies are incurred due to the multi-

phase nature of Edmond et al.’s algorithm. As mentioned

in Section III-A, algorithms in VC paradigm terminates by

calling voteToHalt(). Consider the SSSP phase in Edmond

et al.’s algorithm. If we directly copy an implementation

of SSSP algorithm into our implementation of Edmond et

al.’s algorithm, it would certainly compute the correct result

for this phase. However, if we do so, all vertices will call

voteToHalt(), and the entire Edmond et al.’s algorithm will

terminate prematurely right after SSSP finishes, which is only

the first phase. As a result, we have to modify the original

SSSP implementation by removing all calls to voteToHalt(),

which leads to the same inefficiency issue on memory reads

as described in Section III-A. The performance impact in this

case is even more severe than ∆-Stepping, because in ∆-

Stepping only unprocessed vertices need to stay active, while

in Edmond et al.’s algorithm all vertices have to remain

active.

Third, another possible inefficiency, which depends on how

a particular VC system is implemented, is related to message

transfers. For example, in Pregel and Giraph, only a single

vertex-compute() function can be defined for an algorithm.

This would mean that a single message type is used across

different phases of a multi-phase algorithm. In some multi-

phase algorithms, this may not be an issue. However, in

other multi-phase algorithms, different phases require different

message types with different number of fields and different

data types. For example, in the case of Edmond et al.’s

algorithm, the first phase needs to send two integers. The

second and third phases need to send one integer. The last

phase needs to send one integer and one float. If we are to

encapsulate all possibilities in one message type, we have to

use at least two integer fields and one float field. This means

that the fields in a message would never be fully utilized in any

phase and a great deal of network bandwidth could be wasted

by sending unnecessary values. In particular, during the second

and third phases, two thirds of the network bandwidth would

be essentially used for sending garbage data. If a particular VC

implementation supports implementing each phase of a multi-

phase algorithm with different vertex-compute() functions,

this inefficiency could be avoided.

3) BC Experimental Results: We present our experimental

results for the betweenness centrality problem in Figure 5.

Due to large size of our graphs, employing every vertex as a

source vertex is almost infeasible during BC computation. We,

therefore, follow the heuristic technique in [3] and sample,

uniformly at random, 100 source vertices. In Figure 5(a),

one can observe that Edmond et al.’s algorithm in MPI is

several orders of magnitude faster than that in Giraph. This

is primarily because Edmond et al.’s algorithm executes ∆-

Stepping for multiple times, thus the expressibility limitations

of the VC paradigm get magnified in BC computation.

In addition, we find in Figure 5(b) that the working vertices

percentage is smaller than 20% across all supersteps. Note that

we only show the supersteps in the first phase of Edmond

et al.’s algorithm (i.e., SSSP computation via ∆-Stepping).

Compared to Figure 4 in original SSSP, the working vertices

percentage is even smaller here. As explained earlier, for

multi-phase Edmond et al.’s algorithm, we have to modify

the original SSSP implementation by removing all calls to

voteToHalt(), which further demonstrates the expressibility

issues with VC paradigm while implementing a multi-phase

algorithm.

IV. CONCLUSION

We investigated expressibility challenges of the VC

paradigm. As a distributed framework, while the VC paradigm

improves programmability by hiding distribution related de-

tails, it suffers from expressibility limitations: often the more

efficient distributed algorithm of a graph problem cannot be

effectively implemented in the VC paradigm. We empirically

demonstrated this with two important classes of algorithms:

bucketing-based and multi-phased. Although our experiments

are conducted in Giraph, the limitations we discovered apply

to all systems in which these two classes of algorithms can be

implemented.

We realize that the scope of the current voteToHalt()

mechanism is quite limited. It only allows each vertex to be

in either active or in inactive state during a (synchronous)

superstep, however it does not provision for defining priorities

among vertices. In future, it would be interesting to directly

incorporate priority-based data structures (e.g., buckets) in

each worker node, that permit defining and dynamically

updating priorities of vertices, thereby enabling more effi-

cient implementation of bucketing-based algorithms in the

VC framework. In contrast to voteToHalt(), one can design

and invoke functions such as insertIntoBucket(), delete-

FromBucket(), and updateInBucket(). Such bucketing data

structures, together with the master node, could identify only

the working set of vertices at each superstep, resulting in

higher efficiency.

In regards to multi-phase algorithms, we recommend pro-

viding more control to the master node. Currently, the master

node can only terminate an algorithm, but it cannot re-activate

vertices when required. Therefore, vertices which finished their

computations in the current phase, still needs to remain active

for the next phase of a multi-phase algorithm. Providing more

control to the master node, e.g., writing simple logic that

can identify phase transitions, and thereby help the master

node re-activating all vertices for the next phase, would be an

interesting future direction.

We highlight that our suggestions above, while enhances

the scheduling capabilities of the VC framework, remains

compatible with the existing systems. This is because current

algorithms, which rely on voteToHalt(), can be considered

special cases of bucketing-based algorithms with only a single

bucket. A system which implements these changes could still

offer the existing interface as a wrapper of the new design for

compatibility reasons.



ACKNOWLEDGEMENT

The research is supported by MOE Tier-1 RG83/16 and

NTU M4081678. Any opinions, findings, and conclusions in

this publication are those of the authors and do not necessarily

reflect the views of the funding agencies.

REFERENCES

[1] http://giraph.apache.org/.

[2] http://hama.apache.org/.

[3] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating
Betweenness Centrality. In WAW, 2007.

[4] D. A. Bader and K. Madduri. Design and Implementation of the HPCS
Graph Analysis Benchmark on Symmetric Multiprocessors. In HiPC,
2005.

[5] U. Brandes. A Faster Algorithm for Betweenness Centrality. Journal

of Mathematical Sociology, 25(163), 2001.
[6] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie. Pregelix: Big(Ger)

Graph Analytics on a Dataflow Engine. PVLDB, 8(2):161–172, 2014.

[7] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. The HaLoop Approach
to Large-scale Iterative Data Analysis. The VLDB J., 21(2):169–190,
2012.
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Boncz. Graphalytics: A Big Data Benchmark for Graph-Processing
Platforms. In GRADES, 2015.

[11] L. Dhulipala, G. Blelloch, J. Shun Julienne: A framework for parallel
graph algorithms using work-efficient bucketing. In SPAA, 2017.

[12] R. Dial Algorithm 360: Shortest-path forest with topological ordering
[H]. Commun. ACM, 12(11):632–633, 1969.

[13] N. Edmonds, T. Hoefler, and A. Lumsdaine. A Space-Efficient Parallel
Algorithm for Computing Betweenness Centrality in Distributed Mem-
ory. In HiPC, 2010.

[14] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox. Twister: A Runtime for Iterative MapReduce. In HPDC, 2010.

[15] Y. Gao, W. Zhou, J. Han, D. Meng, Z. Zhang, and Z. Xu. An Evaluation
and Analysis of Graph Processing Frameworks on Five Key Issues. In
CF, 2015.

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Power-
Graph: Distributed Graph-parallel Computation on Natural Graphs. In
OSDI, 2012.

[17] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica. GraphX: Graph Processing in a Distributed Dataflow
Framework. In OSDI, 2014.

[18] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and
T. L. Willke. How Well Do Graph-Processing Platforms Perform? An
Empirical Performance Evaluation and Analysis. In IPDPS, 2014.

[19] M. Han and K. Daudjee. Giraph Unchained: Barrierless Asynchronous
Parallel Execution in Pregel-like Graph Processing Systems. PVLDB,
8(9):950–961, 2015.

[20] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin.
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