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ABSTRACT

The classical influence maximization (IM) problem in social net-
works does not distinguish between whether a campaign gets viral
in a week or in a year. From the practical standpoint, however, cam-
paigns for a new technology or an upcoming movie must be spread
as quickly as possible, otherwise they will be obsolete. To this end,
we formulate and investigate the novel problem of maximizing the
time-discounted influence spread in a social network, that is, the
campaigner is interested in both “when” and “how likely” a user
would be influenced. In particular, we assume that the campaigner
has a utility function which monotonically decreases with the time
required for a user to get influenced, since the activation of the seed
nodes. The problem that we solve in this paper is to maximize the
expected aggregated value of this utility function over all network
users. This is a novel and relevant problem that, surprisingly, has
not been studied before.

Time-discounted influence maximization (TDIM), being a gener-
alization of the classical IM, still remains NP-hard. However, our
main contribution is to prove the sub-modularity of the objective
function for any monotonically decreasing function of time, un-
der a variety of influence cascading models, e.g., the independent
cascade, linear threshold, and maximum influence arborescence
models, thereby designing approximate algorithms with theoretical
performance guarantees. We also illustrate that the existing opti-
mization techniques (e.g., CELF) for influence maximization are
more efficient over TDIM. Our experimental results demonstrate
the effectiveness of our solutions over several baselines including
the classical influence maximization algorithms.

1. INTRODUCTION
In influence maximization (IM), whenever a social network user

buys a product or endorses an action (e.g., sharing photos, re-tweeting
hash tags), she is viewed as being influenced or activated. The
classical influence maximization problem [5,10] identifies the top-
k seed users in a social network such that the expected number
of influenced users in the network, starting from those seed users
and following some influence cascading model, is maximized. The
budget k on the seed-set size usually depends on how many initial
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Figure 1: Top-5 Seeds (in Bold), Zachary’s Karate Club Dataset

users the campaigner can directly influence to buy her product by
advertisements, giving free samples, and discounted prices.

In their seminal paper [10], Kempe et al. left the time required
for influence maximization unconstrained. However, in most cases,
the campaigner is also interested in when a user would be influ-
enced – the sooner, the better. For example, multiple competing
companies launch comparable products around the same time (e.g.,
Nintendo’s Wii vs. Sony’s Playstation vs. Microsoft’s X-Box; Mi-
crosoft’s Surface vs. Apple’s iPad vs. Samsung Note 3) [12]. Thus,
a campaigner would like to inform the maximum number of peo-
ple about her latest products as quickly as possible. In the domain
of movies, the success of a film depends on public interests, and
with the general attention span being far shorter, most films stay in
theatres only in their first week or two 1.

In the aforementioned temporal context of information diffusion,
we design a novel influence maximization problem, called the time-
discounted influence maximization (TDIM). The campaigner pro-
vides a utility function U

(

δt(u, S)
)

that monotonically decreases
with the time δt(u,S) required to influence a user u, since the acti-
vation of the seed set S. As information diffusion is a probabilistic
process, we aim at finding the optimal seed set that maximizes the
campaigner’s aggregated expected utility considering all users.

1
http://www.boxofficemojo.com/yearly/chart/?yr=2015



TDIM is a non-trivial problem because U can be any arbitrary
monotonically decreasing function; and therefore, the top-k seed
set could be very different than those for the classical influence
maximization. We illustrate this with the well-known Zachary’s
karate club dataset [15], which is a karate club social network of 34
members, documenting 78 pairwise links between these members
who interacted outside the club from 1970 to 1972. Edge probabili-
ties are assigned in proportion to the number of interactions, and we
consider the IC model of influence cascade. In Figure 1, we show
the top-5 seed nodes both for IM and TDIM, with a utility function
exponentially decreasing over time. As one may observe, the seed
nodes are more centrally located (i.e., closeness centrality) in case
of TDIM, which facilitates a rapid dissemination of information to
a large number of users. Clearly, this is the problem of interest for
most practical scenarios.

Related Research and Novelty of Our Work. The temporal as-
pect of information diffusion has been explored in statistical physics
[9]. Prior works [2, 6] considered influence maximization within a
given time deadline, i.e., a finite time window must be considered.
Our work TDIM is different because the campaigner assigns a util-
ity score based on when a node gets influenced – the earlier, the
better. This is often more useful than prior works where every node
activation is treated equally if that happens within the specified time
window. In fact, TDIM is a generalization of these prior works, be-
cause the time deadline can be simulated by properly selecting the
utility function. A few other works [7,13] aimed at finding the seed
set such that a predefined coverage is achieved in the minimum
time. Recently, Chang et. al. studied influence sustainability [1],
that is, to maximize the count of those time steps when more than
a threshold number of new users get activated. Clearly, the notion
of influence sustainability is also different from ours.

