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Abstract

We study online graph queries that retrieve nearby nodes

of a query node in a large network. To answer such

queries with high throughput and low latency, we par-

tition the graph and process in parallel across a cluster of

servers. Existing distributed graph systems place each

partition on a separate server, where query answering

over that partition takes place. This design has two major

disadvantages. First, the router maintains a fixed rout-

ing table (or, policy), thus less flexible for query routing,

fault tolerance, and graph updates. Second, the graph

must be partitioned so that the workload across servers is

balanced, and the inter-machine communication is min-

imized. To maintain good-quality partitions, it is also

required to update the existing partitions based on work-

load changes. However, graph partitioning, online moni-

toring of workloads, and dynamically updating the parti-

tions are expensive.

We mitigate these problems by decoupling graph stor-

age from query processors, and by developing smart

routing strategies with graph landmarks and embedding.

Since a query processor is no longer assigned any fixed

part of the graph, it is equally capable of handling any re-

quest, thus facilitating load balancing and fault tolerance.

Moreover, due to our smart routing strategies, query pro-

cessors can effectively leverage their cache, reducing the

impact of how the graph is partitioned across storage

servers. Our experiments with several real-world, large

graphs demonstrate that the proposed framework gRout-
ing, even with simple hash partitioning, achieves up to an

order of magnitude better query throughput compared to

existing distributed graph systems that employ expensive

graph partitioning and re-partitioning strategies.

1 INTRODUCTION

Graphs with millions of nodes and billions of edges are

ubiquitous to represent highly interconnected structures

including the World Wide Web, social networks, knowl-

edge graphs, genome and scientific databases, medical
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Figure 1: State-of-the-art distributed graph querying systems

(e.g., SEDGE [35], Trinity [28], Horton [26])

and government records. To support online search and

query services (possibly from many clients) with low la-

tency and high throughput, data centers and cloud opera-

tors consider scale-out solutions, in which the graph and

its data are partitioned horizontally across cheap com-

modity servers. We assume that the graph topology and

the data associated with nodes and edges are co-located,

since they are often accessed together [34, 16, 17]. Keep-

ing with the modern database trends to support low-

latency operations, we target a fully in-memory system,

and use disks only for durability [35, 26, 28]. In this pa-

per, we study online queries that explore a small region

of the entire graph, and require fast response time. These

queries usually start with a query node, and traverse its

neighboring nodes up to a certain number of hops (we

shall formally introduce our queries in Section 2). For

efficiently answering online queries in a distributed envi-

ronment, state-of-the-art systems (e.g., [35, 28, 26]) first

partition the graph, and then place each partition on a

separate server, where query answering over that parti-

tion takes place (Figure 1). Since the server which con-

tains the query node can only handle that request, the

router maintains a fixed routing table (or, a fixed routing

strategy, e.g., modulo hashing). Hence, these systems are

less flexible with respect to query routing and fault tol-



erance, e.g., adding more machines will require updating

the routing table. Besides, an effective graph partitioning

in these systems must achieve: (1) workload balancing to

maximize parallelism, and (2) locality of data access to

minimize network communication. It has been demon-

strated [35] that sophisticated partitioning schemes im-

prove the performance of graph querying, compared to

an inexpensive hash partitioning.

Due to power-law degree distribution of real-world

graphs, it is difficult to get high-quality partitions [6].

Besides, a one-time partitioning cannot cope with later

updates to graph structure or variations in query work-

loads. Several graph re- partitioning and replication-

based strategies were proposed, e.g., [35, 18, 16].

However, online monitoring of workload changes, re-

partitioning of the graph topology, and migration of

graph data across servers are expensive; and they reduce

the efficiency and throughput of online querying [25].

Our Contribution. In contrast to existing systems, we

consider a different architecture, which relies less on an

effective graph partitioning. Instead, we decouple query

processing and graph storage into two separate tiers (Fig-

ure 2). In a decoupled framework, the graph is parti-

tioned across servers allocated to the storage tier, and

these storage servers hold the graph data in their main

memory. Since a query processor is no longer assigned

any fixed part of the graph, it is equally capable of han-

dling any request, thus facilitating load balancing and

fault tolerance. At the same time, the query router can

send a request to any of the query processors, which adds

more flexibility to query routing, e.g., more query pro-

cessors can be added (or, a query processor that is down

can be replaced) without affecting the routing strategy.

Another benefit due to decoupled design is that each tier

can be scaled-up independently. If a certain workload is

processing intensive, more servers could be allocated to

the processing tier. On the contrary, if the graph size in-

creases over time, more servers can be added in the stor-

age tier. This decoupled architecture, being generic, can

be employed in many existing graph querying systems.

The idea of decoupling, though effective, is not

novel. Facebook implemented a fast caching layer,

Memcached on top of a graph database that scales

the performance of graph query answering [19].

Google’s F1 [29] and ScaleDB (http://scaledb.com/

pdfs/TechnicalOverview.pdf) are based on a decoupling

principle for scalability. Recently, Loesing et. al. [14]

and Binnig et. al. [3] demonstrated the benefits of a de-

coupled, shared-data architecture, together with low la-

tency and high throughput Infiniband network. Shalita

et. al. [27] employed de-coupling for an optimal assign-

ment of HTTP requests over a distributed graph storage.

Our contribution lies in designing a smart query rout-
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Figure 2: Decoupled architecture for graph querying

ing logic to utilize the cache of query processors over

such decoupled architecture. Achieving more cache hits

is critical in a decoupled architecture – otherwise, the

query processors need to retrieve the data from stor-

age servers, which will incur extra communication costs.

