
Finding Seeds and Relevant Tags Jointly: For Targeted
Influence Maximization in Social Networks

Xiangyu Ke
NTU Singapore

xiangyu001@e.ntu.edu.sg

Arijit Khan
NTU Singapore

arijit.khan@ntu.edu.sg

Gao Cong
NTU Singapore

gaocong@ntu.edu.sg

ABSTRACT
We study the novel problem of jointly �nding the top-k seed nodes

and the top-r relevant tags for targeted in�uence maximization in a

social network. The bulk of the research on in�uence maximization

assumes that the in�uence di�usion probabilities across edges are

�xed, and the top-k seed users are identi�ed to maximize the cas-

cade in the entire graph. However, in real-world applications, edge

probabilities typically depend on the information being cascaded,

e.g., in social in�uence networks, the probability that a tweet of

some user will be re-tweeted by her followers depends on whether

the tweet contains speci�c hashtags. In addition, a campaigner

often has a speci�c group of target customers in mind.

In this work, wemodel such practical constraints, and investigate

the novel problem of jointly �nding the top-k seed nodes and the

top-r relevant tags that maximize the in�uence inside a target set of

users. Due to the hardness of the in�uence maximization problem,

we develop heuristic solutions — with smart indexing, iterative

algorithms, and good initial conditions, which target high-quality,

e�ciency, and scalability.

CCS CONCEPTS

• Information systems→ Social advertising; Social networks;

• Theory of computation→ Sketching and sampling;

KEYWORDS

Targeted In�uence Maximization; Reverse Sketching; Indexing;

Conditional In�uence Probability

ACM Reference Format:

Xiangyu Ke, Arijit Khan, and Gao Cong. 2018. Finding Seeds and Relevant

Tags Jointly: For Targeted In�uence Maximization in Social Networks. In

SIGMOD’18: 2018 International Conference on Management of Data, June

10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3183713.3199670

1 INTRODUCTION
The classical in�uence maximization problem [7, 12] identi�es the

top-k seed users in a social network such that the expected number

of in�uenced users in the network, starting from those seeds and

following an in�uence di�usion model, is maximized. The budget

k on the seed set size usually depends on the campaigner, e.g., it

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3199670

P((u,v) | #Bars)=0.2

P((u,v) | #Arts)=0.9

P((u,v) | #Coffee)=0.7

Figure 1: Edge in�uence probabilities based on information topics

may depend on how many initial users the campaigner can directly

in�uence by advertisements, free samples, and discounted prices.

In this paper, we consider a practical scenario where the cam-

paigner additionally speci�es her target customers, that is, we em-

ploy the notion of targeted in�uence maximization [15, 17, 21, 27].

It is easy for a campaigner to de�ne her target users, either explic-

itly, or via some constraints, e.g., people in the age group 20-30,

all IT professionals in the silicon valley, etc. The number of such

target customers can be very large, and it is often not possible (or

not economical) to reach out to everyone by advertisements, giving

free samples, or discounted price. Therefore, the campaigner still

prefers to �nd a small set of seed nodes (i.e., top-k) in order to

maximize the spread of her campaign within these target users.

Many problem variants of in�uence maximization have been

considered in the literature, majority of them assuming that the

in�uence cascade probabilities between two users are �xed and

without taking into consideration the actual information being cas-

caded. Users generally apply tags to characterize their contents

in an online social network, e.g., hashtags in Twitter and Insta-

gram. Moreover, one can identify representative keywords (e.g., the

most frequent ones after removing stop words) from the contents,

and use them as tags. The probability that a tweet originated by

a user u will be re-tweeted by her follower v clearly depends on

the hashtags and other keywords in that tweet (Figure 1 and [19]).

Following an empirical study by Barbieri and Bonchi over the real-

world Last.FM social network [3], a new song due to collaboration

between Lana del Rey and Katy Perry would reach to more people

(by means of information di�usion), than some other song that

combines Metal and Electronic bands. In the context of 2016 US

Presidential election, Hillary Clinton’s campaign promises were

infrastructure rebuild, free trade, open borders, unlimited immigra-

tion, equal pay, increasing minimum wage, etc. To get more votes,

Hillary’s publicity manager could have prioritized the most in�u-

ential among all these standpoints in speeches, while also planning

how to in�uence more voters from the “blue wall” states (Michigan,

Pennsylvania, and Wisconsin) [26]. As speeches should be kept

limited due to time constraints and risk of becoming ine�ective

because of information overload, it is desirable to �nd a limited

set of standpoints that maximize the in�uence from a set of early

adopters (e.g., popular people who are close to Hillary Clinton) to

a set of target voters (e.g., citizens of the “blue wall” states) [20].

Motivated by these timely demands, we revisit the classical in-

�uence maximization problem, and investigate a novel problem

as follows. Given a set of target customers, a small budget k on the

number of seed users, and a small budget r on the number of relevant

tags, what are the top-k seed nodes and the top-r most relevant tags

that maximize the expected spread of the campaign within the target

set? Setting a small budget on the number of tags is critical, for

example, (a) to avoid information overload against campaign e�ec-

tiveness (e.g., if one wants to write an advertisement or a blog, she

may want to focus on a small number of relevant topics), and (b) for

cost-e�ective planning and due to other physical constraints (e.g.,

an album can accommodate a limited number of genres/ songs).
Case Study. To demonstrate the e�ectiveness of our problem,

we conduct a case study on the real-world Yelp social network

dataset, downloaded from yelp.com.sg/dataset/challenge. This is a

reviewing-based social network, where users can assign reviews to

a business (e.g., a restaurant, a travel agency, etc.) after visiting it.

Each business is characterized by a few categorical attributes (e.g.,

Pubs, Seafood, Hotels, Clubs, Arts, etc.), which we use as tags in

our problem setting. There are total 195 distinct categories in this

dataset. For a pair of friends u and v in the social network, and for

their reviews on every common business category, we compute the

in�uence direction and probability — based on their time-stamps

of visits and their frequency of reviewing the same category. More

details about the dataset can be found in Section 6.

As shown in Table 1, the most relevant tags found by our method,

for maximizing the in�uence spread in each target city, are quite

di�erent, e.g., for Las Vegas, popular categories include Dance Clubs,

Arts & Entertainments, and Travel, whereas for Pittsburgh, vari-

ous food items appear in the top-10 list, including Specialty Food,

Seafood, Co�ee & Tea, Ice Cream & Frozen Yogurt. Hence, if someone

wants to promote her hotels via tweets or blog posts in each one of

those cities, the best choice of advertisement tags are not the same

(entertainment facilities for Las Vegas, while foods for Pittsburgh).

Furthermore, Figure 2 shows that an optimal set of advertisement

tags for a speci�c city may not work in the same way for other cities.

It is interesting to note that even only with 10 most relevant tags

(found by our algorithm), we can obtain nearly 90% of the in�uence

spread, as compared to that achieved by all 195 tags present in the

dataset. This case study demonstrates the usefulness and relevance

of our novel query, which we investigate in this paper.
Challenges. Although in�uence maximization has been recently

studied in a topic-aware manner [2–4, 6, 20], our problem of jointly

�nding the top-k seed users and the top-r relevant tags is a novel

one. Learning the parameters of a topic-aware in�uence di�usion

model was discussed in [4, 20]. Chen et. al. [6] and Aslay et. al. [2]

studied e�ciently �nding a set of seed nodes that maximize the

spread of information for a given topic set. In contrast, the top-r

relevant tags are not known apriori in our problem setting. This is a

non-trivial problem, since theNP-hardness of the classical in�uence

maximization problem [12] and the #P-hardness of the in�uence

spread computation [8] directly follow in our scenario. In addition,

even using a polynomial-time oracle for the classical in�uence

maximization problem, with (1− 1/e − ϵ) approximation guarantee

[5, 28, 29], our problem still remains NP-hard, as well as hard to

approximate. To this end, we develop an iterative algorithm that

alternatively optimizes the top-k seed users and the top-r relevant

tags, coupled with smart indexing, optimization techniques, and

good initial conditions — targeting both accuracy and e�ciency.

Target City Top-10 Tags

Las Vegas Arts & Entertainment, Travel, Hotels, Bu�ets, Dance Clubs,
Desserts, Chinese, Mediterranean, Japanese, Burger

Toronto Canadian, Chinese, Japanese, Pubs, Co�ee & Tea, Italian,
Arts & Entertainment, Comfort Food, Chiropractors, Physical
Therapy

Pittsburgh Burger, Mexican, Seafood, Grocery, Arts & Entertainment,
Italian, Sport Bars, Co�ee & Tea, Ice Cream & Frozen Yogurt,
Specialty Food

Table 1: Case study: top-10 tags found for in�uence maximization

in three target cities.

 0

 20

 40

 60

 80

 100

Vegas Toronto Pitts

In
fl
u

e
n

c
e

 S
p

re
a

d
 (

%
)

Target City

Random Tags
Tags(Vegas)

Tags(Toronto)
Tags(Pitts)

Figure 2: In�uence spread comparison using cross-city tags. k=10

seeds, r=10 tags, Y-axis denotes the % of spread by 10 selected tags,

over total spread by all 195 tags.

Our Contribution and Roadmap. Our contributions can be sum-

marized as follows:

• We focus, for the �rst time, on the problem of jointly �nding

the top-k seed users and the top-r relevant tags that maxi-

mize the in�uence within a given set of target customers in

a social network. We show that our problem is NP-hard, and

also hard to approximate, even when polynomial-time in�u-

ence estimation and seed set selection methods are employed

(Section 2).

• We employ reverse sketching [5, 29] under target in�uence

maximization setting. Moreover, with our smart heuristic

indexing method LL-TRS, we reduce the running time by 30%

with practically small in�uence estimation error (Section 3).

• We design batch-based path selection algorithm for the top-r

relevant tags �nding that signi�cantly improves the accuracy

(up to 30%), when compared with existing methods [13]

having similar running time (Section 4).

• We combine seeds and tags �nding algorithms in an iterative

manner, and prove that the in�uence spread monotonically

increases until convergence. Also, we provide smart initial-

ization methods for faster convergence (Section 5).

• We conduct a thorough experimental evaluation with several

real-world social networks. It con�rms that within a limited

number of iterations (3∼4), the in�uence spread by our al-

gorithm converges to a high quality, compared to various

baseline methods (Section 6).

2 PRELIMINARIES
2.1 Problem Formulation
In the literature of in�uence maximization [7, 12], whenever a social

network user gets in�uenced by a campaign (e.g, buys a product,

shares a photo, or tweets an information), she is viewed as being

activated. A social in�uence network is modeled as an uncertain

graph G = (V ,E, P), where V is a set of n nodes (users), E ⊆ V ×V

is a set ofm directed edges (friendship links, follower/followee re-

lations, etc.). We denote byC the set of all tags present in the social

network. As stated earlier, these could be explicit hashtags, together

with other representative keywords. Appearance of speci�c tags in

an online campaign a�ects the corresponding in�uence di�usion

probabilities between two users. Speci�cally, P : E × C → (0, 1]

is a function that assigns a conditional probability to every edge

e ∈ E given a speci�c tag c ∈ C , such that, P((u,v)|c) denotes

the probability that an active user u will in�uence her neighbor v ,

given the tag c in the campaign (see Figure 1). Such tag-dependent

in�uence probabilities can be learnt from past propagation datasets,

e.g., [4, 10, 20]. In this work, we employ the widely used Indepen-

dent Cascade (IC) model [12] for information di�usion, which we

introduce next.

IC Model. In the classical IC model — that is, assuming �xed edge

probabilities P(u,v), and without considering di�erent in�uences

due to various tags — the campaign starts with an initially active set

of seed nodes, and then unfolds in discrete steps. When some node

u �rst becomes active at step t , it gets a single chance to activate

each of its currently inactive out-neighbors v; it succeeds with

probability P(u,v). If u succeeds, then v will become active at step

t+1. Whether or notu succeeds at step t , it cannot make any further

attempts in the subsequent rounds. If a node v has incoming edges

from multiple newly activated nodes, their attempts are sequenced

in an arbitrary order. Also, each node can be activated only once

and it stays active until the end. The campaigning process runs until

no more activations are possible. Therefore, the IC model assumes

the following in�uence cascading scenario: people get in�uenced

by a campaign when they come in direct contact with their friends

who very recently adopted that campaign.