2. PRELIMINARIES
A social network G = (V,E, P ) consists of a set of n nodes V ,

E ⊆ V × V is a set of e directed edges, and P : E → (0, 1) is
a probability function that assigns a probability to each edge. The
probability puv on a directed edge (u, v) ∈ E represents the prob-
ability that node v adopts a product due to the influence of node u,
because u adopted that product before. When v adopts the product,
it automatically becomes eligible to influence its neighbors. We
shall discuss various influence cascading models in Section 2.1.

We denote by S the seed set for the campaigner. As influence
cascade is a probabilistic process, let us denote by ∆T (u, S) the
random variable corresponding to the time required for influencing
a user u, since the activation of the seed set S. Let δt(u, S) be a
realization of∆T (u,S). Next, we assume that the campaigner has
a utility function U

(

δt(u, S)
)

, where U can be any monotonically
decreasing function of δt. We are now ready to define our problem.

PROBLEM 1 (TDIM). Given a network G = (V,E, P ), a
budget on the seed set size k, and the campaigner’s utility func-

tion U which decreases monotonically with time, find the seed set

S of size k such that the campaigner’s expected aggregated utility

considering all network users is maximized. Formally,

argmax
S

∑

u∈V

E[U(∆T (u, S))]

such that |S| = k (1)

We denote by E the expectation in the above equation. TDIM, be-
ing a generalization of the influence maximization (IM) problem,
is also NP-hard. Therefore, the question that remains is whether
our new objective function in Equation 1 still retains some of the
other properties, such as monotonicity and sub-modularity, of the

classical IM. We shall discuss them in the context of three widely-
used influence diffusion models – independent cascade (IC) [10],
linear threshold (LT) [10], and maximum influence arborescence
(MIA) [3], which are introduced below.

2.1 Influence Diffusion Models
In all our models, the campaign spreads from an initially active

set of seed nodes in discrete steps. By following [7, 10], we con-
sider one time step as one attempt of a node to influence its users.

Independent CascadeModel. In the IC model, when some node u
first becomes active at step t, it gets a single chance to activate each
of its currently inactive out-neighbors v; it succeeds with probabil-
ity pu,v. If u succeeds, then v will become active at step t + 1.
Whether or not u succeeds at step t, it cannot make any further at-
tempts in the subsequent rounds. If a node v has incoming edges
from multiple newly activated nodes, their attempts are sequenced
in an arbitrary order. Also, each node can be activated only once
and it stays active until the end. The campaigning process runs until
no more activations are possible.

Linear ThresholdModel. In the LT model, each node v has an ac-
tivation threshold θv , selected uniformly from (0, 1). In addition,
there is a constraint that the sum of the probabilities of all incoming
edges for every node must be at most 1. If the sum of the probabil-
ities of the incoming edges from all active nodes is greater than or
equal to the activation threshold of an inactive node, then the node
gets activated in the next round. Each node can only be activated
once and stays active until the end.

Maximum Influence Arborescence. This model assumes that the
influence from the seed nodes propagates only via the maximum in-

fluence paths. A path from a source to a destination node is called
the maximum influence path if this has the highest probability com-
pared to all other paths between the same pair of nodes. Ties are
broken in a predetermined and consistent way, such that the maxi-
mum influence path between a pair of nodes is always unique.

2.2 Properties of TDIM
Let us denote F (S) =

∑

u∈V E[U(∆T (u, S))]. A function F

is sub-modular if it satisfies the following. F (S1∪{v})−F (S1) ≥
F (S2∪{v})−F (S2), for all elements v and all pairs of sets S1 ⊆
S2. We prove sub-modularity and monotonicity of our objective
function F (S) below.

THEOREM 1. TDIM objective function is sub-modular under

the IC model.

PROOF. Our proof follows by constructing an equivalent view
of the IC model with the notion of possible worlds [10]. Each pos-
sible world is a certain instance of the uncertain graph, and obtained
by independent sampling of the edges. Every possible world X is
associated with a probability of existence prob(X). Let us con-
sider the campaigner’s aggregated utility in the possible world X ,
i.e., FX(S) =

∑

u∈V U(δtX(u, S)). The following holds.