This is a non-trivial problem, e.g., exploiting cache local-

ity and balancing workloads are conflicting in nature. For

example, to achieve maximum cache locality, the router

can send all the queries to the same processor (assum-

ing no cache eviction happens). However, the workload

of the processors will be highly imbalanced, resulting

in lower throughput. In addition, graph workloads are

significantly different from traditional database applica-

tions. The interconnected nature of graph data results

in poor locality, and each query usually accesses mul-

tiple neighboring nodes spreading across the distributed

storage. Therefore, to maximize cache hit rates at query

processors, it is not sufficient to only route the queries

on same nodes to the same processor. Rather, succes-

sive queries on neighboring nodes should also be routed

to the same processor, since the neighborhoods of two

nearby nodes may significantly overlap. To the best of

our knowledge, such smart query routing schemes for

effectively leveraging the cache contents were not con-

sidered in existing graph querying systems.

We summarize our contributions as follows.

1. We study for the first time the problem of smart

query routing aimed at improving the throughput

and efficiency of distributed graph querying.

2. In contrast to many distributed graph querying sys-

tems [35, 28, 26], we consider a different archi-

tecture that decouples query processors from stor-

age layer, thereby achieving flexibility in system de-

ployment, query routing, scaling up, load balancing,

and fault tolerance.

3. We develop smart, lightweight, and adaptive query

routing algorithms that improve cache hit rates

at query processors, thus reducing communication



with storage layer, and making our design less re-

liant on a sophisticated graph partitioning scheme

across storage layer.

4. We empirically demonstrate throughput and ef-

ficiency of our framework, gRouting on three

real-life graphs, while also comparing with two

existing distributed graph processing systems

(SEDGE/Giraph [35] and PowerGraph [6]). Our

decoupled implementation, even with its simple

hash partitioning, achieves up to an order of mag-

nitude higher throughput compared to existing sys-

tems with expensive graph partitioning schemes.

2 PRELIMINARIES
2.1 Graph Data Model
A heterogeneous network can be modeled as a labeled,

directed graph G = (V,E,L ) with node set V , edge set

E , and label set L , where (1) each node u∈V represents

an entity in the network, (2) each directed edge e ∈ E

denotes the relationship between two entities, and (3) L

is a function which assigns to each node u and every edge

e a label L (u) (and L (e), respectively) from a finite

alphabet. The node labels represent the attributes of the

entities, e.g., name, job, location, etc, and edge labels the

type of relationships, e.g., founder, place founded, etc.

We store the graph as an adjacency list. Every node

in the graph is added as an entry in the storage where

the key is the node id and the value is an array of 1-hop

neighbors. If the nodes and edges have labels, they are

stored in the corresponding value entry. For each node,

we store both incoming and outgoing edges. Both in-

coming and outgoing edges of a node can be important

from the context of different queries. As an example, if

there is an edge founded from Jerry Yang to Yahoo! in

a knowledge graph, there also exists a reverse relation

founded by from Yahoo! to Jerry Yang. Such informa-

tion could be useful in answering queries about Yahoo!.

2.2 h-Hop Traversal Queries
We discuss various h-hop queries over heterogeneous, di-

rected graphs in the following.

1. h-hop Neighbor Aggregation: Count the number

of h-hop neighbors of a query node.

2. h-step Random Walk with Restart: The query

starts at a node, and runs for h-steps — at each step,

jumps to one of its neighbors with equal probability,

or returns to the query node with a small probability.

3. h-hop Reachability: Find if a given target node is

reachable from a given source node within h-hops.

The aforementioned queries are often used as the ba-

sis for more complex graph operations. For example,

neighborhood aggregation is critical for node labeling

and classification, that is, the label of an unlabeled node

could be assigned as the most frequent label which is

present within its h-hop neighborhood. The h-step ran-

dom walk is useful in expert finding, ranking, discover-

ing functional modules, complexes, and pathways. Our

third query can be employed in distance-constrained and

label-constrained reachability search, as well as in ap-

proximate graph pattern matching queries [16].

2.3 Decoupled Design

We decouple query processing from graph storage. This

decoupling happens at a logical level. As an example,

query processors can be different physical machines than

storage servers. On the other hand, the same physical

machine can also run a query processing daemon, to-

gether with storing a graph partition in its main mem-

ory as a storage server. However, the logical separation

between the two layers is critical in our design.

The advantages of this separation are more flexibility

in query routing, system deployment, and scaling up, as

well as achieving better load balancing and fault toler-

ance. However, we must also consider the drawbacks of

having the graph storage apart. First, query processors

may need to communicate with the storage tier via the

network. This includes an additional penalty to the re-

sponse time for answering a query. Second, it is possible

that this design causes high contention rates on either the

network, storage tier, or both.

To mitigate these issues, we design smart routing

schemes that route queries to processors which are likely

to have the relevant data in their cache, thereby reduc-

ing the communication overhead between processing and

storage tiers. Below, we discuss various components of

our design, including storage, processing tier, and router.

Graph Storage Tier. The storage tier holds all graph

data by horizontally partitioning it across cheap com-

modity servers. Sophisticated graph partitioning will

benefit our decoupled architecture as follows. Let us as-

sume that the neighboring nodes can be stored in a page

within the same storage server, and the granularity of

transfer from storage to processing tier is a page con-

taining several nodes. Then, we could actually ship a set

of relevant nodes with a single request if the graph is par-

titioned well. This will reduce the number of times data

are transferred between the processing and storage tier.

However, our lightweight and smart query routing

techniques exploit the notion of graph landmarks [12]

and embedding [36], thereby effectively utilizing the

cache of query processors that stores recently used graph

data. As demonstrated in our experiments, due to our

smart routing, many neighbors up to 2∼3-hops of a query

node can be found locally in the query processors’ cache.

Therefore, the partitioning scheme employed across stor-

age servers becomes less important.

Query Processing Tier. The processing tier consists of



servers where the actual query processing takes place.

These servers do not communicate with each other [14].

They only receive queries from the query router, and also

request graph data from the storage tier if necessary.

To reduce the amount of calls made to the storage tier,

we utilize the cache of the query processors. Whenever

some data is retrieved from the storage, it is saved in

cache, so that the same request can be avoided in the near

future. However, it imposes a constraint on the maxi-

mum storage capacity. When the addition of a new entry

surpasses this storage limit, one or more old entries are

evicted from the cache. We select the LRU (i.e., Least

Recently Used) eviction policy because of its simplic-

ity. LRU is usually implemented as the default cache re-

placement policy, and it favors recent queries. Thus, it

performs well with our smart routing schemes.