It was shown in [12] that the IC model is equivalent to the

possible world semantics. A possible world G = (V ,EG) is one

certain instance of the uncertain graph G, where EG ⊆ E, and is

obtained by independent sampling of the edges. Each possible world

G is associated with a probability of existence Pr (G) as follows.

Pr (G) =
∏
e ∈EG

P(e)
∏

e ∈E\EG

(1 − P(e)) (1)

Given a set T ⊆ V of customers, the (targeted) in�uence spread in

the possible world G is de�ned as the number σG (S,T) of target

nodes that are reachable from the seed set S in G, i.e.,

σG (S,T) =
∑
t ∈T

IG (S, t) (2)

In the above equation, IG (S, t) is an indicator function that takes

value 1 if at least one node in S is reachable to t inG , and 0 otherwise.

The expected in�uence spread σ (S,T) by the seed set S within

the target set T is computed as the expectation of the number of

reachable target nodes from S , i.e.,

σ (S,T) =
∑
G⊑G

[σG (S,T) × Pr (G)] (3)

Tag-aware IC Model. In reality, edge probabilities depend on var-

ious tags related to the campaign. The information di�usion prob-

ability via an edge e , given a set of tags C1 ⊆ C in the campaign,

can be derived as P(e |C1) = F
c ∈C1

(P(e |c)). Here, F is an aggregate

function, which can be de�ned in several ways as follows.

• Independent Tag Aggregation. In this case, we assume

that the existence of an edge is determined by an indepen-

dent process (coin �ipping), one per tag c , and the ultimate

existence of an edge is decided based on the success of at

least one of such processes. This assumption is consistent

with the IC model [12], and naturally holds if the edge prob-

abilities were learned assuming independence of tags [25].

Formally, the information di�usion probability via an edge

e , given a set of tagsC1 ⊆ C in the campaign, can be derived

as P(e |C1) = 1 −
∏

c ∈C1
(1 − P(e |c)).

• Topic-Based Tag Aggregation. This model is recently in-

troduced in [20], which follows the earlier topic-aware in�u-

ence cascade model in [4]. In particular, the model learns a

set of hidden topicsZ = {z1, z2, . . . , z |Z |} from past contents

propagated in the social network. For an edge e = (u,v), the

topic-aware in�uence probability p(e |z) denotes how likely

u in�uences v given the topic z ∈ Z in the campaign. More-

over, the method in [20] learns the probability p(c |z), which

is the probability of sampling a tag c ∈ C , given the topic z.

In this work, we shall consider the independent tag aggregation

approach, which is also consistent with the IC model. Moreover,

in real-world scenarios, it is generally hard to achieve a speci�c

(optimal) topic distribution for a campaign. Instead, we provide the

top-k tags directly that a campaigner can associate to maximize the

spread of her in�uence among the target customers. Nevertheless,

our hardness results in Section 2.2 also hold for the topic-based tag

aggregation method.

Following the IC model, we assume that edge probabilities in

the uncertain graph are independent of one another. Hence, given

a set C1 of tags in a campaign, the uncertain graph G yields 2m

deterministic graphs G ⊑ G|C1, where each G is a pair (V ,EG),

with EG ⊆ E, and its probability of being observed is:

Pr (G |C1) =
∏
e ∈EG

P(e |C1)
∏

e ∈E\EG

(1 − P(e |C1)) (4)

Analogously, the expected in�uence spread σ (S,T ,C1) by the seed

set S in G, given the target setT and the tag setC1, is computed as:

σ (S,T ,C1) =
∑

G⊑G |C1

[σG (S,T) × Pr (G |C1)] (5)

Problem Statement. Given the target set T , a budget k on the

maximum number of seed nodes, and a budget r on the maximum

number of tags, jointly �nd the top-k seed nodes and the top-r

relevant tags such that the in�uence spread within the target users

is maximized.

〈S∗,C∗
1〉 = argmax

S,C1

σ (S,T ,C1)

s. t. |S | = k, |C1 | = r (6)

2.2 Hardness of the Problem
Our problem relies on the classical in�uence maximization problem,

which is NP-hard [12] and on the in�uence spread computation,

which is #P-hard [8]. As a result, our problem is also hard.

Theorem 1. Given the target set T and the set C1 of top-r tags,

�nding the top-k seed nodes that maximize the in�uence spread within

the target set is NP-hard.

Theorem 2. Given the target set T , seed set S , and the set C1 of

top-r tags, �nding the in�uence spread from the seed nodes to the

target set is #P-hard.

s1 t1
P((s1,t1)|c5)=1

P((s1,t1)|c2)=1

P((s1,t1)|c7)=1

sn tn
P((sn,tn)|c2)=1

P((sn,tn)|c1)=1

s2

s3

t2

t3

Figure 3: Hardness of top-r tags selection

To prove Theorems 1 and 2, one can construct an updated uncer-

tain graph by only considering the tags inC1, and thereby assigning

�xed edge probabilities.

On the other hand, the classical in�uence maximization prob-

lem (under the IC model) is submodular with respect to inclusion

of seed nodes, whereas the in�uence spread can be estimated in

polynomial time via Monte Carlo (MC) sampling (or, a more e�-

cient reverse sketching method [5, 28, 29]), thus a polynomial-time

greedy hill-climbing algorithm [12] can solve the classical in�uence

maximization problem with (1 − 1/e − ϵ) approximation guarantee.

Hence, the key question is whether our problem remains hard if a

polynomial-time oracle for the classical in�uence maximization is

employed. We show that the answer to this question is positive.

Theorem 3. Given the target set T and the seed set S , �nding the

setC∗
1 of top-r tags that maximizes the in�uence spread from the seed

nodes to the target nodes is NP-hard, even assuming a polynomial-

time oracle for estimating the in�uence spread.

Proof. We prove NP-hardness by performing a reduction from

theNP-hardMax r-Cover problem, de�ned by a collection of subsets

S = {S1, S2, . . . , Sm } of a ground setU = {u1,u2, . . . , un }; and the

objective is to �nd a subset S∗ ⊂ S of size r such that maximum

number of elements inU can be covered by S∗. Now, we construct

an instance of our top-r tags �nding problem as follows (Figure 3).

We create a graph G and add a set of nodes t1, t2, . . . , tn , one for

each element in U . We use them as target nodes. Moreover, we

put in G another set of nodes s1, s2, . . . , sn (also, one for each

element inU), and use them as seed nodes. Finally, if some element

ui ∈ U is covered by at least one of the subsets in S, we add a

directed edge (si , ti) in G. For each set Sj ∈ S that covers item

ui , we assign the tag-dependent edge probability P((si , ti)|c j) = 1.

Now, we ask if there are r tags by which all target nodes t1, t2, . . . ,

tn can be in�uenced from the seed nodes s1, s2, . . . , sn . Clearly,

this corresponds to selecting r subsets from S that maximize the

number of elements covered. Hence, the theorem follows. �

In addition to being NP-hard, the problem of �nding the top-r

relevant tags is also not easy to approximate, since it does not admit

any Polynomial Time Approximation Scheme (PTAS).

Theorem 4. Given the target setT and the seed set S , the problem

of �nding the top-r relevant tags that maximize the in�uence spread

from the seed nodes to the target nodes, does not admit any PTAS,

unless P = NP.

Proof. See Appendix. �

Moreover, our problem is neither submodular, nor supermod-

ular with respect to inclusion of tags. Thus, a standard greedy

hill-climbing algorithm [22] do not directly come with provable

s1 t1

P(e1|c1
)=0.5

s2 t2

v1

v2

P(e
2|c

1)=0.6

P(e
3|c

2)=0.8 P(e4|c3
)=0.9

Figure 4: Example of non-submodularity. P (e |c) = 0 for all other

tag and edge combinations that are not speci�ed.

approximation guarantees. Non-supermodularity follows from NP-

hardness (since maximizing supermodular set functions under a

cardinality constraint is solvable in polynomial time), whereas we

demonstrate non-submodularity with a counter-example.

Lemma 1. Given the target set T and the seed set S , the problem

of �nding the top-r tags that maximize the in�uence spread from

the seed nodes to the target nodes, is non-submodular with respect to

inclusion of tags.

A set function f is submodular if f (A ∪ {x}) − f (A) ≥ f (B ∪

{x})− f (B), for all setsA ⊆ B and all elements x < B. Let us consider

the example in Figure 4. The seed set = {s1, s2}, and target set =

{t1, t2}. Let C1 = {c1}, C2 = {c1, c2}. We �nd that σ (S,T ,C1) =

0.5 × 0.6 = 0.3, σ (S,T ,C1 ∪ {c3}) = 0.3, σ (S,T ,C2) = 0.3, and

σ (S,T ,C2 ∪ {c3}) = (0.5 × 0.6) + (0.8 × 0.9) = 1.02. Therefore,

submodularity does not hold in this example.

2.3 Overview of Our Solution
Since our problem of jointly �nding the top-k seed nodes and the

top-r tags is NP-hard, as well as hard to approximate, we design

practical solutions aiming for both e�ciency and accuracy.

Baseline Greedy Algorithm. This is a baseline approach (given

in Section 5): We �rst select the best seed and the best tag, followed

by the second-best seed and the second-best tag, and so on, in a

greedy manner. We �nd that the accuracy of this Greedy method

can be improved with an iterative algorithm as follows.

Proposed Iterative Algorithm. We develop an iterative algo-

rithm that alternatively optimizes the top-k seeds (given in Sec-

tion 3) and the top-r tags (described in Section 4) until it converges

to a local optimum. The complete algorithm combining these two

steps will be discussed in Section 5. We further consider various ini-

tialization criteria for faster convergence. For both top-k seeds and

top-r tags selection, we employ reverse sketching-based in�uence

maximization techniques [5, 28, 29], which is the state-of-the-art

method for achieving good scalability and e�ciency.

3 ALGORITHMS FOR FINDING SEEDS
In this section, we design e�cient algorithms for �nding the top-

k seed nodes, assuming that the set C1 of top-r tags are already

provided. Therefore, we derive an updated uncertain graph by

only considering the tags in C1, and thereby assigning �xed edge

probabilities. This is identical to the classical (targeted) in�uence

maximization problem; therefore it is NP-hard (Theorem 1), but the

objective function is monotonic and submodular with respect to

the seed set.

Lemma 2. Given the target set T and the set C1 of top-r tags, the

targeted in�uence spread (i.e., spread within T) is monotone and

submodular with respect to the seed set [15, 27].

Therefore, one can apply a greedy algorithm (also known as an

iterative hill-climbing algorithm) that �nds the seed set with an

approximation guarantee (1 − 1/e) to the optimal solution [12, 22].

 0

 5000

 10000

 15000

 20000

 25000

10 50 100 300 500

R
u
n
n
in

g
 T

im
e
 (

S
e
c
)

#Seeds

TRS LL-TRS

Figure 5: Running time of TRS (state-of-the-art) vs. LL-TRS (our

method), Twi�er, #tags=5, #targets=3K, ϵ=0.1, α=1, δ=0.01, h=3.

At each iteration, the algorithm selects a non-seed node u as a seed

node that maximizes the marginal gain. Formally,

u = argmax
v ∈V \S

[σ (S ∪ {v},T ,C1) − σ (S,T ,C1)] (7)

Moreover, we can employCELF [18] andCELF++ [11] optimizations

to further improve the e�ciency of the top-k seeds �nding.

