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Abstract—Graphs are popular mathematical tools to model
data with relations, such as the Web, social and biological
networks, financial transactions, and knowledge bases. Machine
learning and recently, deep learning over graphs becomes preva-
lent. In modern data science applications, complex data move
through various processes involved in machine learning to gen-
erate the final predictive output, thereby creating a data pipeline
consisting of graph data extraction, acquisition, and cleaning,
graph embedding, machine learning training and inference,
downstream tasks, explainability, and adding human in-the-
loop, as depicted in Figure 1. We investigate how graph data
management, which deals with effective, efficient, scalable, and
user-friendly systems and algorithms for storing, processing, and
analyzing large volumes of heterogeneous and complex graphs,
could benefit from graph machine learning and vice versa, over
the end-to-end graph data pipeline. We shall emphasize on (1)
how graph data management helps in graph machine learning,
e.g., in scalable graph embedding and designing user-friendly
explainability methods; and (2) how graph machine learning
helps in graph data management, e.g., in question answering
over knowledge graphs.

Index Terms—graph neural networks, graph embedding, ex-
plainable AI, knowledge graphs, question answering

I. GRAPH DATA MANAGEMENT FOR GRAPH MACHINE

LEARNING

Scalable Graph Embedding and Graph Neural Networks

Learning. Effective data management algorithms and systems

facilitate in large-scale graph embedding and scalable training

of graph neural networks (GNNs). Embedding of billion-

scale graphs, e.g., in Alibaba, Facebook, Microsoft Academic,

Pinterest at scale has recently become ubiquitous. Graph

embedding generates low-dimensional vector representations

of graph nodes, edges, and entire graphs for downstream

machine learning (ML) tasks. Graph embedding techniques

can be categorized as matrix-factorization based, random-

walk methods, and neural approaches. Representative works

include PANE that enables scalable and attributed networks

embedding by measuring node-attribute affinity with random

walks, embedding computation via joint matrix factorization,

and using multi-core parallelization [1]. SketchNE designs a

fast, memory-efficient, and scalable graph embedding method

via sparse-sign matrix, single-pass singular value decompo-

sition (SVD), fast eigen-decomposition, and shared-memory

architecture for a single, CPU-only machine [2]. DistGER

employs information-oriented distributed random walks and

distributed Skip-Gram learning for scalable graph embedding
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Fig. 1. Graph data pipeline consisting of four stages: (a) graph data extraction,
acquisition, and cleaning, (b) graph embedding and graph neural network
(GNN) training, (c) GNN inference for downstream tasks, and (d) GNN
explanation. To depict the synergy between graph machine learning (GML)
and graph data management (GDM) at each stage of the graph data pipeline,
we specify critical modules on the right-hand side.

[3]. GraphVite [4] proposes a high-performance CPU-GPU

hybrid architecture by co-optimizing the algorithm and the

system, simultaneously performing graph random walks on

CPUs and embedding training on GPUs.

Scaling GNN training has received more attention with

emphasis on smart sampling strategies, parallel and distributed

systems, new hardware and accelerator, computation and

communication paradigms [5]. Various sampling strategies,

e.g., node-wise sampling, layer-wise sampling, and graph-wise

sampling are developed. XGNN [6] designs a multi-GPU GNN

training system to fully utilize GPU and CPU memory and

high-speed interconnects. ReGNN develops a ReRAM-based

architecture for GNN acceleration [7]. DUCATI introduces a

dual-cache system to better utilize spare GPU memory and

accelerate mini-batch generation during GNN training [8].

Facebook has designed the distributed multi-relations based



graph embedding system PyTorch-BigGraph [9], and Ama-

zon has developed the distributed graph neural networks-based

system DistDGL [10]. ByteGNN adopts mini-batch sampling,

two-level scheduling, and effective graph partitioning for high

parallelism and better resource utilization [11].

Usable Graph Neural Network Explainability Methods.

Explainability methods for GNNs discover important nodes,

edges, subgraphs, and their features that are influential for

GNN outcomes, and are gaining increasing attention [12].

Explainability is crucial in developing and deploying “black-

box” deep neural models for interdisciplinary applications,

while ensuring transparency and reliability.

Existing GNN explainability approaches derive explanations

for an individual instance or a certain class label. These

methods do not provide targeted, user-friendly, interactive,

and configurable explanations for multiple class labels of

interest [14]. Such approaches may also generate large-size or

redundant explanations, hence are not easily comprehensible.

Moreover, these explanations are not easily queryable, making

it difficult for domain experts to understand a GNN’s outcome

by bridging domain knowledge with the GNN’s decision

making process. Finally, small changes to input graphs can

drastically update GNN results, as well as its explainability;

hindering the deployment of neural models and explainability

methods in safety-critical applications.

We demonstrate how graph data management (GDM) can

facilitate graph machine learning (GML) in regards to GNN

explanations. (1) We discuss the usage of graph views and

graph patterns to generate user-friendly explanations by bridg-

ing domain knowledge with GNN results. Furthermore, we

present solutions that extract explanations for GNNs in a

concise and configurable manner, tuned for multiple class

labels of interest [15]. (2) We discuss algorithms to make GNN

explanations robust to small changes in graphs, thus generating

critical, invariant structures across a set of similar graphs [16].

II. GRAPH MACHINE LEARNING FOR GRAPH DATA

MANAGEMENT

Effective Knowledge Graphs Question Answering. Query

processing is the bread-and-butter for the data management

community. Knowledge graph (KG) is a graph-based data

model to store facts as 〈subject, predicate, object〉 triples, or

as a large-scale graph having nodes (subjects and objects) and

edges (predicates) [17]. Querying KGs is difficult due to their

massive volume, heterogeneity, and incompleteness [18]. Due

to schema-flexibility, the same kind of information can be

stored in many diverse ways in a KG. A user seeking relevant

information must formulate the query in different ways so to

cover all possible schemas. Hence, the user requires to have

full knowledge of the vocabulary and the underlying schemas

defined in the KG, which is challenging [19].

Machine learning-based query answering can identify miss-

ing relations from incomplete KGs. Natural language queries

(NLQs) are either semantically parsed to structured SPARQL

queries over KGs using neural approaches, or are processed

in an end-to-end manner using sequential models. KG em-

bedding methods can identify approximate and semantically

relevant answers w.r.t. users’ queries [20], [21]. Recently, large

language models (LLMs) are becoming mainstream to query

knowledge graphs through retrieval augmented methods.
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