Query Router. The router creates a thread for each pro-

cessor, and opens a connection to send queries by follow-

ing the routing schemes which we shall describe next.

3 QUERY ROUTING STRATEGIES

When a query arrives at the router, the router decides

the appropriate query processor to which the request

could be sent. For existing graph querying systems, e.g.,

SEDGE [35] and Horton [26], where each query proces-

sor is assigned a graph partition, this decision is fixed and

defined in the routing table; the processor which contains

the query node handles the request. With a decoupled ar-

chitecture, no such mapping exists. Hence, we design

novel routing schemes with the following objectives.

3.1 Routing Algorithm Objectives

1. Leverage each processor’s cached data. Let us con-

sider t successive queries received by the router. The

router will send them to query processors in a way such

that the average number of cache hits at the processors

is maximized. This, in turn, reduces the average query

processing latency. However, as stated earlier, to achieve

maximum cache hits, it will not be sufficient to only route

the queries on same nodes to the same processor. Rather,

successive queries on neighboring nodes should also be

routed to the same processor, since the neighborhoods of

two nearby nodes may significantly overlap. This will be

discussed shortly in Requirement 1.

2. Balance workload even if skewed or contains

hotspot. As earlier, let us consider a set of t successive

queries. A naı̈ve approach will be to ensure that each

query processor receives equal number of queries, e.g.,

a round-robin way of query dispatching by the router.

However, each query might have a different workload,

and would require a different processing time. We, there-

fore, aim at maximizing the overall throughput via query

stealing (explained in Requirement 2), which automati-

cally balances the workload across query processors.

3. Make fast routing decisions. The average time at the

router to dispatch a query should be minimized, ideally a

small constant time, or much smaller than O(n), where n

is the number of nodes in the input graph. This reduces

the query processing latency.

4. Have low storage overhead in the router. The

router may store auxiliary data to enable fast routing de-

cisions. However, this additional storage overhead must

be a small fraction compared to the graph size.

3.2 Challenges in Query Routing
It is important to note that our routing objectives are not

in harmony; in fact, they are often conflicting with each

other. First, in order to achieve maximum cache local-

ity, the router can send all the queries to the same pro-

cessor (assuming no cache eviction happens). However,

the workload of the processors will be highly imbalanced

in this case, resulting in lower throughput. Second, the

router could inspect the cache of each processor before

making a good routing decision, but this will add net-

work communication delay. Hence, the router must infer

what is likely to be in each processor’s cache.

In the following, we introduce two concepts that are

directly related to our routing objectives, and will be use-

ful in designing smart routing algorithms.

Topology-Aware Locality. To understand the notion of

cache locality for graph queries (i.e., routing objective 1),

we define a concept called topology-aware locality. If u

and v are nearby nodes, then successive queries on u and

v must be sent to the same processor. It is very likely that

the h-hop neighborhoods of u and v significantly overlap.

But, how will the router know that u and v are nearby

nodes? One option is to store the entire graph topology

in the router; but this could have a high storage over-

head. For example, the WebGraph dataset that we ex-

perimented with has a topology of size 60GB. Ideally,

a graph with 107 nodes can have up to 1014 edges, and

in such cases, storing only the topology itself requires

petabytes of memory. Thus, we impose a requirement on

our smart routing schemes as follows.

Requirement 1 The additional storage at the router for

enabling smart routing should not be asymptotically

larger than O(n), n being the number of nodes; how-

ever, the routing schemes should still be able to exploit

topology-aware locality.

Achieving this goal is non-trivial, as the topology size

can be O(n2), and we provision for only O(n) space to

approximately preserve such information.

Query Stealing. Routing queries to processors that

have the most useful cache data might not always be

the best strategy. Due to power-law degree distribu-

tion of real-world graphs, processing queries on differ-

ent nodes might require different amount of time. There-

fore, the processors dealing with high-degree nodes will



have more workloads. Load imbalance can also happen

if queries are concentrated in one specific region of the

graph. When that happens, all queries will be sent to one

processor, while other processors remain idle. To rec-

tify such scenarios, we implement query stealing in our

routing schemes as stated next.

Requirement 2 Whenever a processor is idle and is

ready to handle a new query, if it does not have any other

requests assigned to it, it may “steal” a request that was

originally intended for another processor.

Query stealing is a well established technique for load

balancing that is prevalently used by the HPC commu-

nity, and there are several ways how one can implement

it. We perform query stealing at the router level. In par-

ticular, the router sends the next query to a processor

only when it receives an acknowledgement for the pre-

vious query from that processor. The router also keeps

a queue for each connection in order to store the future

queries that need to be delivered to the corresponding

processor. By monitoring the length of these queues, it

can estimate how busy a processor is, and this enables

the router to rearrange the future queries for load balanc-

ing. We demonstrate the effectiveness of query stealing

in our experiments (Section 4.6).

We next design four routing schemes — the first two

are naı̈ve and do not meet all the objectives of smart rout-

ing. On the other hand, the last two algorithms follow the

requirements of a smart routing strategy.

3.3 Baseline Methods
3.3.1 Next Ready Routing

Next Ready routing is our first baseline strategy. The

router decides where to send a query by choosing the

next processor that has finished computing and is ready

for a new request. The main advantages are: (1) It is

easy to implement. (2) Routing decisions are made in

constant time. (3) No preprocessing or storage overhead

is required. (4) The workload is well balanced. However,

this scheme fails to leverage processors’ cache.

3.3.2 Hash Routing

The second routing scheme that we implement is hash,

and it also serves as a baseline to compare against our

smart routing techniques. The router applies a fixed hash

function on each query node’s id to determine the proces-

sor where it sends the request. In our implementation, we

apply a modulo hash function.