3.1 Targeted Reverse Sketching
Reverse sketching-based in�uence maximization techniques, �rst

proposed in [5] and later improved in [28, 29], are the state-of-

the-art methods with both good scalability and an (1 − 1/e − ϵ)

approximation guarantee. The algorithms in [5, 28, 29] were de-

signed without any notion of target customers. We �rst re�ne it to

adjust to targeted in�uence maximization with the same approx-

imation guarantee (1 − 1/e − ϵ), and later implement a scalable

solution with smart indexing techniques (Sections 3.2 and 3.3).

Let G denote a (deterministic) sub-graph of the input uncertain

graph G, generated by removing each edge e ∈ E with probability

1−p(e) independently. The Reverse Reachable (RR) Set for a random

target node v consists of all nodes that can reach v inG . The work-

�ow of targeted reverse sketching, which is similar to the original

one in [5, 28, 29], is as follows:

1. Generate θ random RR-sets from G .

2. Next, a greedy algorithm repeatedly identi�es the node pre-

senting in the majority of RR-sets, adds it to the seed set, and the

RR-sets containing it are removed. This process continues until k

seed nodes are identi�ed.

In [29], it was proved that when θ is su�ciently large, reverse

sketching returns near-optimal results with high probability.

Our major update is that the target node v in each RR-set(G,v)

is sampled uniformly at random only from the target setT (and not

from all nodes). We refer to it as targeted reverse sketching (TRS).

Theorem 5. If θ satis�es:

θ ≥ (8 + 2ϵ) · |T | ·

lnn + ln

(
n

k

)
+ ln 2

OPTT · ϵ2
(8)

then TRS returns a (1 − 1/e − ϵ)-approximate solution, with at least

1 − n−1
(
n

k

)−1
probability.

In the above Inequality, OPTT is the maximum in�uence spread

in the target setT from any node set of cardinality k . Due to the sim-

ilarity of our Inequality 8 with that of the original Inequality from

[29], we omit the proof here (see Appendix for details). However,

our primary contribution for the targeted in�uence maximization is

designing several smart indexing schemes, whose improvement is

demonstrated in Figure 5 and details are introduced next.

A B C

D

E

� �5 �5 L räz

� �5 �7 L räw

� �6 �5 L räu

� �6 �6 L räx

� �6 �7 L rä{

(a) Original Graph

�Ú �Ü�Û

A B EDC

A B EDC

A B EDC

A B EDC

A B EDC

A B EDC

A B EDC

A B EDC

A B EDC

÷ÚÚ

÷ÚÛ

÷ÚÜ

÷ÛÚ

÷ÛÛ

÷ÛÜ

÷ÜÚ

÷ÜÛ

÷ÜÜ

�Ú �Û

�55 �66

�56 �66

�57 �65

RR-Set 1 A B EDC

A B EDC

A B EDC

E: {}

E: {A, B, C}

D: {B, C}

RR-Set 2

RR-Set 3

(b) Possible World Indexes

�55 �67 A B EDC E: {C}RR-Set 4

(c) RR-Sets (Selected Tags = �Ú , �Û)

Figure 6: I-TRS indexing and querying: The original uncertain

graph contains three tags {c1, c2, c3 }. P (e |c) = 0 for all other tags

that are not speci�ed. The query considers the target setT = {D, E }.

The selected tag set C1 = {c1, c2 }. We set θ = 4, θc = 3.

3.2 Indexing for Targeted Reverse Sketching
Sampling RR-sets online is still time-consuming for larger social

networks. Moreover, as stated in Section 2.3, our method works in

several rounds — every time �nding the seed nodes over a di�erent

graph (due to di�erent tag sets), and this requires generating of

di�erent RR-sets at each round. Aiming at higher e�ciency, we

slightly loosen the constraint on RR-set independency (that is re-

quired to provide an approximation guarantee for TRS), and instead

design heuristic indexing methods that appropriately generate ran-

dom samples beforehand, thereby signi�cantly reducing the online

querying time (up to 30% as shown in Figure 5). With a series of

improvements, we develop three indexing schemes, I-TRS, L-TRS,

and LL-TRS, and later show that our ultimate approach LL-TRS su-

persedes the original RR-set based scheme in online query time, while

having a small overhead due to index building and storage.

We refer to our �rst indexing scheme as I-TRS (i.e., Indexing for

Targeted Reverse Sketching). Note that in successive iterations of

our framework, the optimal tag set may be di�erent. The working

graph for an iteration is a combination of each chosen tag’s individ-

ual uncertain graph. This motivates us to sample and build indexes

on uncertain graphs by considering each tag separately. We de�ne

our random samples, denoted by Possible World Index, as following.

Possible World Index. A possible world index (I , c), for a tag c , is

the sub-graph of G, generated by: (a) �rst keeping only the edges

associated with tag c , (b) then removing any remaining edge e ∈ E

with probability 1 − p(e |c), and �nally (c) retaining all nodes of G

inside G, even if there is no edge connected to some node in G.

Example 1. Figure 6 demonstrates the work�ow of I-TRS on an

uncertain graph G (shown in sub-�gure(a)). G originally contains 3

tags {c1, c2, c3}. When generating a possible world index for a speci�c

tag ci , we consider only those edges e in G such that p(e |ci) > 0;

and then remove it with probability 1 − p(e |ci). We record all the

edges remained as one possible world index for the tag ci . Suppose,

in this example, we are building θc = 3 possible world indexes for

every tag ci . Then, we repeat the aforementioned procedure 3 times

Method
Inf. Spread in Targets (%), #Seeds(k) = 20 Inf. Spread in Targets (%), #Tags(r) = 20
r=5 r=10 r=20 r=30 k=5 k=10 k=20 k=30

TRS 24.70 48.49 71.26 75.11 42.38 61.69 71.48 73.36
I-TRS 24.58 48.6 71.33 74.92 42.51 61.66 71.33 73.29

Deviation -0.12 +0.11 +0.07 -0.19 +0.13 -0.03 -0.15 -0.07

Table 2: Accuracy comparison between TRS and I-TRS with opti-

mal tags, Yelp. #targets=3K, δ = 0.01, α = 1.

 0
 0.002
 0.004
 0.006
 0.008
0.010
 0.012
 0.014

5 10 20 30

A
v
g
.
#
P

a
ir
w

is
e

C
o
m

m
o
n

In

d
e
x
e
s

#Tags (r)

Expected Value
Experimental Value

(a) Avg. #Pairwise Common Indexes

10
1

10
2

10
3

10
4

10
5

10
6

5 10 20 30

θ
 a

n
d

 θ
c

#Tags (r)

θ θc

(b) θ and θc
Figure 7: Implication of Theorem 6, Yelp. #targets=3K, #seeds=10,

δ = 0.01, α = 1. Optimal tags are used.

for each tag. Thus, we obtain all possible world indexes as shown

in sub-�gure(b). Finally, sub-�gure(c) presents how we generate RR-

Sets when processing online queries. Assume that one requires θ = 4

RR-Sets and the selected (top-2) tag set is {c1, c2}. Then, we repeat

the following steps 4 times: First, randomly select one possible world

index from each index set of tag c1 and c2, and combine them together

as the working graph G. For example, the �rst working graph in

sub-�gure(c) is constructed by combination (i.e., graph union) of two

possible world index, I11 and I22. Next, we choose a random node t

from target setT , and apply reverse BFS inG starting from t , recording

all visited nodes as an RR-Set. This ultimately produces 4 RR-Sets,

{{}, {A,B,C}, {B,C}, {C}}.

Index Size Estimation. Two working graphs will be correlated if

they share some common indexes. As an example, in Figure 6(c),

the working graphs for RR-sets 1 and 4 are correlated, because they

use the same index I11 for tag c1. We, therefore, aim at reducing

the average number of common indexes between any pair of work-

ing graphs from the set G of all θ working graphs. Note that the

following theorem does not ensure approximation guarantee, but

only provides a bound on the required number of possible world

indexes per tag. It ensures that the average number of common

indexes between any pair of working graphs is practically small.
Theorem 6. Let C(G) denote the random variable corresponding

to the average number of common indexes between any two di�erent

working graphs selected from the set G of all θ working graphs, built

by I-TRS. If θc satis�es the following, for each tag c ,

θc ≥
rθ

αδ (θ − 1) + r
(9)

then C(G) ≤ α holds with at least (1 − δ) probability.

Proof. C(G) can be calculated as follows.

C(G) =
1

θ (θ − 1)

∑
дi ∈G

∑
Ij ∈I (дi)

∑
дt ∈G\дi

ϕ(Ij ,дt) (10)

where I (дi) is the set of indexes used by the working graph дi . The

indicator function ϕ(Ij ,дt) returns 1 if Ij ∈ I (дt) and 0 otherwise.

Let X (Ij) be the random variable denoting the total count of

index Ij appearing in all θ working graphs in G. We have:

X (Ij) =
∑
дi ∈G

ϕ(Ij ,дi) (11)

For each tag, we have θc candidate indexes, and they share the

same probability to be chosen by a working graph. Therefore,

X (Ij) follows the Binomial distribution with probability 1
θc
, that

is, X (Ij) ∼ B(θ , 1
θc
) and E

[
X (Ij)

]
=

θ
θc
. Then, we can rewrite

Equation 10 as:

C(G) =
1

θ (θ − 1)

∑
дi ∈G

∑
Ij ∈I (дi)

©­«
∑
дt ∈G

ϕ(Ij ,дt) − ϕ(Ij ,дi)
ª®¬

=

1

θ (θ − 1)

∑
дi ∈G

∑
Ij ∈I (дi)

(
X (Ij) − 1

)

=

r

θ − 1

(
X (Ij) − 1

)
(12)

Taking expectation at both side, we get:

E [C(G)] =
r

θ − 1
(E

[
X (Ij)

]
− 1) =

(θ − θc)r

(θ − 1)θc
(13)

By Markov’s Inequality, we have:

Pr [C(G) ≤ α] ≥ 1 −
E [C(G)]

α
(14)

Let δ =
E[C(G)]

α , we have:

αδ = E [C(G)] =
(θ − θc)r

(θ − 1)θc

=⇒ θc =
rθ

αδ (θ − 1) + r
(15)

This completes the proof. �

Empirical Study. Table 2 and Figure 7 provide an experimental

study for Theorem 6. We show in Table 2 that the di�erence of

in�uence estimated by TRS (approximation method) and I-TRS (our

indexing method) is within 0.2% in all cases. Figure 7(a) provides

justi�cation for our good performance. Empirical results con�rm

that, when we set the probabilistic upper bound α = 1 (and δ =

0.01), the average number of pairwise common index is only 0.01,

which is similar to its expectation (Equation 13). This means that the

average number of common indexes between any pair of working

graphs is practically small, which leads to the similar in�uence

estimation as the approximationmethod, TRS. Moreover, Figure 7(b)

shows that our θc is much smaller than θ (about 3 ∼ 4 orders of

magnitude), leading to smaller index size and building time.

Time Complexity. Following [29], the time complexity of TRS

algorithm can be expressed as: O(k(m + n)(c1 + c2 + pc3) logn/ϵ
2),

where k is the number of seeds,m and n the number of edges and

nodes, respectively. The term O(k(m + n) logn/ϵ2) represents the

number of edges examined to ensure (1 − 1/e − ϵ) approximation

guarantee, whereas (c1 + c2 + pc3) denotes the cost of processing

each edge. In particular, c1 is the cost to read an edge information

(i.e., its endpoints, probability), c2 the cost of a coin toss (i.e., random

number generation) for checking its existence, and c3 the cost to

check whether its source node is visited or not during the reverse

BFS, if the coin toss succeeded (with edge probability p). In contrast,

for our indexing algorithm, the time complexity is:O(k(m+n)pt(c1+

c3) logn/ϵ
2), where t is the average number of tags per edge. This is

because our indexes remove the coin toss cost, instead an edge may

exist in multiple tag’s indexes. Speci�cally, for smaller t , we �nd

that pt(c1+c3) < (c1+c2+pc3), and this di�erence is magni�ed by a

large number O(k(m+n) logn/ϵ2) of edges examined. This explains

C

B

A

E

F

L

G

H

I

J

K

M

N

O

P Q

D

Figure 8: Local indexing: Target set = {A, B, C }. The shaded region

is the local region, on which the possible world indexes are built.