F (S) =
∑

all possible worldX

[FX (S)× prob(X)] (2)

Our proof follows by showing that FX(S) is sub-modular. As
the non-negative linear combination of sub-modular functions is
also sub-modular, then F (S) would be sub-modular. However, in
an analogous argument, FX(S) is the summation of U(δtX(u, S))
for all u ∈ V . Therefore, we show the sub-modularity ofU(δtX(u, S))
in order to illustrate the sub-modularity of F (S). In other words,
for all S1 ⊆ S2, we prove the following.

U (δtX (u, S1 ∪ {v}))− U (δtX (u, S1))

≥ U (δtX (u, S2 ∪ {v}))− U (δtX (u, S2)) (3)



Note that X is a deterministic graph and the IC model follows
discrete time steps. Therefore, δtX(u, S) can be measured as the
shortest path distance inX from any seed node in S to u. Formally,
δtX(u, S) = mins∈S lX(s, u), where lX(s, u) is the shortest path
distance from s to u inX . Now consider two distinct cases.

Case 1. δtX(u, S2) > δtX(u, {v}). It immediately follows that
δtX(u, S1) > δtX(u, {v}). This is because S1 ⊆ S2. Hence, the
left-hand and right-hand sides of Equation 3 become U (δtX (u, {v}))
−U (δtX (u, S1)) andU (δtX (u, {v}))−U (δtX (u, S2)), respec-
tively. Next, one can verify that δtX (u, S1) ≥ δtX (u, S2), and
U (δtX (u, S1)) ≤ U (δtX (u, S2)). This is because U is mono-
tonically decreasing. Therefore, Equation 3 holds.

Case 2. δtX(u, S2) ≤ δtX(u, {v}). In this case, the right-hand
side of Equation 3 becomes zero. However, the left-hand side is al-
ways no less than zero, because δtX (u, S1 ∪ {v}) ≤ δtX (u, S1).
Since U is monotonically decreasing, U (δtX (u, S1 ∪ {v})) ≥
U (δtX (u, S1)). Therefore, Equation 3 also holds in this case.
This completes the proof.

THEOREM 2. TDIM objective function is sub-modular under

the LT model.

PROOF. The proof follows by considering the live-edge model,
which is shown to be equivalent to the LT model in [10]. In the
live-edge model, each node v picks at most one of its incoming
edges at random, that is, it selects the incoming edge from u with
probability pu,v, and it does not select any incoming edge with
probability 1 −

∑

u∈V pu,v. Let X be one possible world with
probability Prob(X) under the live-edge model, and FX(S) be
the campaigner’s aggregated utility in X . Analogous to the proof
of Theorem 1, one can show that FX(S) is sub-modular. Now, our
objective function F (S) can be expressed as follows.

F (S) =
∑

all possible worldX

[FX(S)× prob(X)] (4)

As the non-negative linear combination of sub-modular func-
tions is sub-modular, F (S) is sub-modular.

It is easy to verify that F (S) is monotonic under the IC and the
LT model. Below, we prove its monotonicity and sub-modularity
under the MIA model, which are not immediately realized.

THEOREM 3. TDIM objective function is monotonic under the

MIA model.

PROOF. Let us denote byFu(S) = E[U(∆T (u, S))], and there-
fore, F (S) =

∑

u∈V Fu. We will show that Fu(S) increases
monotonically with S, thereby proving the monotonicity of F (S).

We consider the uncertain sub-graph with the maximum influ-
ence paths from S to u. We denote byX one possible world of this
uncertain sub-graph, having probability prob(X), and shortest-path
length of δtX(u, S) from S to u. Therefore, we get:

Fu(S) =
∑

all possible worldX

[U (δtX(u, S))× prob(X)] (5)

Next, consider a node v 6∈ S. With the possible worlds for the
seed set S, we show how one can derive the possible worlds for the
seed set S ∪ {v}. Let us denote by E1 the set of edges that are in
the maximum influence path from v to u, but not in the maximum
influence paths from S to u. For a specific possible world X (cor-
responding to seed set S), if we start sampling the edges in E1, we
get a set of new possible worlds Y1, Y2, . . . , Yr, where r = 2|E1|,
such that prob(X) = prob(Y1) + prob(Y2) + . . . + prob(Yr).
Note that if we initially started with two different possible worlds

X1 6= X2, all the new possible worlds generated from X1 and
X2 will be pairwise independent. In fact, the set of new possi-
ble worlds generated as above will correspond to all the possible
worlds for the seed set S∪{v}. Next, we observe that if Y is a new
possible world generated from X , δtX(u, S) ≥ δtY (u, S ∪ {v}).
Therefore, U being monotonically decreasing, U (δtX(u, S)) ≤
U (δtY (u, S ∪ {v})). Finally, by applying Equation 5 on the new
possible worlds, which correspond to the seed set S ∪ {v}, we get
Fu(S) ≤ Fu(S ∪ {v}). Hence, the theorem.