In order to facilitate load balancing in the presence

of workload skew, we implement query stealing mech-

anism. Whenever a processor is idle and is ready to han-

dle a new query, if it does not have any other requests

assigned to it, it steals a request that was originally in-

tended for another processor. Since queries are queued

in the router, the router is able to take this decision, and

ensures that there are no idle processors when there is

still some work to be done. Our hash routing has all the

benefits of next ready, and very likely it sends a repeated

query to the same processor, thereby getting better lo-

cality out of the cache. However, hash routing cannot

capture topology-aware locality.

3.4 Proposed Methods

3.4.1 Landmark Routing

Our first smart routing scheme is based on landmark

nodes [12]. One may recall that we store both incom-

ing and outgoing edges of every node, thus we consider

a bi-directed version of the input graph in our smart rout-

ing algorithms. We select a small set L of nodes as land-

marks, and also pre-compute the distance of every node

to these landmarks. We determine the optimal number of

landmarks based on empirical results. Given some land-

mark node l ∈ L, the distance d(u,v) between any two

nodes u and v are bounded as follows:

|d(u, l)− d(l,v)| ≤ d(u,v)≤ d(u, l)+ d(l,v) (1)

Intuitively, if two nodes are close to a given landmark,

they are likely to be close themselves. Our landmark

routing is based on the above principle. We first select

a set of landmarks that partitions the graph into P re-

gions, where P is the total number of processors. We

then decide a one-to-one mapping between those regions

and processors. Now, if a query belongs to a specific re-

gion (decided based on its distance to landmarks), it is

routed to the corresponding processor. Clearly, this rout-

ing strategy requires a preprocessing phase as follows.

Preprocessing. We select landmarks based on their node

degree and how well they spread over the graph [1].

Our first step is to find a certain number of landmarks

considering the highest degree nodes, and then compute

their distance to every node in the graph by performing

breadth first searches (BFS). If we find two landmarks to

be closer than a pre-defined threshold, the one with the

lower degree is discarded. The complexity of this step

is O(|L|e), due to |L| number of BFS, where |L| is the

number of landmarks, and e is the number of edges.

Next, we assign the landmarks to query processors as

follows. First, every processor is assigned a “pivot” land-

mark with the intent that pivot landmarks are as far from

each other as possible. The first two pivot landmarks

are the two that are farthest apart considering all other

landmark pairs. Each next pivot is selected as the land-

mark that is farthest from all previously selected pivot

landmarks. Each remaining landmark is assigned to the

processor which contains its closest pivot landmark. The

complexity of this step is O(|L|2 + |L|P), where P is the

number of processors.

Finally, we define a “distance” metric d between the

graph nodes and query processors. The distance of a



node u to a processor p is defined as the minimum dis-

tance of u to any landmark that is assigned to processor

p. This information is stored in the router, which requires

O(nP) space and O(nL) time to compute, where n is the

number of nodes. Therefore, the storage requirement at

the router is linear in the number of nodes.

Routing. To decide where to send a query on node u,

the router verifies the pre-computed distance d(u, p) for

every processor p, and selects the one with the smallest

d(u, p) value. As a consequence, the routing decision

time is linear in the number of processors: O(P). This is

very efficient since the number of processors is small.

In contrast to our earlier baseline routings, this method

is able to leverage topology-aware locality. It is likely

that query nodes that are in the neighborhood of each

other will have similar distances to the processors; hence,

they will be routed in a similar fashion. On the other

hand, the landmark routing scheme is less flexible with

respect to addition or removal of processors, since the

assignment of landmarks to processors, as well as the

distances d(u, p) for every node u and each processor p

needs to be recomputed.

The distance metric d(u, p) is useful not only in find-

ing the best processor for a certain query, but it can also

be used for load balancing, fault tolerance, dealing with

workload skew, and hotspots. As an example, let us as-

sume that the closest processor for a certain query is very

busy, or is currently down. Since the distance metric

gives us distances to all processors, the router is able

to select the second, third, or so on closest processor.

This form of load balancing will impact the nearby query

nodes in the same way; and therefore, the modified rout-

ing scheme will still be able to capture topology-aware

locality. In practice, it can be complex to define exactly

when a query should be routed to its next best query pro-

cessor. We propose a formula that calculates the load-

balanced distance dLB(u, p) as given below.

dLB(u, p) = d(u, p)+
Processor Load

Load Factor
(2)

Thus, the query is always routed to the processor with

the smallest dLB(u, p). The router uses the number of

queries in the queue corresponding to a processor as the

measure of its load. The load factor is a tunable param-

eter, which allows us to decide how much load would

result in the query to be routed to another processor. We

find its optimal value empirically.

Dealing with Graph Updates. During addition/ dele-

tion of nodes and edges, one needs to recompute the dis-

tances from every node to each of the landmarks. This

can be performed efficiently by keeping an additional

shortest-path-tree data structure [31]. However, to avoid

the additional space and time complexity of maintain-

ing a shortest-path-tree, we follow a simpler approach.

When a new node u is added, we compute the distance of

this node to every landmark, and also its distance d(u, p)
to every processor p. In case of an edge addition or dele-

tion between two existing nodes, for these two end-nodes

and their neighbors up to a certain number of hops (e.g.,

2-hops), we recompute their distances to every landmark,

as well as to every processor. Finally, in case of a node

deletion, we handle it by considering deletion of multiple

edges that are incident on it. After a significant number

of updates, previously selected landmark nodes become

less effective; thus, we recompute the entire preprocess-

ing step periodically in an off-line manner.

3.4.2 Embed Routing

Our second smart routing scheme is the Embed routing,

which is based on graph embedding [36, 4]. We embed a

graph into a lower dimensional Euclidean space such that

the hop-count distance between graph nodes are approxi-

mately preserved via their Euclidean distance (Figure 3).

We then use the resulting node co-ordinates to determine

how far a query node is from the recent history of queries

that were sent to a specific processor. Clearly, embed

routing also requires a preprocessing step.