Dataset
Index Size (GB) Index Building Time (Sec) Querying Time (Sec)

I-TRS L-TRS LL-TRS I-TRS L-TRS LL-TRS I-TRS L-TRS LL-TRS

lastFM 3.8 1.41 1.12 0.7 0.3 0.3 24 23 24
Yelp 155.2 14.9 12.5 664.1 59.9 53.1 2739 2778 2751
DBLP 722.1 72.8 66.7 784 98 78 885 908 914
Twitter 9893 684 448 1724 137 82 6446 6577 6494

Table 3: Index size and building time comparison of three indexing

methods, #seeds=10 , #tags=10, #targets=3K, ϵ = 0.1, δ = 0.01 , h = 3.

the e�ciency improvement due to our indexing method over the

state-of-the art TRS algorithm by a margin of 30% (Figure 5).

3.3 Lazy and Local Indexing: For Improved
E�ciency and Storage

Lazy Indexing. Our previous indexing method I-TRS builds θc
indexes for every tag in the original graph in advance. In practice,

only a few tags are actually involved during query processing.

Taking our experiments on Yelp dataset as an example, if r = 10,

our algorithm terminates after 3 rounds, therewill be atmost 30 tags,

and only their indexes are involved in the entire query processing.

However, in total there are 195 tags in Yelp; therefore, I-TRS builds

at least 165 sets of useless indexes here. Motivated by such fact, we

propose the lazy indexing strategy, denoted as L-TRS, as follows.

Assume that for the current iteration of our framework, the

optimal tag set is given by C1. For some tag c ∈ C1, if possible

world indexes for tag c already exist from earlier rounds, we also

use them as indexes in the current round. Only for other tags c ∈ C1

for which an index set does not exist, we build θc possible world

indexes. In other words, we create indexes for a tag in a lazy manner

as and when they are necessary. Therefore, L-TRS improves on I-

TRS in both indexing time and space. Another aspect of our lazy

indexing is that it makes indexing useful even for one-time querying,

by generating only the necessary sets of indexes, while permitting

re-using of indexes across di�erent iterations of our framework.

For lazy indexing to be e�ective, we prove the following claim.

Lemma 3. If a tag c was encountered in previous iterations, there

is no need to build more indexes for c in the current round.

Proof. See Appendix. �

Local Indexing. In many real-world application scenarios, the

target nodes tend to be clustered locally. For example, in the Yelp

dataset, “users from a speci�c city” is a common way to de�ne a

target set. The users from Toronto are located closely in some region

of the graph, while the users from Pittsburgh are in another cluster.

When doing the reverse BFS in a (deterministic) graph starting

from a Toronto target user, most of the nodes visited generally also

come from the Toronto cluster, and we rarely encounter a Pittsburgh

user in the corresponding RR-set. Inspired by this observation, we

further implement a local indexing strategy as follows.

Given an uncertain graph G, a target set T , and a small distance

threshold h, we de�ne the local region as the subgraph Gl of G,

where all nodes in Gl are at most h-hops away from at least one

target node inT . The subgraph G \Gl is denoted as the outer region.

During the reverse BFS traversal and RR-sets computation, since the

nodes within the local region are visited predominantly compared

to the nodes outside, we only index the local region of the uncertain

graph, that is, we build our possible world indexes only considering

the local region. We note that h is a user-de�ned distance threshold,

and we select its optimal value (e.g., h=3) based on empirical results.
Example 2. In Figure 8, the shaded area around the target set

{A,B,C} is the local region. Nodes {A,B,C,D,E, F ,G} are in the

local region, and E, F ,G are boundary nodes. The remaining nodes

{H , I , J , ...,Q} are outside the local region (i.e., in the outer region).

We only build indexes over the local region, which is much smaller

than the indexes over the entire graph. Through boundary nodes in

the local region, the online query processing is still able to visit outside

nodes, e.g., I , J ,K , which may be included in a limited number RR-sets.

Clearly, these outside nodes are less frequently visited, hence we do

not build indexes over them. Moreover, there are several nodes, e.g.,

M,N ,O, P ,Q , that are disconnected from the target set in the input

uncertain graph; hence, they can never be included in any RR-set. By

constructing indexes locally, we avoid the cost of redundant index

building over such disconnected nodes.
The ultimate indexing scheme that we propose in this work is

referred to as the LL-TRS (LL is an abbreviation for lazy and local).

Bene�ts of LL-TRS Index. We note that LL-TRS ensures the same

guarantee in terms of the average number of common indexes between

any pair of working graphs, as in Theorem 6. On the other hand,

LL-TRS index is query-speci�c, since one needs to know the target

set to compute the local region, and build the index only over

that local region (also in a lazy manner). Therefore, for fairness

of comparison, we add the index building time, while reporting

the query answering time for both L-TRS and LL-TRS approaches.

By well choosing h, our all three index based approaches require

similar querying time (Table 3). Table 3 also compares the index

size and indexing time among our indexing methods. We �nd that

LL-TRS signi�cantly reduces indexing time and space.

4 ALGORITHMS FOR FINDING TAGS
Given a seed set S , a target set T , and a budget r on the number of

tags, we develop algorithms to �nd the top-r tags that maximize

the expected in�uence spread from S toT . The problem is NP-hard,

hard to approximate, and neither submodular, nor supermodular for

inclusion of tags (Section 2.2). Thus, unlike our top-k seeds �nding

algorithm in the earlier section, a similar hill-climbing approach

does not come with a provable approximation guarantee. Therefore,

we adopt a greedy heuristic analogous to [13], and improve its quality

(by a margin of 30%) with a novel batch-paths selection strategy.

We brie�y introduce the individual paths selection method [13]

in Section 4.1, point out its shortcomings in Section 4.2, and �nally

describe our novel batch-paths selection algorithm in Section 4.3.

4.1 Individual Paths Selection
Intuitively, what matters in computing the in�uence spread from

the seed set S to the target set T is the set of highly probable paths

connecting them [8, 15, 16], where the probability of a path is deter-

mined by multiplying the edge probabilities on that path. Motivated

by this, a two-step approach could be developed as follows.

• First, we select the top-l most probable paths between ev-

ery seed-target pair (in a tag agnostic manner). It could be

A

C

B

D

F

E

G

I

H

þ

Ú
�
Ú
L
Ù
ä
â

þ

Û
�
ß
L
Ù
ä
á

þ
Ü �Û L Ùäâ

þ
Ý �Þ L Ùäà

þ
ß �Þ L Ùäâ

þ
á �Ü L Ùäâ

þ
ÚÙ �Ý L Ùäá

þ
ÚÛ �Þ L Ùäà

Figure 9: Tags selection. Seed set = {A, B, C }, target set ={G, H, I }.

implemented with the Eppstein’s algorithm [9, 13]. Let us

denote by P the set of all paths selected as above.

• Next, we iteratively include these paths from P into our

solution P1 that maximally increase the in�uence spread

(estimated via MC-sampling) from S to T , while still main-

taining the budget on total r tags over all included paths.

Since the algorithm includes only one path at a time in the second

step, we refer to this method as individual paths selection.

4.2 Shortcomings of Individual Paths Selection
We demonstrate with the following example that the individual

paths selection approach has several critical shortcomings.

Example 3. In Figure 9, there are total 14 paths between the

seed set {A,B,C} and the target set {G,H , I }. They are as follows.

A → G : {e3e8, e1e7}, A → H : {e1e4e10, e9}, A → I : {e1e4e11},

B → G : {e7}, B → H : {e4e10}, B → I : {e4e11}, C → G : {e2e7},

C → H : {e2e4e10, e5e10}, C → I : {e2e4e11, e5e11, e6e12}. Let

us apply the individual paths selection algorithm to �nd the top-

3 tags in this example. In the �rst iteration, path e3e8 will be included

in the solution, since it has the highest individual expected spread

σ (S,T , {e3e8}) = 0.81. In the second round, because of budget on tags:

r = 3, there are only three choices: {e7, e9, e6e12}. Considering the

marginal gain, e6e12 will be included. Therefore, we obtain the top-3

tag set {c2, c3, c5} The expected spread achieved by this top-3 tag set

is: σ (S,T , {e3e8, e6e11}) = 0.81 + 0.63 = 1.44.

Unfortunately, the best 3 tags in this example are c4, c5, c6, which

result in an expected in�uence spread σ (S,T ,P1) ≈ 2.61, where

P1 = {e7, e9, e2e7, e4e10, e5e10, e2e4e10, e5e11, e2e4e11, e6e12}. It is

obvious that in Example 3, the individual paths inclusion algo-

rithm makes a bad choice in the �rst round, and can never recover

from it. Below we investigate the key reasons behind this problem.

(1) Although the path e3e8 has the highest probability (0.81)

among all paths, the tags on this path, c2 and c3, do not appear

elsewhere in the graph. Our �nal goal is to select optimal tags,

but not the paths themselves. As an example, the path e4e10 has

only 0.56 probability; however, selecting e4e10 will also activate

paths e7, e5e10, and e6e12, since they all share same tags c4 and c5,

leading to a total expected spread σ (S,T , {e4e10, e5e10, e6e12, e7})

=0.8[1− (1− 0.7)(1− 0.9)]+ 0.9× 0.7+ 0.8 ≈ 2.21. This implies that

paths sharing same tags must be evaluated together.

(2) Though the path e7 has a slightly lower probability (0.8)

compared to that of e3e8 (0.81), including it only costs 1 tag, while

e3e8 consumes 2 tags. Therefore, it is more appropriate to evaluate

the marginal gain per new tag included, rather than that of a path.

(3) Some paths, e.g., e7, e1e7, and e2e7, are actually equivalent in

the original graph. All the source nodes shall be activated in the

2,31,4

1,4,5 1,5,6

4

4,5 5,64,6

4,5,6

5

�Ü�áA5A;

A5A8A54 A5A8A55

�à

�Ý�ÚÙ

�Þ�ÚÙ

�Ý�ÚÚ

�Þ�ÚÚ
A6A8A55

A6A;

A6A8A54

�ß�ÚÛ

6

�â

Figure 10: Batch-paths lattice for Figure 9. Dashed circles present

redundant search space due to edges between seeds (removed).

2,3

4

4,5 5,6

5
C={ } C={ 4, 5 }

(a) (b) (c)

2,3

6
C={ 4, 5 }

(d)

2,3 5,6

6 6
C={ 4, 5 }

2,3

6

6

Figure 11: Updates of batch-paths lattice on inclusion of tags {4, 5}

beginning, therefore the existence of edges between them has no

impact on in�uence di�usion. By removing edges between source

nodes beforehand, we can avoid including redundant paths, which

can signi�cantly reduce the computation cost (only 8 out of 14

paths remaining for Example 3).

Inspired by above, we develop a batch-paths selection algorithm

that achieves higher accuracy with the included tags.

4.3 Batch-Paths Selection
We start with de�ning a path-batch P(C) for a tag set C , which is a

set of paths such that for every path P ∈ P(C), its tag set is equal

to C . For example, P(c4, c5) = {e4e10, e5e10}, whereas P(c5) =

{e6e12}. Clearly, path-batch is our measuring unit in the novel

algorithm. All paths located in the same path-batch contain same

tags. Hence, activating one of them will activate other paths in the

batch. Furthermore, since the tag sets of path-batches can have

subset relationships, we should also �nd those batches which are

“dominated” by the current batch (based on subset relationships over

tag sets), and activate them. For example, activating P(c4, c5) will

activate all paths in the path-batch P(c5). We de�ne the descendent

of a path-batch P as:

DesP(C) = {P(C1) : C1 ⊆ C} (16)

We are now ready to de�ne the objective of our greedy approach,

that iteratively includes a path-batch P∗ having the maximum mar-

ginal gain ratio (i.e., marginal gain/new tag), while still maintaining

the budget r on the number of included tags.