THEOREM 4. TDIM objective function is sub-modular under

the MIA model.

PROOF. We first show that Fu(S) = E[U(∆T (u, S))] is sub-
modular under the MIA model. Since F (S) =

∑

u∈V Fu, the
sub-modularity of F (S) will automatically hold.

Consider any two seed sets S1, S2 such that S1 ⊆ S2, and any
other node v. Let us consider the uncertain sub-graph consisting
of the maximum influence paths from S2 ∪ {v} to u. Let X be
one possible world of this uncertain sub-graph, with probability
prob(X). Then, for any node set S ⊆ S2 ∪ {v}, we have:

Fu(S) =
∑

all possible worldX

[U (δtX(u, S))× prob(X)] (6)

By following an argument similar to the proof of Theorem 1, one
can show that:

U (δtX (u, S1 ∪ {v}))− U (δtX (u, S1))

≥ U (δtX (u, S2 ∪ {v}))− U (δtX (u, S2)) (7)

By combining Equations 6 and 7, we get the following.

Fu (S1 ∪ {v}) − Fu (S1) ≥ Fu (S2 ∪ {v}) − Fu (S2) (8)

Therefore, Fu(S) is sub-modular. Hence, the result follows.

Finally, given a specific seed set, computing the campaigner’s ex-
pected aggregated utility is #P-hard for IC, LT, and MIA models.
This directly follows from the fact that TDIM is a generalization of
the IM, and computation of the expected spread, given a seed set, is
#P-hard under IC, LT, and MIA models [3, 7].

3. ALGORITHMS
As the TDIM objective function is non-negative, monotone, and

sub-modular, an iterative hill-climbing approach that greedily max-
imizes the marginal gain at every iteration provides a solution with
an approximation guarantee (1 − 1

e
) ≈ 0.63 of the optimal solu-

tion [10]. Here, e is the base of the natural logarithm. We describe
our greedy algorithm below.

Greedy Algorithm. We perform k iterations to identify the top-
k seed nodes. At each iteration, we add the seed node s∗ to S1

that maximizes the marginal gain in the campaigner’s expected ag-
gregated utility. Here, S1 denotes the partial seed set which was
already computed in previous iterations. Formally,

s
∗ = argmax

s∈V \S1

[F (S1 ∪ {s})− F (S1)] (9)

We denote by F (S) the campaigner’s expected aggregated util-
ity for the seed set S. As stated earlier, unfortunately there is no
efficient way to compute F (S) for a given S. Therefore, we em-
ploy Monte Carlo (MC) sampling to estimate it. Thus, in essence,
our greedy algorithm produces a solution within (1− 1

e
− ǫ) of the

optimal influence spread, where ǫ depends on the accuracy of the
MC estimate for expected utility given a seed set.



Table 1: Graph Dataset Characteristics
Dataset # Node # Edge Edge Prob: Mean, SD, Quartiles

DBLP 684 911 4 569 982 0.008±0.007, {0.005, 0.005, 0.010}

NetHEPT 15 235 62 776 0.010±0.000, {0.010, 0.010, 0.010}

Time Complexity. The time complexity of each iteration of our
greedy algorithm isO(nK(n+e)), whereK is the number of MC
samples to get a good estimate. Since, we require k iterations, the
overall complexity of our greedy algorithm isO(nkK(n+ e)).

Optimization Techniques. The greedy algorithm, as described
above, is not very efficient because at every iteration, it recom-
putes the marginal gains for all remaining nodes. Leskovec et. al.
earlier proposed the CELF optimization [11] based on the idea of
sub-modularity. The main intuition is that the marginal gain pro-
vided by a node in the current iteration cannot be better than the
marginal gain provided by the node in previous iterations. Hence,
we may not require to compute the marginal gains for all remain-
ing nodes in every iteration. As the TDIM objective function is also
sub-modular, we apply the CELF optimization.