Preprocessing. For efficiently embedding a large graph

in a D-dimensional Euclidean plane, we first select a set

L of landmarks and find their distances from each node

in the graph. We then assign co-ordinates to landmark

nodes such that the distance between each pair of land-

marks is approximately preserved. We, in fact, minimize

the relative error in distance for each pair of landmarks,

defined below.

ferror(v1,v2) =
|d(v1,v2)−EuclideanDist(v1,v2)|

d(v1,v2)
(3)

Here, d(v1,v2) is the hop-count distance between v1

and v2 in the original graph, and EuclideanDist(v1,v2)
is their Euclidean distance after the graph is embedded.

We minimize the relative error since we are more inter-

ested in preserving the distances between nearby node

pairs. Our problem is to minimize the aggregate of such

errors over all landmark pairs — this can be cast as

a generic multi-dimensional global minimization prob-

lem, and could be approximately solved by many off-the-

shelf techniques, e.g., the Simplex Downhill algorithm

that we apply in this work. Next, every other node’s co-

ordinates are found also by applying the Simplex Down-

hill algorithm that minimizes the aggregate relative dis-

tance error between the node and all the landmarks. The

overall graph embedding procedure consumes a mod-

est preprocessing time: O(|L|e) due to BFS from |L|
landmarks, O(|L|2D) for embedding the landmarks, and

O(n|L|D) for embedding the remaining nodes. In ad-

dition, the second step is completely parallelizable per

node. Since each node receives D co-ordinates, it re-

quires total O(nD) space in the router, which is linear in

the number of nodes. Unlike landmark routing, a benefit
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Figure 3: Example of graph embedding in 2D Euclidean plane

of embed routing is that the preprocessing is indepen-

dent of the system topology, allowing more processors to

be easily added at a later time.

Routing. The router has access to each node’s co-

ordinates. By keeping an average of the query nodes’

co-ordinates that it sent to each processor, it is able to

infer the cache contents in these processors. As a con-

sequence, the router finds the distance between a query

node u and a processor p, denoted as d1(u, p), and de-

fined as the distance of the query node’s co-ordinates to

the historical mean of the processor’s cache contents. As

recent queries are more likely to influence the cache con-

tents due to LRU eviction policy, we use the exponential

moving average to compute the mean of the processor’s

cache contents. Initially, the mean co-ordinates for each

processor are assigned uniformly at random. Next, as-

suming that the last query on node v was sent to proces-

sor p, its updated mean co-ordinates are:

MeanCo-ordinates(p) = α ·MeanCo-ordinates(p)

+ (1−α) ·Co-ordinates(v) (4)

The smoothing parameter α ∈ (0,1) in the above

Equation determines the degree of decay used to discard

older queries. For example, α close to 0 assigns more

weight only to the last query, and α close to 1 decreases

the weight on the last query. We determine the optimal

value of α based on experimental results. Finally, the

distance between a query node u and a processor p is

computed as given below.

d1(u, p) = ||MeanCo-ordinates(p)−Co-ordinates(u)||
(5)

Since we embed in an Euclidean plane, we use the L2

norm to compute distances. We select the processor with

the smallest d1(u, p) distance. One may observe that the

routing decision time is only O(PD), P being the number

of processors and D the number of dimensions.

Analogous to landmark routing, we now have a dis-

tance to each processor for a query; and hence, we are

able to make routing decisions taking into account the

processors’ workloads and faults. As earlier, we define a

load-balanced distance dLB1 (u, p) between a query node

u and a processor p, and the query is always routed to the

processor with the smallest dLB1 (u, p) value.

dLB1 (u, p) = d1(u, p)+
Processor Load

Load Factor
(6)

The embed routing has all the benefits of smart rout-

ing. This routing scheme divides the active regions

Dataset # Nodes # Edges Size on Disk (Adj. List)

WebGraph 105 896 555 3 738 733 648 60.3 GB

Memetracker 96 608 034 418 237 269 8.2 GB

Freebase 49 731 389 46 708 421 1.3 GB

Table 1: Graph datasets

(based on workloads) of the graph into P partitions in

an overlapping manner, and assigns them to the proces-

sors’ cache. Moreover, it dynamically adapts the parti-

tions with new workloads. Therefore, it bypasses the ex-

pensive graph partitioning and re-partitioning problems

to the existing cache replacement policy of the query pro-

cessors. This shows the effectiveness of embed routing.

Dealing with Graph Updates. Due to pre-assignment

of node co-ordinates, embed routing is less flexible with

respect to graph updates. When a new node is added, we

compute its distance from the landmarks, and then assign

co-ordinates to the node by applying the Simplex Down-

hill algorithm. Edge updates and node deletions are han-

dled in a similar method as discussed for landmark rout-

ing. We recompute the entire preprocessing step peri-

odically in an off-line manner to deal with a significant

number of graph updates.

4 EVALUATION

4.1 Experiment Setup

• Cluster Configuration. We perform experiments on a

cluster of 12 servers having 2.4 GHz Intel Xeon proces-

sors, and interconnected by 40 Gbps Infiniband, and also

by 10 Gbps Ethernet. Most experiments use a single core

of each server with the following configuration: 1 server

as router, 7 servers in the processing tier, 4 servers in the

storage tier; and communication over Infiniband with re-

mote direct memory access (RDMA). Infiniband allows

RDMA in a few microseconds. We use a limited main

memory (0∼4GB) as the cache of processors. Our codes

are implemented in C++.

To implement our storage tier, we use RAMCloud
[20], which provides high throughput and very low

read/write latency, in the order of 5-10 µs for every put/

get operation. It is able to achieve this efficiency because

it keeps all stored values in memory as a distributed key-

value store, where a key is hashed to determine on which

server the corresponding key-value pair will be stored.

• Datasets. We summarize our data sets in Table 1.

As explained in Section 2, we store both in- and out-

neighbors. The graph is stored as an adjacency list —

every node-id in the graph is the key, and the correspond-

ing value is an array of its 1-hop neighbors. The graph is

partitioned across storage servers via RAMCloud’s de-

fault and inexpensive hash partitioning scheme, Mur-
murHash3 over graph nodes.