P∗
= argmax

P∈PB\PB′

[
σ (S,T ,DesP ∪ PB′) − σ (S,T ,PB′)

C(P)

]
(17)

In the above equation, PB is the collection of all path-batches,

whereas PB′ is the set of already included path-batches in our

solution. DesP denotes the descendent of the path-batch P, and

C(P) is the number of new tags in the path-batch P.

E�cient Algorithm. To �nd the optimal path-batch at every it-

eration (by following Equation 17), we build a path-batch lattice

as shown in Figure 10. (1) All the edges between source nodes are

removed beforehand. (2) Each node in the lattice represents a path-

batch, labeled by its tag set. (3) In each level of the lattice, the nodes

(i.e., path-batches) share same number of tags. (4) Each node in the

lattice points to all the nodes in the successive lower level whose

tag set is a subset of its own.

To construct the lattice, we consider the paths in P, and �lter out

those paths which violate the budget r on the number of tags. The

Algorithm 1 Batch-Paths Selection Algorithm

Require: path set P from source set S to target set T , a positive integer r

Ensure: A subset of paths P1 ⊆ P and its tag set C1 whose size is not

larger than r

1: P1 = ϕ , C1 = ϕ

2: Construct path-batches PB and the lattice with P

3: while |PB | > 0 and C1 < r do

4: Find optimal path-batch P∗ to include next (Equation 17)

5: Add all the paths in P∗ and its descendants into P1

6: Add tags of P∗ to C1

7: Update the lattice to remove tags of P∗ from it (Figure 11)

8: end while

9: return Selected tag set C1

lattice is initially empty. For each path in P, if its tag set is the same

as some existing batch in the lattice, we add the path into that batch.

Otherwise, we create a new batch containing this path. When a

new path-batch is generated, we locate its appropriate level within

the lattice according to its tag set size. Finally, we add links from

each node to all other nodes in the successive lower level whose

tag set is a subset of its own. The complete procedure of �nding

the top-r tags with batch-paths inclusion is given in Algorithm 1.

Belowwe demonstrate it with an examplewhich iteratively includes

path-batches from the lattice into our solution.
Example 4. Let us apply the batch-paths inclusion technique

to �nd the top-3 tags in Figure 9. The corresponding lattice is pre-

sented in Figure 10. We select the path-batch (with its descendent)

DesP(c4, c5) = {e4e10, e5e10, e7, e6e12} as the best batch in the �rst

round (by following Equation 17), which generates an expected spread

σ (S,T ,DesP(c4, c5)) = 0.8[1 − (1 − 0.7)(1 − 0.9)] + 0.9 × 0.7 + 0.8

≈ 2.21. After the inclusion of DesP(c4, c5) in our solution, we up-

date the lattice with the remaining tags and get new one as shown

in Figure 11. Since only one more tag can be selected (as r=3), the

batch {c6} is selected by following Equation 17). The �nal tag set

selected by our batch-paths inclusion method is {c4, c5, c6}, and they

can bring 2.61 total expected spread, which is higher than that of the

individual-paths inclusion (1.44).

4.4 Indexing for In�uence Spread Computation
With increasing number of paths in the batch-paths selection al-

gorithm, MC sampling becomes expensive. Therefore, we apply a

reverse sketching-based indexing method to speed up the in�uence

spread computation of path-batches. The major challenge here is

that OPTT would be too small when few paths are selected (at the

initial few rounds), which will result in too big θ , i.e., the number of

RR-sets required (see Inequality 8). In contrast, MC sampling runs

faster when only a few path-batches have been included. Hence, we

design a two-step in�uence spread computation strategy as follows.

(1) When in�uence spread is less than a given threshold OPT ′
T
,

we adopt MC sampling to compute in�uence spread of the included

path-batches. (2) After the in�uence spread of included path-batches

(estimated by MC sampling) reaches OPT ′
T
, we switch to reverse

sketching for in�uence spread computation.

The thresholdOPT ′
T
is decided empirically, and can be de�ned as

a ratio over the target set size |T |. Therefore, one can compute θ by

Inequality 8 without knowing the input target set T apriori. With

the inclusion of new path-batches, OPTT can only increase, which

means that θ number of RR-set indexes generated considering the

 0

 20

 40

 60

 80

 100

5 10 15 20 30

In
f.
 S

p
re

a
d
 i
n
 T

a
rg

e
ts

(%
)

#Paths (each seed-target pair)

Batch Individual

(a) In�uence spread achieved

 3000

 4000

 5000

 6000

 7000

5 10 15 20 30

R
u
n
n
in

g
 T

im
e
 (

S
e
c
)

#Paths (each seed-target pair)

Batch Individual

(b) Running time

Figure 12: Accuracy and e�ciency of Batch-paths vs. individual

paths selection: Twi�er, #seeds=10, #tags=10, ϵ=0.1, #targets=3K.

threshold OPT ′
T
, would be su�cient enough for the successive

rounds of the batch-paths selection algorithm. Finally, θ RR-set

indexes are created in an o�ine manner.

Time Complexity.We denote the set of paths as P and the collec-

tion of path-batches as PB. The time complexity to construct the

lattice is O(|P| · |PB| + |PB|2), the �rst term is due to grouping

the paths into batches and forming the nodes of the lattice, and the

second term is due to adding links in the lattice.

The procedure to �nd the top-r tags by following Algorithm 1

requiresO(r |PB|w(n′+m′)) time when usingMC-sampling, where

w is the number of MC samples, n′ andm′ are the number of nodes

and edges, respectively, of the subgraph induced by the paths in P.

The termw(n′ +m′) is due to estimating the in�uence spreads of

di�erent path-batches via MC-sampling. If using indexed reverse

sketching method, it requires O(θ |P | + r |PB||P|). The �rst term

is for checking each path’s existence in each RR index. The second

term is due to computing each batch’s coverage in the RR indexes.

We note that the number of paths in each batch is at most |P |.

Therefore, the total complexity isO(θ |P |+a |PB||P|+b |PB|w(n′+

m′)), where a + b = r , the budget on the number of tags.

4.5 Bene�ts of Batch-Paths Selection
Figure 12 shows the accuracy and running time comparison on

Twitter dataset between batch-paths vs. individual paths algorithms.

We �nd that path inclusion in batches signi�cantly outperforms

the individual paths inclusion method in accuracy (up to 30% more

in�uence spread) with comparable running time.

5 PUTTING EVERYTHING TOGETHER
5.1 Baseline Greedy Algorithm
A straightforward greedy algorithm would be to �rst �nd the best

seed assuming all tags. Then, retrieve the best tag between this

seed and all targets. Later, according to the best seed and the best

tag selected earlier, we �nd the next-best seed and the next-bast

tag, repeating this procedure until k seeds and r tags are found. We

empirically �nd that this greedy approach results in lower in�uence

spread, since the tags and seeds are selected incrementally — all

seeds and tags are not optimized at the same time.

5.2 Proposed Iterative Algorithm
The work�ow of our proposed iterative framework is given in Algo-

rithm 2. We �rst initialize the seed set and the tag set (as discussed

in Section 5.3). Next, the framework alternatively and in an itera-

tive manner, optimizes the top-k seed users and the top-r relevant

tags, assuming that the others are �xed. These are computed by the

seeds �nding algorithm and the tags �nding algorithm, respectively.

At the end of every round, we verify if a �xed-point is reached,

i.e., the top-k seeds and the top-r tags achieve a similar in�uence

spread in two successive rounds. Our proposed iterative algorithm,

Algorithm 2 Complete Algorithm for Jointly Finding k -Seeds and r -Tags

Require: Graph G = (V , E, P), target set T , budgets k and r

Ensure: Optimal seed set S∗ and tag set C∗

1: Initialize S∗ of size k , C∗ of size r

2: while not converge do

3: Find optimal S∗ assuming given C∗

4: Find optimal C∗ assuming given S∗

5: end while

6: return S∗, C∗

in essence, is similar to various classical data mining and machine

learning algorithms, e,g., K-means and Expectation-maximization.

We prove that our method converges to a local optimum, because

at every round, the expected in�uence spread within the target set

monotonically increases until convergence.

Theorem 7. During the course of our iterative algorithm, the

expected spread within the target set monotonically increases.

Proof. Let S(t),C
(t)
1 denote the sets of top-k seeds and the top-r

tags, respectively, at the start of the t-th iteration. In the current

iteration, we �rst optimize the seed set, given the tag set. Therefore,

σ (S(t+1),T ,C
(t)
1) ≥ σ (S(t),T ,C

(t)
1) (18)

Next, we optimize the tag set, given the seed set as obtained above.

Hence, the following holds.

σ (S(t+1),T ,C
(t+1)
1) ≥ σ (S(t+1),T ,C

(t)
1) (19)

Combining Equations 18 and 19, the expected spread within target

set monotonically increases in successive iterations. �

Finally, we note that our algorithm iterates the objective function

σ (S,T ,C1) that is bounded above, and whose domain is a �nite

set. Coupled with Theorem 7, we guarantee that the algorithm

converges to a local optimum after a �nite number of iterations.

5.3 Initialization for Iterative Algorithm
Uniform at Random Initialization. A simple way to initialize

the seed set and the tag set is uniform at random selection from the

set of all nodes and all tags, respectively. Intuitively, this initializing

method is cheap, but might not always be of good quality, leading

to higher convergence time for Algorithm 2. Below, we propose the

following initialization methods aiming for faster convergence.

In�uence Maximization-based Seeds Initialization.We run a

classical in�uencemaximization algorithm (e.g., [29]) to �nd the top-

k seed nodes that maximize the in�uence spread over the target set,

while considering all tags. This leads to a good-quality initial seed

set (and therefore, faster convergence); however, the initialization

phase becomes more expensive.

Frequency-based Tags Initialization. Generally, those tags ap-

pearing frequently among target nodes’ incident edges are more

relevant. Therefore, we aggregate the total probability for each tag

to appear in all target nodes’ incident edges. Next, we select the

top-r tags with the highest accumulative probability as initial tags.

In our experiments, we compare some combination of the afore-

mentioned initializing methods, and analyze their trade-o�s.

Frequency-based Search Space Elimination. We compute the

aggregated probability for each tag. Tags with low aggregated prob-

ability shall be either in too few edges, or having too low edge

Name #Nodes #Edges #Tags Edge Prob: Mean, SD, Quartiles

lastFM 1 322 13 842 78 0.26, 0.23, {0.06, 0.2, 0.41}

DBLP 704 266 4 727 290 230 0.26, 0.15, {0.18, 0.18, 0.33}

Yelp 125 368 808 909 195 0.33, 0.25, {0.18, 0.26, 0.5}

Twitter 6 294 565 11 063 034 500 0.27, 0.14,{0.18, 0.18, 0.33}

Table 4: Characteristics of datasets.

probabilities. Such tags generally contribute less in in�uence di�u-

sion, and we remove them beforehand from the search space.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup
We perform experiments to demonstrate the accuracy (i.e., in�u-

ence spread within target set), e�ciency, and scalability of our

algorithms (averaged over 10 runs). The code is implemented in

C++ and executed on a single core of a 256GB, 2.40GHz Xeon server.

Dataset. We use four real-world social networks (Table 4). (1)

lastFM.We obtain this dataset from [4], which is a music-listening

history record. Nodes denote users and edges represent their

friendships. (2) DBLP. DBLP (http://dblp.uni-trier.de/xml) is a well-

known collaboration network. We downloaded it on March 31,

2017. Each node is an author and edges denote their co-author

relations. (3) Yelp. Yelp (https://www.yelp.com/dataset_challenge)

is a user-business reviewing network. Every node is a user. Edges

are generated based on their friendship, and directed according

to the time-stamps of their reviews for same businesses. (4) Twit-

ter. In Twitter (http://snap.stanford.edu/data/), nodes are users and

edges are their re-tweet relationships. lastFM and DBLP graphs are

undirected, whereas Yelp and Twitter are directed.