4. EXPERIMENTS

Datasets. We involve two real-world datasets, DBLP [8] andNetHEPT
[4], each representing a directed uncertain graph (Table 1). For
DBLP, as in [8], the edge probabilities are proportional to an expo-
nential cdf of mean µ = 10 to the number of collaborations, i.e.,
if two authors collaborated c times, the corresponding edge proba-
bility is proportional to: 1− exp−c/10. The NetHEPT dataset was
used in [4] for the influence-maximization task with constant edge
probabilities (0.01).

Campaigner’s Utility Function. We consider three utility func-
tions that decays differently over time.

Exponential: U(δt) = αδt

Multiplicative: U(δt) = 1

δt+1

Linear: U(δt) = max{1− β × δt, 0}
In our experiments, we set α = 0.9 and β = 0.2. We selected the
above functions in a way such that the campaigner’s utility per user
varies on a scale from 0 to 1.

Comparing Methods. We compare our TDIM greedy algorithm
with two baselines. First, we compare against the classical IM
greedy algorithm. Second, as the utility function monotonically
decreases with time, we consider a variation of the classical IM,
that selects seed nodes only considering the influence within its 1-
hop. We refer to our two baselines as IM and IM1, respectively. In
all cases, we apply the CELF optimization [11] for efficiency.

The code is implemented in C++ and the experiments were per-
formed on a single core of a 100GB, 2.40GHz Xeon server. In all
our experiments, the number of MC samples is fixed as K = 1000
[8]. Due to limitation of space, we only demonstrate our results
with IC model and top-k = 50 seed nodes.

Effectiveness and Efficiency. As illustrated in Table 2, TDIM usu-
ally outperforms both the baselines in terms of the campaigner’s ex-
pected utility. This is because the TDIM greedy algorithm directly
optimizes the campaigner’s utility at every iteration. We recall that
our designed utility functions assign a utility per user in the scale
from 0 to 1. Therefore, the improvement by TDIM over baselines
would be even higher if we consider utility functions having larger
ranges. We found that IM1 often outperforms IM, which is due to
the monotonically decreasing nature of our utility functions.

Table 3 presents the seed set finding times. As it is expected,
IM1 requires the least amount of time because it computes influ-
ence only within 1-hop of every node. However, we also found that
TDIM is always faster than classical IM, which indicates that the
CELF optimization is more effective for TDIM. As demonstrated in
Figure 1, the TDIM seed nodes are more centrally located based on

Table 2: Effectiveness of Top-50 Seed Nodes
Utility Function Expected Utility

IM IM1 TDIM

Linear 235.74 935.31 968.31

NetHEPT Multiplicative 397.66 654.61 681.32

Exponential 1205.09 1558.60 1672.34

Linear 230.22 255.62 254.51

DBLP Multiplicative 165.68 179.72 181.47

Exponential 303.17 322.44 323.75

Table 3: Efficiency of Finding Top-50 Seed Nodes
Utility Function Seeds Finding Time (sec) # Recomputation

IM IM1 TDIM IM IM1 TDIM

Linear 4037.49 3261
NetHEPT Multiplicative 13252.50 74.07 7942.96 15744 332 8850

Exponential 12705.30 12141

Linear 5949.23 379

DBLP Multiplicative 6138.41 6006.54 5589.80 1476 178 425

Exponential 6131.49 754

closeness centrality. Therefore, if a node (e.g., a peripheral node)
is not close to a large number of other nodes in the network, that
node will never be considered as one of the top candidates in any it-
eration of TDIM greedy algorithm. However, such a node, if reach-
able to many other nodes in the graph, could still be considered as
a top candidate in the subsequent iterations of IM greedy method.
Thus, the number of re-computations required for TDIM is usu-
ally smaller than that for IM. This makes the CELF optimization
more effective in case of TDIM. We also demonstrate this fact in
our experimental results. This is evident from the less number of
recomputations required for TDIM, as shown in Table 3.

5. CONCLUSIONS
We formulate and study the novel problem of maximizing a cam-

paigner’s time-discounted utility via influence maximization. We
show that the problem is sub-modular and monotonic under var-
ious influence diffusion models, and propose approximate algo-
rithms with theoretical performance guarantees. We also demon-
strate that the existing optimization techniques for the classical in-
fluence maximization could be more effective in our current setting.
In future work, we shall consider the problem with more advanced
optimization techniques, e.g., TIM [14] that was employed for the
classical influence maximization.
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