WebGraph: The uk-2007-05 web graph (http://law.di.

unimi.it/ datasets.php) is a collection of web pages,

which are represented as nodes, and their hyperlinks as



edges. Memetracker: This dataset (snap.stanford.edu)

tracks quotes and phrases that appeared from August 1

to October 31, 2008 across online news spectrum. We

consider documents as nodes and hyper-links as edges.

Freebase: We download the Freebase knowledge graph

from http://www.freebase.com/. Nodes are named enti-

ties (e.g., Google) or abstract concepts (e.g., Asian peo-

ple), and edges denote relations (e.g., founder).

• Online Query Workloads. We consider three online

graph queries [35], discussed in Section 2.2 — all require

traversals up to h hops: (1) h-hop neighbor aggregation,

(2) h-step random walk with restart, and (3) h-hop reach-

ability. We consider a uniform mixture of above queries.

We simulate a scenario when queries are drawn from a

hotspot region; and the hotspots change over time. In

particular, we select 100 nodes from the graph uniformly

at random. Then, for each of these nodes, we select

10 different query nodes which are at most r-hops away

from that node. Thus, we generate 1000 queries; every

10 of them are from one hotspot region, and the pairwise

distance between any two nodes from the same hotspot

is at most 2r. Finally, all queries from the same hotspot

are grouped together and sent consecutively. We report

our results averaged over 1000 queries.

To realize the effect of topology-aware locality, we

consider smaller values of r and h, e.g., r = 2 and h= 2.

• Evaluation Metrics.

Query Response Time measures the average time re-

quired to answer one query.

Query Processing Throughput measures the number of

queries that can be processed per unit time.

Cache Hit Rate: We report cache hit rates, since higher

cache hit rates reduce the query response time. Con-

sider t queries q1,q2, . . . , qt received successively by the

router. For simplicity, let us assume that each query re-

trieves all h-hop neighbors of that query node (i.e., h-hop

neighborhood aggregation). We denote by |Nh(qi)| the

number of nodes within h-hops from qi. Among them,

we assume that |Nc
h(qi)| number of nodes are found in

the query processors’ cache.

Cache Hit Rates :=
t

∑
i=1

|Nc
h(qi)| (7)

Cache Miss Rates :=
t

∑
i=1

(|Nh(qi)|− |Nc
h(qi)|) (8)

• Parameter Setting. We find that embed routing per-

forms the best compared to three other routing strategies.

We also set the following parameter values since they

perform the best in our implementation. We shall, how-

ever, demonstrate sensitivity of our routing algorithms

with these parameters in Section 4.6.

We use maximum 4GB cache in each query proces-

sor. All experiments are performed with the cache ini-

tially empty (cold cache). The number of landmarks |L|

is set as 96 with at least 3 hops of separation from each

other. For graph embedding, 10 dimensions are used.

Load Factor (which impacts query stealing) is set as 20,

and the smoothing parameter α = 0.5.

In order to realize how our routing schemes perform

when there is no cache in processors, we consider an ad-

ditional “no-cache” scheme. In this mode, all queries are

routed following the next ready technique; however, as

there is no cache in query processors, there will be no

overhead due to cache lookup and maintenance.

• Compared Systems. Decoupled architecture and our

smart routing logic, being generic, can benefit many

graph querying systems. Nevertheless, we compare

gRoutingwith two distributed graph processing systems:

SEDGE/Giraph [35] and PowerGraph [6]. Other recent

graph querying systems, e.g., [26, 19] are not publicly

available for a direct comparison.

SEDGE [35] was developed for h-hop traversal queries

on top of Giraph or Google’s Pregel system [15]. It fol-

lows in-memory, vertex-centric, bulk-synchronous paral-

lel model. SEDGE employs ParMETIS software [9] for

graph partitioning and re-partitioning. PowerGraph [6]

follows in-memory, vertex-centric, asynchronous gather-

apply-scatter model. In the beginning, only the query

node is active, and each active node then activates its

neighbors, until all the h-hop neighbors from the query

nodes are activated. PowerGraph also employs a sophis-

ticated node-cut based graph partitioning method.

4.2 Comparison with Graph Systems

We compare gRouting (embed routing is used) with two

distributed graph processing systems, SEDGE/Giraph
[35] and PowerGraph [6]. As these systems run on Eth-

ernet, we consider a version of gRouting on Ethernet

(gRouting-E). We consider 12 machines configuration

of SEDGE and PowerGraph, since query processing and

graph storage in them are coupled on same machines. In

contrast, we fix the number of routing, processing, and

storage servers as 1, 7 and 4, respectively. The average

2-hop neighborhood size varies from 10K∼60K nodes

over our datasets.

In Figure 4, we find that our throughput, with hash

partitioning and over Ethernet, is 5∼10 times better than

SEDGE and PowerGraph that employ expensive graph

partitioning and re- partitioning. The re-partitioning in

SEDGE requires around 1 hour and also apriori informa-

tion on future queries, whereas PowerGraph graph par-

titioning finishes in 30 min. On the contrary, gRouting
performs lightweight hash partitioning over graph nodes,

and does not require any prior knowledge of the future

workloads. Moreover, our throughput over Infiniband is

10∼35 higher than these systems. These results show the

usefulness of smart query routing over expensive graph

partitioning and re-partitioning schemes.
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Figure 4: Throughput comparison

 0

 30

 60

 90

 120

 150

 180

 1  2  3  4  5  6  7

T
h
ro

u
g
h
p
u
t 

 (
q
u
er

ie
s/

 s
ec

o
n
d
s)

Number of Query Processors

No Cache
Embed

Landmark

Next Ready
Hash

(a) Throughput

 20
 25
 30
 35
 40
 45
 50
 55

 1  2  3  4  5  6  7

C
ac

h
e 

H
it

s 
 (

m
il

li
o
n
s)

Number of Query Processors

Cache Hits + Cache Misses = 52M

Embed
Landmark

Next Ready
Hash

(b) Cache Hits

 10

 30

 60

 90

 120

 1  2  3  4  5  6  7

T
h
ro

u
g
h
p
u
t 

 (
q
u
er

ie
s/

 s
ec

o
n
d
s)

Number of Storage Servers

No Cache
Embed

Landmark

Next Ready
Hash

(c) Throughput

Figure 5: Performance with varying number of query processors and storage servers, WebGraph
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Figure 6: Impact of cache size, WebGraph

Next, we report scalability, impact of cache sizes, and

graph updates over our largest Webgraph dataset, and us-

ing Infiniband network.