Tags and Edge Probabilities. (1) lastFM. The tags are given by

music styles. (2) DBLP. The tags are extracted from all paper titles,

e.g., database system, neural network, FPGA, etc, based on both

their frequency and how well they can represent various sub-areas

of computer science. (3) Yelp. Users may visit same businesses and

each business belongs to some categories (e.g., travel, dance clubs,

burger, etc.). We use these categories as tags. (4) Twitter. Tags are

given by hashtags. For every edge (u,v) and tag c , we compute the

frequency (i.e., number of occurrences) of c in (u,v). Let us denote

this frequency by t , thenwe assign probabilityp((u,v)|c) = 1−e−t/a

[23]. The intuition is that the more the times the tag c appears on

the edge (u,v), the higher the chance (i.e., the probability) that u

in�uences v for that tag. As an example, for lastFM we calculate

the frequency t for every music style c based on each node pair’s

common listening history.We set a = 5 forDBLP and Twitter, a = 10

for Yelp, and a = 1000 for lastFM (since each node pair has a large

common listening history, we set higher a in this dataset to avoid

unusually high connectivity between node pairs).

Target Set.We do breath �rst search (BFS) from nodes with high in-

degrees, and record the visited nodes as targets (since these nodes

are co-located within a small region of the graph). (1) lastFM &

Twitter. There is no speci�c attribute (e.g., geolocation) for users

in these datasets. Hence, we do BFS starting from high in-degree

nodes. The target set size of lastFM is 500 and that of Twitter is

varied from 1K to 50K. (2) DBLP. We select active databases/ data

mining researchers as target nodes, which is decided by whether

an author has more than 5 papers in [SIGMOD, VLDB, KDD, PODS,

ICDE, CIKM]. Roughly, there are 3K such authors. (3) Yelp. We

 20

 40

 60

 80

5 10 20 50 100

In
f.
 S

p
re

a
d
 i
n
 T

a
rg

e
ts

 (
%

)

#Seeds

Greedy Iterative

(a) Inf. Spread, lastFM

1*10
3

2*10
3

3*10
3

4*10
3

5*10
3

6*10
3

5 10 20 50 100

R
u

n
n

in
g

 T
im

e
 (

S
e

c
)

#Seeds

Greedy
Iterative

(b) Running Time, lastFM

 40

 50

 60

 70

 80

 90

5 10 20 50 100

In
f.
 S

p
re

a
d
 i
n
 T

a
rg

e
ts

 (
%

)

#Seeds

Greedy Iterative

(c) Inf. Spread, Twitter

1*10
4

2*10
4

3*10
4

4*10
4

5*10
4

6*10
4

5 10 20 50 100

R
u

n
n

in
g

 T
im

e
 (

S
e

c
)

#Seeds

Greedy
Iterative

(d) Running Time, Twitter

Figure 13: Accuracy and e�ciency analysis to adjust seed set size k . r = 10, |T | = 3K .

 40

 45

 50

 55

 60

 65

 70

5 10 15 20 30

In
f.
 S

p
re

a
d
 i
n
 T

a
rg

e
ts

 (
%

)

#Tags

Greedy Iterative

(a) Inf. Spread, DBLP

2*10
3

4*10
3

6*10
3

8*10
3

1*10
4

5 10 15 20 30

R
u

n
n

in
g

 T
im

e
 (

S
e

c
)

#Tags

Greedy
Iterative

(b) Running Time, DBLP

 20

 40

 60

 80

5 10 15 20 30

In
f.
 S

p
re

a
d
 i
n
 T

a
rg

e
ts

 (
%

)

#Tags

Greedy Iterative

(c) Inf. Spread, Yelp

2*10
3

4*10
3

6*10
3

8*10
3

1*10
4

1.2*10
4

1.4*10
4

5 10 15 20 30

R
u

n
n

in
g

 T
im

e
 (

S
e

c
)

#Tags

Greedy
Iterative

(d) Running Time, Yelp

Figure 14: Accuracy and e�ciency analysis to adjust tag set size r . k = 20, |T | = 3K .

Method
Inf. Spread in Targets (%) Running Time (Sec)

Seeds (k) # Seeds (k)
5 10 20 50 100 5 10 20 50 100

RS+RT 42 64 75 82 84 6 400 11 100 17 100 27 200 39 400
IMS+RT 42 66 75 82 84 5 800 9 500 14 800 23 500 34 200
RS+FT 48 74 78 82 84 3 700 7 700 12 000 20 100 30 200
IMS+FT 49 74 78 82 84 5 000 9 200 14 000 22 300 33 100

Table 5: Accuracy and e�ciency for di�erent initialization meth-

ods, Yelp. r = 20, |T | = 3K .

adopt aforementioned BFS method to select active users in each

city. Group sizes vary from 1K to 10K.

Parameters Setup. (1) Seed set size (k).We vary k from 5 to 100.

(2) Tag set size (r). We vary r from 5 to 30. (3) Target set size

(|T |). By default, as the target set, we use 500 nodes for lastFM, and

3K nodes for other datasets. We, however, demonstrate scalability

by considering up to 50K target nodes. (4) RR-Sketches. ϵ is set

as 0.1 following [29]. Probability parameter δ and upper bound of

common index parameter α in Theorem 6 are set as 0.01 and 1,

respectively, and the local-region parameter h as 3. We also verify

the sensitivity of our methods with respect to these parameters in

the Appendix (Section D.1). (5) Tags �nding. Number of paths per

seed-target pair for our Batch-Paths selection algorithm is set as

10, the optimality of which was demonstrated earlier in Figure 12.

Competing Methods and Initialization.We compare our base-

line greedy method with the proposed iterative algorithm. For the

iterative algorithm, we consider four initialization techniques. We

denote random initialization on seeds and tags as RS and RT , respec-

tively. In�uence maximization-based seed initialization is denoted

as IMS , and frequency-based tags initialization is denoted as FT .

We �nd that the best initializing method is RS + FT , while other

combinations will be evaluated in Section 6.2.

6.2 Accuracy and E�ciency Analysis
We present in�uence spread within target set (accuracy) and run-

ning time (e�ciency) comparison between baseline greedy and our

iterative algorithms, while varying two major parameters, seed set

size k and tag set size r , under di�erent initializing conditions.

Varying Seed Set Size k . As shown in Figure 13, the in�uence

spread of our method signi�cantly outperforms the baseline in ac-

curacy, and executes in similar time. In�uence spread rises with

larger k . Such growth is more signi�cant when k is small for larger

datasets, for example on Twitter between k = 5 and k = 10 the

in�uence increase is from 62% to 77%. On the contrary, the running

Method
Inf. Spread in Targets (%)

Iterations
1 1.5 2 2.5 3 3.5 4 4.5

RS+RT 17 42 53 60 63 64 64 64
IMS+RT 42 56 62 66 66 66 converged converged
RS+FT 60 68 74 74 74 converged converged converged
IMS+FT 64 71 74 74 74 converged converged converged

Table 6: In�uence spread achieved after various iterations, with

di�erent initialization methods, Yelp. k = 10, r = 20, |T | = 3K .

time is more sensitive to larger k , whose increasing tendency is near

linear to the growth of k . For seeds �nding part, Theorem 5 requires

bigger θ for bigger k (generally less than twice when k doubles).

For tags �nding part, 2k seed size induces, on average, twice the

number of paths, which roughly requires double evaluating time.

Therefore, our running time increases linearly with bigger k .

Varying Tag Set Size r . For accuracy, the increasing tendency of

r is similar to that of k .With a few important tags, we can already

in�uence most targets. As an example, only top-20 tags can in�uence

about 70% targets in the Yelp dataset (Figure 14(c)). Moreover, the

in�uence spread of our iterative algorithm signi�cantly outperforms

the greedy baseline in in�uence spread.

The running time increases at a higher rate when r is small,

which is because the change in in�uence spread is signi�cant. When

r is large enough, adding more tags changes little in the in�uence

spread, leading to a lower increase rate in the running time.

Varying Initialization. As shown in Table 5, di�erent initializing

methods eventually lead to similar in�uence spread. In some speci�c

cases, e.g., with k = 5 or 10 seed nodes in Yelp, starting with RT gets

stuck in a local optimum, which is about 8% less than initializing

with FT . However, with large enough k (e.g., k = 50 or 100), high-

quality seeds and tags are always found in our solution.

When considering e�ciency, initializing with uniform random

seeds and tags (RS+RT in Table 6) usually requires 1 round to

initialize, about 2.5 rounds to achieve local optimal case, and 1 more

round to con�rm the convergence. Meanwhile, we observe that

either initializing seed set with IMS or tag set with FT will lead to

1-1.5 round reduction in �nding the local optimal solution for most

cases (i.e., in total 3 rounds as shown in Table 6). But initializingwith

IMS does not reduce the running time signi�cantly, since applying

the classical in�uence maximization algorithm on the entire graph

is expensive. On the other hand, FT ’s time cost is trivial, and it

reduces the running time by minimizing the graph size with already

reasonable-quality initial tag set. Therefore, RS + FT is the best

 50

 60

 70

 80

 90

1K 3K 5K 10K 30K 50K

In
f
S

p
re

a
d
 i
n
 T

a
rg

e
ts

 (
%

)

#Targets

r=5 r=10

(a) Inf. Spread, Twitter

 0

2*10
4

4*10
4

6*10
4

8*10
4

1*10
5

1K 3K 5K 10K 30K 50K

R
u
n
n
in

g
 T

im
e
 (

S
e
c
)

#Targets

r=5 r=10

(b) Running Time, Twitter

 200

 300

 400

 500

 600

1M 2M 3M 4M 5M 6M

In
d

e
x
 S

iz
e

 (
G

B
)

#Nodes

k=10 k=20

(c) Index Size, Twitter

2*10
3

5*10
3

8*10
3

1.1*10
4

1.4*10
4

1.7*10
4

2.0*10
4

1M 2M 3M 4M 5M 6M

R
u

n
n

in
g

 T
im

e
 (

S
e

c
)

#Nodes

k=10 k=20

(d) Running Time, Twitter

Figure 15: Scalability analysis. k = 10, r = 10.

initialization method in terms of both e�ciency and accuracy, and

we employ this as the default setting in other experiments.

6.3 Scalability Analysis
We test the scalability of our algorithm in two aspects — with

larger graph size and with larger target sets. We conduct both these

experiments on our largest Twitter dataset.

Target Set Size |T |. The target set size on Twitter is varied as 1K, 3K,

5K, 10K, 30K, and 50K nodes. Our results in Figure 15(a) show that

the in�uence spread percentage within the target set remains consis-

tent, which demonstrates the robustness of our algorithm with respect

to di�erent number of target users. The running time in Figure 15(b)

increases almost linearly with larger target set size |T |.

Graph Size. The Twitter dataset has about 6.3 million nodes, we

select 1M, 2M, 3M, 4M, 5M, and 6M nodes uniformly at random to

generate 6 graphs, and apply our algorithm on them. Figure 15(c)

and Figure 15(d) demonstrate that both index size and querying

time increase linearly with the number of nodes, which con�rms good

scalability of our algorithm.

7 RELATED WORK
We categorize related work as follows.

In�uence Maximization. Kempe et al. [12] addressed the prob-

lem of in�uence maximization in a social network as a discrete

optimization problem, which is to identify the set of seed nodes,

having cardinality k , that maximizes the expected in�uence spread

in the graph. Due to NP-Hardness of the problem, they proposed

a hill climbing greedy algorithm, with an accuracy guarantee of

(1−1/e). They also usedMC-simulation for estimating the in�uence

spread from a seed set. However, later it was proved in [8] that the

exact computation of in�uence spread is #P-Hard.

After that, many algorithms (see [7] for details) have been devel-

oped, both heuristic and approximated, to improve the e�ciency of

the original greedy method. Leskovec et al. [18] and Goyal et al. [11]

exploited the sub-modularity property of the greedy algorithm, and

proposed more e�cient CELF and CELF++ algorithms, respectively.