4.3 Scalability and Deployment Flexibility

One of the main benefits of separating processing and

storage tiers is deployment flexibility — they can be

scaled-up independently, which we investigate below.

Processing Tier: We vary the number of processing

servers from 1 to 7, while using 1 router and 4 storage

servers. In Figure 5(a), we show throughput with vary-

ing number of processing servers. Corresponding cache

hit rates are presented in Figure 5(b). For these exper-

iments, we assume that each query processor has suffi-

cient cache capacity (4GB) to store the results of all 1000

queries (i.e, adjacency lists of 52M nodes, shown in Fig-

ure 5(b)). Since, for every experiment, we start with an

empty cache, and then send the same 1000 queries in or-

der, maximum cache hit happens when there is only one

query processor. As we increase the number of query

processors, these queries get distributed and processed

by different processors, thus cache hit rate generally de-

creases. This is more evident for our baseline routing

schemes, and we find that their throughput saturates with

3∼5 servers. These findings demonstrate the usefulness

of smart query routing: To maintain same cache hit rate,

queries must be routed intelligently. Since Embed routing

is able to sustain almost same cache hit rate with many

query processors (Figure 5(b)), its throughput scales lin-

early with query processors.

Storage Tier: We next vary the number of storage

servers from 1 to 7, whereas 1 server is used as the router

and 4 servers as query processors (Figure 5(c)). When

we use 1 storage server, we can still load the entire 60GB

Webgraph on the main memory of that server, since each

of our servers has sufficient RAM. The throughput is the

least when there is only one storage server. We observe

that 1∼2 storage servers are insufficient to handle the de-

mand created by 4 query processors. However, with 4

storage servers, the throughput saturates, since the bot-

tleneck is transferred to query processors. This is evi-

dent from our previous results — the throughput with 4

query processors was about 120 queries per second (Fig-

ure 5(a)), which is the same throughput achieved with 4

storage servers in the current experiments.

4.4 Impact of Cache Sizes

In previous experiments, we assign 4GB cache to each

processor, which was large enough for our queries; and

we never discarded anything from the cache. We next

perform experiments when it needs to evict cache entries.

In Figure 6, we present average response times with var-

ious cache capacities. At the largest, with 4GB cache

per processor, no eviction occurs. Therefore, there is no

additional performance gain by increasing the cache ca-

pacity. On the other extreme, having cache with less than
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Figure 8: Impact of embedding dimensionality

64MB per processor results in worse response times than

what was obtained with no-cache scheme, represented

by the horizontal red line (86ms in Figure 6). When the

cache does not have much space, it ends up evicting en-

tries that might have been useful in the future. Hence,

there are not enough cache hits to justify its maintenance

and lookup costs when cache size < 64MB/ processor.

We also evaluate our routing strategies in terms of

minimum cache requirement to achieve a response time

of 86ms, the break-even point of deciding whether or not

to add a cache. Figure 6(c) shows that smart routing

schemes achieve this response time with a much lower

cache, as compared to that of the baselines. These re-

sults illustrate that our smart routings utilize the cache

well; and for the same amount of cache, they achieve

lower response time compared to baseline routings.

4.5 Preprocessing and Graph Updates
Preprocessing Time and Storage: For landmarks rout-

ing, we compute the distance of every node to all land-

marks, which can be evaluated by performing a BFS
from each landmark. This takes about 35 sec for one

landmark in Webgraph (Table 2), and can be parallelized

per landmark. For embed routing, in addition, we need

to embed every node with respect to landmarks, which

requires about 1 sec per node in Webgraph, and is again

parallelizable per node.

The preprocessed landmark routing information con-

sumes about 2.8GB storage space in case of Webgraph.

On the contrary, with embedding dimensionality 10, the

Webgraph embedding size is only 4GB. Both these pre-

processed information are modest compared to the orig-

inal Webgraph size, which is around 60GB (Table 3).

Graph Updates: In these experiments, we preprocess

a reduced subgraph of the original dataset. For exam-

ple, at 20% of the original dataset (Figure 7), we select

only 20% of all nodes uniformly at random, and compute

preprocessed information over the subgraph induced by

these selected nodes. However, we always run our query

over the complete Webgraph. We incrementally compute
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Figure 9: Impact of load factor

the necessary information for the new nodes, as they are

being added, without changing anything on the prepro-

cessed information of the earlier nodes. As an example,

in case of embed routing, we only compute the distance

of a new node to the landmarks, and thereby find the

coordinates of that new node. However, one may note

that with the addition of every new node and its adja-

cent edges, the preprocessed information becomes out-

dated (e.g., the distance between two earlier nodes might

decrease). Since we do not change anything on the pre-

processed information, this experiment demonstrates the

robustness of our method with respect to graph updates.

Figure 7 depicts that our smart routing schemes are

robust for a small number of graph updates. With embed

routing, preprocessed information over the whole graph

results in response time of 34 ms, whereas preprocessed

information at 80% of the graph results in response time

of 37 ms (i.e., response time increases by only 3 ms).

As expected, the response time deteriorates when prepro-

cessing is performed on a smaller amount of graph data,

e.g., with only 20% graph data, response time increases

to 44 ms, which is comparable to the response time of

baseline hash routing (48 ms).

4.6 Sensitivity Analysis
We find that gRouting is more sensitive towards load fac-

tor (due to query stealing) and embedding dimensional-

ity, compared to other parameters, e.g., number of land-

marks and smoothing factor (α). Due to lack of space,

we present sensitivity analysis with respect to load factor

and embedding dimensionality in Figures 8 and 9. Sen-

sitivity results with other parameters can be found in our

extended version [10]. In all figures, we also show our

best baseline — hash routing, for comparison.

Embedding Dimensionality: We consider the perfor-

mance implications of the number of dimensions on em-

bed routing. For these experiments, we create several

embeddings, with dimensionality from 2 to 30. While the

relative error in distance between node pairs decreases

with higher dimensions, it almost saturates after 10 di-

mensions (Figure 8(a)). On the other hand, we observe

that the average response time reduces until dimension

10, and then it slowly increases with more dimensions

(Figure 8(b)). This is because with higher dimensions,

we reduce the distance prediction error, thereby correctly

routing the queries and getting more cache hits. How-

ever, a large number of dimensions also increases the

routing decision making time at the router. Hence, the

least response time is achieved at dimensionality 10.



Load Factor: This parameter impacts both of our smart

routing schemes. We find from Equations 3 and 7 that

smaller values of load factor diminish the impact of

“smart” routing (i.e., landmarks and node co-ordinates),

instead queries will be routed to the processor having the

minimum workload. On the other hand, higher values

of load factor reduces the impact of load balancing (i.e.,

query stealing) — queries would be routed solely based

on landmarks and node co-ordinates. Therefore, in these

experiments, we expect that the throughput will initially

increase with higher values of load factor, until it reaches

a maximum, and then it would start decreasing. Indeed,

it can be observed in Figure 9 that with load factor be-

tween 10∼20, the best throughput is achieved.

5 Related Work

We studied smart query routing for distributed graph

querying — a problem for which we are not aware of

any prior work. In the following we, however, provide a

brief overview of work in neighborhood areas.

Landmarks and Graph Embedding. Landmarks were

used in path finding, shortest path estimation, and in esti-

mating network properties [12, 24, 1, 23]. Graph embed-

ding [36] was employed in internet routing, such as pre-

dicting internet network distances and estimating mini-

mum round trip time between hosts [4]. To the best of

our knowledge, ours is the first study that applies graph

embedding and landmarks to design effective routing al-

gorithms for distributed graph querying.

Graph Partitioning, Re-partitioning, Replication.

The balanced, minimum-edge-cut graph partitioning di-

vides a graph into k partitions such that each partition

contains same number of nodes, and the number of cut-

edges is minimized. Even for k = 2, the problem is NP-

hard, and there is no approximation algorithm with a

constant approximation ratio unless P =NP [18]. There-

fore, efforts were made in developing polynomial-time

heuristics — METIS, Chaco, SCOTCH, to name a few.

More sophisticated graph partitioning schemes were also

proposed, e.g., node-cut [6], complementary partitioning

[35], and label propagation [33], among many others.

Graph re-partitioning is critical for online queries,

since the graph topology and workload change over time

[16]. The methods in [35, 18, 11] perform re-partitioning

based on past workloads. Incremental partitioning was

developed for dynamic and stream graphs [37, 32, 30].

With the proposed embed routing, we bypass these ex-

pensive graph partitioning and re-partitioning challenges

to the existing cache replacement policy.

Replication was used for graph partitioning, re-

partitioning, load balancing, and fault tolerance. In ear-

lier works, [22, 8] proposed one extreme version by repli-

cating the graph sufficiently so that, for every node in

the graph, all of its neighbors are present locally. Mon-

dal et. al. designed an overlapping graph re-partitioning

scheme [16], which updates its partitions based on the

past read/ write patterns. Huang et. al. [7] designed a

lightweight re- partitioning and replication scheme con-

sidering access locality, fault tolerance, and dynamic up-

dates. While we also replicate the graph data at query

processors’ cache in an overlapping manner, we only

replicate the active regions of the graph based on recent

workloads. Unlike [16, 7] we do not explicitly run any

graph replication strategy at our processors or storage

servers. Instead, our smart routing algorithms automati-

cally perform replications at processors’ cache.

Graph Caching, De-coupling, Multi-Query Opti-

mization. Facebook uses a fast caching layer, Mem-
cached on top of a graph database to scale the perfor-

mance of graph querying [19]. Graph-structure-aware

and workload-adaptive caching techniques were also

proposed, e.g., [2, 21]. There are other works on view-

based graph query answering [5] and multi-query opti-

mizations [13]. Unlike ours, these approaches require

the workload to be known in advance.

Recently, Shalita et. al. [27] employed decoupling

for an optimal assignment of HTTP requests over a dis-

tributed graph storage. First, they perform a static par-

tition of the graph in storage servers based on co-access

patterns. Next, they find past workloads on each par-

tition, and dynamically assign these partitions to query

processors such that load balancing can be achieved.

While their decoupling principle and dynamic assign-

ment at query processors are similar to ours, they still

explicitly perform a sophisticated graph partitioning at

storage servers, and update such partitions in an offline

manner. In contrast, our smart routing algorithms au-

tomatically partition the active regions of the graph in

a dynamic manner and store them in the query proces-

sors’ cache, thereby achieving both load balancing and

improved cache hit rates.

6 CONCLUSIONS

We studied h-hop traversal queries – a generalized form

of various online graph queries that access a small re-

gion of the graph, and require fast response time. To

answer such queries with low latency and high through-

put, we follow the principle of decoupling query pro-

cessors from graph storage. Our work emphasized less

on the requirements for an expensive graph partition-

ing and re-partitioning technique, instead we developed

smart query routing strategies for effectively leveraging

the query processors’ cache contents, thereby improving

the throughput and reducing latency of distributed graph

querying. In addition to workload balancing and deploy-

ment flexibility, gRouting is able to provide linear scala-

bility in throughput with more number of query proces-

sors, works well in the presence of query hotspots, and is

also adaptive to workload changes and graph updates.
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