Chen et al. [8] avoided MC simulations, and developed the maxi-

mum in�uence arborescence (MIA) model using maximum probable

paths for the in�uence spread computation. Aiming at higher ef-

�ciency, Borgs et al. [5] introduced a reverse reachable sketching

technique (RRS) without sacri�cing the accuracy guarantee. Tang et

al. [28, 29] proposed the TIM/TIM+ and IMM algorithms, and Li et

al. [21] designed indexing methods, all based on the RRS technique,

to further improve its e�ciency. However, all these works assume

that the in�uence cascade probability between a pair of users is

�xed; and unlike ours, they do not consider the impacts of selecting

the top-r tags in order to maximize the in�uence spread.

Topic Dependent In�uence Maximization. The classic in�u-

ence maximization problem has been recently considered in a topic-

aware fashion [2, 4, 6, 20]. In both [2, 6], topic-aware in�uence

maximization solves a di�erent problem, i.e., �nding a set of seed

nodes that maximize the spread of information for a given topic set.

In contrast, the top-r relevant tags are not known apriori in our

setting. In [3], Barbieri et al. introduced the problem of identifying

the top-k seed nodes, together with �nding the optimal topic distri-

bution. The key di�erence with our work is that �nding the top-r

relevant tags is di�erent than �nding the optimal topic distribution.

As we reasoned earlier, in real-world scenarios, it is generally hard

to achieve a speci�c (optimal) topic distribution for a campaign.

Instead, we provide the top-k tags directly that a campaigner can

associate to maximize the spread of her in�uence among the tar-

get customers. In addition, we have novel technical contributions

via indexing for targeted in�uence maximization, selecting good

initial conditions, and proving the local optimality of our iterative

algorithm, aiming towards scalability and a high-quality solution.

Very recently, Li et al. [20] explored a user’s most in�uential topic

set in a social network. Our work is di�erent as we aim at �nding

not only the top-r relevant tags, but also the top-k seed nodes for

targeted in�uence maximization in a social network.

Conditional Reliability. Conditional reliability has been widely

studied in systems and device networks[1], and is recently intro-

duced over uncertain graphs in [13, 14]. They de�ne reliability (i.e.,

the probability that a given set of source nodes can reach a given set

of target nodes) when edge-existence probabilities are conditioned

on external factors (i.e., catalysts), and study the problem of �nd-

ing top-k catalysts that maximize the reliability between a limited

number of source-target pairs. On the other hand, our objective is

di�erent: Jointly �nd the top-r tags and the top-k seed nodes for

targeted in�uence maximization in a social network. For our top-r

tags selection problem, we develop Batch-paths selection algorithm,

following the idea of Individual-paths selection method in [13, 14].

We, however, show that Batch-paths selection method can achieve

up to 30% more in�uence spread compared to Individual-paths

selection, while the running time remains similar.

8 CONCLUSIONS
In this paper, we introduced and investigated the novel problem

of jointly �nding the top-k seed nodes and the top-r relevant tags

for targeted in�uence maximization in a social network. We deeply

characterized the problem, proving that it is NP-hard and also

hard to approximate. To solve this problem, we re�ned both state-

of-the-art seeds �nding and tags �nding algorithms together with

indexing and batch-path selectionmethods, and thus improved their

e�ciency by 30% and accuracy up to 30%, respectively. Finally, we

developed an iterative framework, together with smart initialization

techniques, that alternatively optimizes the top-k seeds and the

top-r tags, and we proved that the in�uence spread monotonically

increases until convergence. Our experimental results demonstrated

that the proposed iterative algorithm achieves high in�uence spread

compared to baselines, and converges fast in 3 iterations.

REFERENCES
[1] K. K. Aggarwal, K. B. Misra, and J. S. Gupta. Reliability Evaluation A Comparative

Study of Di�erent Techniques. Micro. Rel., 14(1), 1975.
[2] C. Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates. Online Topic-aware

In�uence Maximization Queries. In EDBT, 2014.
[3] N. Barbieri and F. Bonchi. In�uence Maximization with Viral Product Design. In

SDM, 2014.
[4] N. Barbieri, F. Bonchi, and G. Manco. Topic-Aware Social In�uence Propagation

Models. In ICDM, 2012.
[5] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing Social In�uence in

Nearly Optimal Time. In SODA, 2014.
[6] S. Chen, J. Fan, G. Li, J. Feng, K. L. Tan, and J. Tang. Online Topic-aware In�uence

Maximization. PVLDB, Volume 8 Issue 6:666–677, 2015.
[7] W. Chen, L. V. S. Lakshmanan, and C. Castillo. Information and In�uence Propa-

gation in Social Networks. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2013.

[8] W. Chen, C. Wang, and Y. Wang. Scalable In�uence Maximization for Prevalent
Viral Marketing in Large-Scale Social Networks. In KDD, 2010.

[9] D. Eppstein. Finding the k Shortest Paths. SIAM J. Comput, 28(2):652–673, 1998.
[10] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A Data-Based Approach to Social

In�uence Maximization. PVLDB, Volume 5 Issue 1:73–84, 2011.
[11] A. Goyal, W. Lu, and L. V. S. Lakshmanan. CELF++: Optimizing the Greedy

Algorithm for In�uence Maximization in Social Networks. In WWW, 2011.
[12] D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the Spread of In�uence

through a Social Network. In KDD, 2003.
[13] A. Khan, F. Bonchi, F. Gullo, and A. Nufer. Conditional Reliability in Uncertain

Graphs. https://arxiv.org/abs/1608.04474, 2017.
[14] A. Khan, F. Gullo, T. Wohler, and F. Bonchi. Top-k Reliable Edge Colors in

Uncertain Graphs. In CIKM, 2015.
[15] A. Khan, B. Zehnder, and D. Kossmann. Revenue Maximization by Viral Market-

ing: A Social Network Host’s Perspective. In ICDE, 2016.
[16] M. Kimura and K. Saito. Tractable Models for Information Di�usion in Social

Networks. In PKDD, 2006.
[17] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila. Finding E�ectors in Social

Networks. In KDD, 2010.
[18] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance.

Cost-e�ective Outbreak Detection in Networks. In KDD, 2007.
[19] X. Li, L. Guo, and Y. E. Zhao. Tag-based Social Interest Discovery. In WWW,

2008.
[20] Y. Li, J. Fan, D. Zhang, and K.-L. Tan. Discovering Your Selling Points: Personalized

Social In�uential Tags Exploration. In SIGMOD, 2017.
[21] Y. Li, D. Zhang, and K. Tan. Real-time Targeted In�uence Maximization for

Online Advertisements. PVLDB, Volume 8 Issue 10:1070–1081, 2015.
[22] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An Analysis of Approximations

forMaximizing Submodular Set Functions.Mathematical Programming, 14(1):265–
294, 1978.

[23] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. k-Nearest Neighbors in Uncer-
tain Graphs. PVLDB, 2010.

[24] R.Motwani and P.Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[25] K. Saito, R. Nakano, and M. Kimura. Prediction of Information Di�usion Proba-
bilities for Independent Cascade Model. In KES, 2008.

[26] M. Sie�. Why Hillary Clinton Lost Her Blue Wall. http://www.martinsie�.com/
cycles-of-change/ hillary-clinton-lost-blue-wall/, 2016.

[27] C. Song, W. Hsu, and M. L. Lee. Targeted In�uence Maximization in Social
Networks. In CIKM, 2016.

[28] Y. Tang, Y. Shi, and X. Xiao. In�uence Maximization in Near-Linear Time: A
Martingale Approach. In SIGMOD, 2015.

[29] Y. Tang, X. Xiao, and Y. Shi. In�uence Maximization: Near-Optimal Time Com-
plexity Meets Practical E�ciency. In SIGMOD, 2014.

9 ACKNOWLEDGEMENT
The research is supported by MOE Tier-1 RG83/16 and NTU

M4081678. Any opinions, �ndings, and conclusions in this pub-

lication are those of the authors and do not necessarily re�ect the

views of the funding agencies.

A PROOF OF THEOREM 4
A problem has a Polynomial Time Approximation Scheme (PTAS) if

the problem admits a polynomial-time constant-factor approxima-

tion algorithm for every constant β ∈ (0, 1). We prove Theorem 4 by

contradiction, that is, if there exists at least one value of β such that,

if a β-approximation algorithm for the top-r tags selection problem

exists, then we can solve the Set Cover problem in polynomial time.

Since Set Cover is NP-hard, clearly this can happen only if P =

NP. The Set Cover problem is de�ned by a collection of subsets

S = {S1, S2, . . . , Sm } of a ground set U = {u1,u2, . . . , un }. The

decision version of Set Cover asks the following question: given r ,

is there any solution with at most r subsets from S that cover all

elements inU ?

Starting with an instance of Set Cover, we construct in poly-

nomial time an instance of our top-r tags selection problem in

the same way as in the proof of Theorem 3. If r subsets su�ce to

cover all elements in U in the original instance of Set Cover, the

optimal solution C∗
1 to our problem would have in�uence spread

σ (S,T ,C∗
1) = n. Otherwise, if no r sets cover all elements inU , C∗

1
would have in�uence spread atmostσ (S,T ,C∗

1) = n−1. Assume that

a polynomial-time β-approximation algorithm for the top-r tags

�nding problem exists, for some β ∈ (0, 1). We call it “Approx”. Ap-

prox would yield a solution C1 such that σ (S,T ,C1) ≥ βσ (S,T ,C∗
1).

Now, consider the inequality n − 1 < βn. If this inequality has a

solution for some values of β , by running Approx on the instance

and checking the in�uence spread of this solution, one can answer

Set Cover in polynomial time: a solution to Set Cover exists i� the

solution given by Approx has in�uence spread ≥ βn. Thus, to prove

the theorem, we need to show that a solution to that inequality

exists. However, it is easy to see that there will always be a value

of β ∈ (n−1n + ϵ, 1) for which n − 1 < βn is satis�ed (ϵ > 0 is a very

small fraction). This is a contradiction and completes the proof.

B PROOF OF THEOREM 5
In this proof, the Cherno� bounds [24] will be used, which are:

Lemma B.1. Let X be the sum of c i.i.d. random variables sampled

from a distribution [0, 1] with a mean µ. For any δ > 0 ,

Pr [X − cµ ≥ δ · cµ] ≤ exp

(
−

δ2

2 + δ
cµ

)
(20)

Pr [X − cµ ≤ δ · cµ] ≤ exp

(
−
δ2

2
cµ

)
(21)

[29] denotes the in�uence spread for a size-k node set S in all

nodes as I (S), and the fraction of RR-sets covered by S as FR (S). Then

it proves that the expectation of FR (S) is equal to the expectation

of the fraction of in�uenced nodes in all nodes. Intuitively, in our

targeted in�uence maximization setting, the expectation of FR (S)

is equal to the expectation of the fraction of in�uenced nodes in

target nodes. Therefore, we have:

E [FR (S)] =
E [I (S)]

|T |
(22)

TRS (Targeted Reverse Sketching) utilizes FR (S) · |T | to estimate

the in�uence spread I (S).We prove that it is (1−1/e−ϵ)-approximate

solution with at least 1 − n−1
(
n

k

)−1
probability in two steps as

follows.

Step 1: We prove that Inequality 8 ensures the following.

|FR (S) · |T | − E(I (S))| <
ϵ

2
·OPTT (23)

holds with at least 1 − n−1
(
n

k

)−1
probability, where OPTT is the

maximum in�uence spread for any size-k node set S , and ϵ
2 is the

approximation ratio.

Step 2: The greedy algorithm of maximum coverage problem

produces (1 − 1/e) approximation solution [29]. We prove that by

combining the aforementioned two approximation ratios ϵ
2 and

(1 − 1/e), the �nal approximation ratio is (1 − 1/e − ϵ).

We �rst prove the �rst part. Let ρ be the probability that S

intersects with a random RR-set, and FR (S)·θ can be regarded as the

sum of θ i.i.d Bernoulli variables with mean ρ. Then ρθ = FR (S) · θ .

With Equation 22, we have:

ρ = E [FR (S)] =
E [I (S)]

|T |
(24)

With Equation 24, we can then derive Inequality 23 as follows.

|FR (S) · |T | − E(I (S))| <
ϵ

2
·OPTT

|FR (S) · θ − ρθ | <
ϵθ

2|T |
·OPTT

|FR (S) · θ − ρθ | <
ϵ ·OPTT

2|T |ρ
· ρθ (25)

Let δ = ϵ · OPTT /(2|T |ρ). By the Cherno� bounds [24], Equa-

tion 8, Equation 24, and the fact that ρ = E [I (S)] /|T | ≤ OPTT /|T |,

we have:

Pr

[
|FR (S) · θ − ρθ | ≥

ϵ ·OPTT

2|T |ρ
· ρθ

]

< 2 exp

(
−δ2

2 + δ
· ρθ

)

= 2 exp

(
−ϵ2 ·OPT 2

T

8|T |2ρ + 2ϵ |T | ·OPTT
· θ

)

≤ 2 exp

(
−ϵ2 ·OPT 2

T

8|T | ·OPTT + 2ϵ |T | ·OPTT
· θ

)

= 2 exp

(
−ϵ2 ·OPTT

(8 + 2ϵ) · |T |
· θ

)
≤ n−1 ·

(
n

k

)−1
(26)

This means that Inequality 23 holds with at least 1 − n−1
(
n

k

)−1
probability simultaneously for all size-k S by union bound property.

Next, we proceed to prove the second part that it is (1− 1/e − ϵ)-

approximate solution.

Let Sk be the vertex set returned by TRS, and S+
k
be the vertex set

that maximizes FR (S
+

k
) (i.e., S+

k
intersects with the largest number

of RR-sets generated by TRS). Since Sk is obtained by using (1−1/e)-

approximate algorithm for the maximum coverage problem [29] on

the RR-sets generated by TRS, we have FR (Sk) ≥ (1− 1/e) · Fθ (S
+

k
).

Let So
k
be the actual optimal solution, i.e., E[I (So

k
)] = OPTT . We

have FR (S
+

k
) ≥ FR (S

o
k
), which leads to FR (Sk) ≥ (1 − 1/e) · FR (S

o
k
).

Finally, we have:

E[I (Sk)] > |T | · FR (Sk) − ϵ/2 ·OPTT

≥ (1 − 1/e) · |T | · FR (S
+

k
) − ϵ/2 ·OPTT

≥ (1 − 1/e) · |T | · FR (S
o
k
) − ϵ/2 ·OPTT

≥ (1 − 1/e) · (1 − ϵ/2) ·OPTT − ϵ/2 ·OPTT

> (1 − 1/e − ϵ) ·OPTT (27)

Thus, Theorem 5 is proved.

 72

 73

 74

 75

 76
 77

 78

 79

 80

0.05 0.1 0.2 0.3 0.4 0.5

In
f.

 S
p

re
a

d
 i
n

 T
a

rg
e

ts
 (

%
)

ε

(a) Inf. Spread, Twitter

 0

1*10
4

2*10
4

3*10
4

4*10
4

0.05 0.1 0.2 0.3 0.4 0.5

R
u

n
n

in
g

 T
im

e
 (

S
e

c
)

ε

(b) Running Time, Twitter

Figure 16: Sensitivity analysis for ϵ . k = r = 10, |T | = 3K .

 74

 76

 78

 80

0.0001 0.001 0.01 0.1

In
f.

 S
p

re
a

d
 i
n

 T
a

rg
e

ts
 (

%
)

δ

(a) Inf. Spread, Twitter

 0

 500

 1000

 1500

 2000

 2500

 3000

0.0001 0.001 0.01 0.1

In
d

e
x
in

g
 T

im
e

 (
S

e
c
)

δ

(b) Indexing Time, Twitter

Figure 17: Sensitivity analysis for δ . k = r = 10, |T | = 3K , α = 1.

We estimate OPTT by following [29], and omit the details here.

The high level idea is to �rst generate a relatively small number

of RR-sets and use them to derive an estimation of OPTT with a

bounded absolute error.

C PROOF OF LEMMA 3
The expected spreadOPTT at the current iteration is no smaller than

that of the previous iteration (we proved this formally in Theorem 7).

Observing Inequality 8,OPTT is located in the denominator, which

means that θ ′ of the current round shall be smaller than the θ of

the last iteration. Next, let us consider Inequality 9, we have:

θc − θ ′c =
rθ

αδ (θ − 1) + r
−

rθ ′

αδ (θ ′ − 1) + r

=

rθ (αδ (θ ′ − 1) + r) − rθ ′(αδ (θ − 1) + r)

(αδ (θ − 1) + r)(αδ (θ ′ − 1) + r)

=

r2(θ − θ ′) + rαδ (θ ′ − θ)

(αδ (θ − 1) + r)(αδ (θ ′ − 1) + r)

=

r (r − αδ)(θ − θ ′)

(αδ (θ − 1) + r)(αδ (θ ′ − 1) + r)
(28)

Since α and δ are input parameters and are usually small (e.g., α ≤ 1

and δ ≤ 0.01), we have r ≥ αδ and Equation 28 will be positive.

This implies that the number of indexes required in the current

round will be smaller than that in previous rounds and completes

the proof.

D ADDITIONAL EXPERIMENTAL RESULTS
D.1 Sensitivity Analysis
Varying ϵ . Figure 16 presents the sensitivity analysis for parameter

ϵ . The running time is quite sensitive to higher ϵ , that is, every 0.1

growth in ϵ reduces about half of running time. The side-e�ect of

higher ϵ is possible lower and unstable in�uence spread estimation.

Therefore, we set ϵ = 0.1, which is also adopted in [28, 29]

Varying δ . Figure 17 shows that with smaller δ , the algorithm

returns higher accuracy, while the indexing time increases linearly.

Note that when δ is small enough, e.g., 0.001 and 0.01, the accuracy

remains nearly the same. Therefore, we set δ = 0.01 as default.

Varyingα . Figure 18 shows that the sensitivity performance forα is

similar to that of δ . Referring to Equation 15, δ and α jointly decide

the expected average pairwise index number, i.e., E [C(G)] = αδ .

When δ is �xed as 0.01, the accuracy remains nearly the same for

Prob. Mean
Index Size (GB), #Tags(r) = 10 Index Size (GB), #Seeds(k) = 100 Querying Time (Sec), #Tags(r) = 10

k=5 k=10 k=20 k=50 k=100 k=500 r=5 r=10 r=20 r=30
k=5 k=10 k=20 k=50 k=100 k=500

TRS LL-TRS TRS LL-TRS TRS LL-TRS TRS LL-TRS TRS LL-TRS TRS LL-TRS

0.27 457 448 445 455 449 460 295 448 589 712 5697 4752 7504 6497 10946 8687 12363 10299 17017 14694 31004 26484

0.16 397 397 390 404 408 399 261 397 510 597 4416 3312 5615 4660 7918 6809 9221 8022 13060 10366 18699 15053

0.09 368 359 356 363 360 352 233 359 453 528 3547 2873 4240 3095 5783 4800 7428 6091 9946 7759 13041 10824

0.05 318 323 323 327 336 332 192 323 391 449 2758 2289 3229 2389 4095 3276 5450 4633 7812 4306 9301 7992

Table 7: Additional scalability test for LL-TRS index size and querying time (including index loading time) with varying edge probability

means, seed set size k , and tag set size r , Twi�er. |T | = 3K .

 74

 76

 78

 80

0.5 1 2 3 5 10

In
f.

 S
p

re
a

d
 i
n

 T
a

rg
e

ts
 (

%
)

α

(a) Inf. Spread, Twitter

 0

 40

 80

 120

 160

0.5 1 2 3 5 10

In
d

e
x
in

g
 T

im
e

 (
S

e
c
)

α

(b) Indexing Time, Twitter

Figure 18: Sensitivity analysis for α . k = r = 10, |T | = 3K , δ = 0.01.

 6400

 6500

 6600

 6700

1 2 3 4 5 6

R
u

n
n

in
g

 T
im

e
 (

S
e

c
)

h

(a) Running Time, Twitter

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6

In
d

e
x
 S

iz
e

 (
G

B
)

h

(b) Index Size, Twitter

Figure 19: Sensitivity analysis for h. k = r = 10, |T | = 3K .

small α , e.g., 0.5, 1, and 2. We set α = 1 as default, since (1) the

indexing time decrease for α = 0.5 to α = 1 is more signi�cant

(Figure 18(b)); (2) we aim at avoiding the accuracy loss when α ≥ 2

as much as possible (Figure 18(a)).

Varying h. Figure 19 demonstrates that h = 3, 4, and 5 result in

similar querying time. On the other hand, the accuracy will not be

a�ected by h (Section 3.3). However, with higher h, clearly higher

space for indexes is required (Figure 19(b)). Therefore, h = 3 is our

default setting.

Varying Edge Probabilities. Recall that we decide edge probabili-

ties as follows. For every edge (u,v) and a tag c , we compute the fre-

quency (i.e., number of occurrences) of c in (u,v). Let us denote this

frequency by t , then we assign probability p((u,v)|c) = 1 − e−t/a .

Now, we analyse the sensitivity for our proposed iterative algo-

rithm towards convergence with various edge probabilities over

the same graph. In particular, we obtain graphs with mean edge

probability of 0.06, 0.12, 0.21, 0.33, and 0.51 by assigning a as 80,

40, 20, 10, and 5, respectively. As shown in Figure 20, the in�uence

growing tendency and the convergence rate remain similar for a

good initialization method, e.g., RS+FT. However as expected, the

maximum in�uence spread increases for graphs with higher edge

probabilities.

D.2 Additional Scalability Tests
Table 7 presents additional experimental results with respect to

di�erent edge probability means, seed set sizes (k), and tag set sizes

(r). As expected, with lower edge probabilities, less edges exist in

the indexes, which results in smaller index size and querying time.

We observe that larger k , in general, does not lead to higher

index sizes. This is because larger k causes larger θ (Theorem 5).

However, in practice, θ is always much larger than all other terms in

Inequality 9. Therefore, αδ (θ − 1) >> r , and θc ≈ r
αδ

. This implies

 0

 20

 40

 60

 80

 100

1 1.5 2 2.5 3 3.5

In
f.
 S

p
re

a
d
 i
n
 T

a
rg

e
ts

 (
%

)

#Iterations

0.06
0.12

0.21
0.33

0.51

Figure 20: In�uence spread after various iterations for Yelp graph

with di�erent edge probability means. RS+FT initializationmethod,

k = r = 20, |T | = 3K .

that θc keeps nearly the same for di�erent k . The slight di�erence

of index sizes when varying k is caused by di�erent tag sets found.

For the same reason as discussed above, θc tends to increase

linearly with increase in r . This is also shown in Table 7 that our

index sizes grow with higher values of r at a modest rate.

Clearly, our developed TRS method (without indexing) and our

indexing scheme LL-TRS have trade-o�s between storage and online

querying time. LL-TRS improves online querying time up to 30%

compared to TRS (Figure 5 and Table 7, Twitter), while LL-TRS

has an overhead of storing indexes. We notice that our index size

is modest even for the larger Twitter dataset. Furthermore, the

index size reported in Figure 15 and Table 7 is the total size of

indexes generated during the entire iterative procedure. However

in a speci�c round, only those indexes for the chosen tags (about 30-

40% of the total index size, e.g., 140 GB when k = 100, r = 10, prob.

mean=0.27, Twitter) will be loaded into memory. This allows us to

store all the indexes on disk for larger datasets (e.g., Twitter), while

loading only the necessary indexes (i.e., indexes for the selected

tags at every round) in the memory. The querying time presented

in Table 7 includes the time cost of loading indexes from disk.

