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ABSTRACT
This paper demonstrates ShaderNet — our graph analytics frame-
work with shader codes, which are machine-level codes and are
important for GPU designers to tune the hardware, e.g., adjusting
clock speeds and voltages. Due to a wide spectrum of use-cases
of modern GPUs, engineers generally find it difficult to manually
inspect a large number of shader codes emerging from these applica-
tions. To this end, we present a system, ShaderNet, which converts
shader codes into graphs, and applies advanced graph mining and
machine learning techniques to simplify shader graphs analysis
in an effective and explainable manner. By studying shader codes’
evolution with temporal graphs analysis and structure mining with
frequent subgraphs, we demonstrate several key functionalities of
our framework, such as a frame’s scene detection, clustering scenes,
and a new application’s inefficient shaders prediction, which can
accelerate GPU’s performance tuning. Our code base and demon-
stration video are at: https://lzlz15.github.io/D_E_M_O/.
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1 INTRODUCTION
In earlier decades, the graphics processing unit (GPU) was a spe-
cialized microprocessor to offload graphically intense applications
that created a burden on the CPU. Afterwards, GPUs have be-
come general-purpose, programmable, and many-core processors
[5, 10, 26, 32]. (1) Online and multi-player video games with special
effects, virtual reality, 3D graphics, and 4K screens demand serious
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computing power. GPUs have become essential to quickly render
and maintain realistic images in these applications. (2) Computer-
aided design (CAD) softwares that visualize objects in 3D rely on
GPUs to draw such models in real time as one rotates or moves
them. GPUs’ parallel processing ability also makes them faster and
easier to render videos and graphics in higher-definition formats. (3)
GPU-accelerated analytics in high-performance computing (HPC)
enables data science workflows over billions of records, such as
gene mapping and clinical trials. (4) One of the most exciting appli-
cations of GPUs involve deep learning and machine learning. GPUs
can process tons of data and train deep neural networks for image
and video analytics, speech recognition, and natural language pro-
cessing. (5) GPUs play a key role in database management systems
(DBMS) such as GPU Databases [27], GPU-assisted query optimiza-
tion [14, 15, 28, 39, 40], visual analytics [31], image data processing
[34], and data management for machine learning [11].
Challenges in GPU tuning. From GPU designers’ (e.g., AMD,
Intel, NVIDIA, etc.) point-of-view, designing high-performance,
low-power, and small-area chips is critical. Based on feedback from
our industry partners, GPU chip manufacturers experience three
major challenges. (1)While the hardware must be tuned for specific
applications running on it, GPU designers may not obtain appli-
cation source codes from app developers (e.g., game developers,
CAD software developers, or algorithm developers). Application
codes are often complied into binary files for security reasons. Thus,
code development behind applications are not transparent to GPU
designers. (2) As the landscape of GPU applications is growing
wider, there are a large number of shader codes emerging from
them. Engineers generally tune GPUs (i.e., adjusting clock speeds
and voltages, VRAM and fan tuning, memory timing) based on a
few benchmark applications or hand-crafted key frames selected
by domain experts. Such manual tunings miss important informa-
tion and can be suboptimal. In addition, the technical knowledge
required for GPU tuning is high, since mis-configuration will result
in an unstable system, e.g., system crashes, hangs, and/or graphical
corruption [8]. (3) New applications are emerging and it becomes
tedious for GPU designers to tune GPUs for every new application.
Our solution and contributions. To solve the above challenges,
we build ShaderNet — our system analyzes the characteristics of
different applications using graph mining and machine learning
tools, to accelerate the GPU’s tuning process. In this paper, we shall
consider video games dataset for experiments. ShaderNet can be
extended to other applications, since when these applications are
complied to execute on the GPU, they are represented in machine-
level language format [41], which can be input to ShaderNet.

Graphics applications call graphics APIs (e.g., OpenGL, Microsoft
DirectX), which define a programmable graphics pipeline that is
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Figure 1: Architecture of ShaderNet

mapped onto the GPU [3]. A shader code is a piece of program from
these graphics APIs that runs in the graphics pipeline, and instructs
the GPU how to render each pixel. Since shaders support complex,
low-level, generic programming, and due to their proximity to the
hardware, they are an important tool for GPU designers [9, 12, 30].
When application codes are not available from application develop-
ers, we generate disassembly shaders by running those applications
on GPUs using a graphics debugger, e.g., RenderDoc [19]. Next,
we convert shader codes into directed, attributed graphs: the com-
mands requiring relatively long time (e.g., accessing memory) are
represented as nodes; successive short-running commands between
two nodes are grouped as an edge between the two nodes.

We notice that our graphs can well-represent the structural char-
acteristics of disassembly shader codes by comparing the code
content similarity with the graph structural similarity. Besides,
graphs can represent both syntactic and semantic structures of
code, thus would be more effective than mainly syntactic notion of
program text [7]. We employ various graph mining and machine
learning algorithms for shader codes analysis in a holistic and ex-
plainable manner, including key frames identification, a frame’s
scene detection, clustering scenes, shader codes’ structure mining
with frequent subgraphs, and evolution via temporal graph analysis.

Given disassembly shaders of a new application, our system (1)
predicts its low-efficiency shaders to guide GPU designers locating
the weak points, so that they can develop targeted solution either
in the software optimization, or in the hardware architecture; and
(2) finds existing applications that are most similar to the new
application. Since the GPU has been tuned for these similar existing
applications, we can easily find the optimal configuration for the
new application.

We discuss our demonstration plan, with visual, predictive, and
mining query forms, as well as ShaderNet’s performance in § 3.
Our codebase is open-sourced [42] and a video demonstration is
available at: https://youtu.be/0WxvrJ6KuqY.
Related work. Several toolkits are developed by GPU designers
and third-parties to profile the GPU performance. AMD offers the
RadeonTM Developer Tool Suite including RadeonTM GPU Profiler
[4]. Intel VTuneTM can monitor GPUs to identify and fix perfor-
mance bottlenecks. Nvidia uses a tool to access detailed information
about GPU usage, such as hardware counters inside GPUs [2]. Other
third-party tools, e.g., HPCToolKit [43] and [36] build call path pro-
files for GPUs to help developers access their code performance.

Table 1: An example of disassembly shader and the graph created
Disassembly shader instruction set
s_inst_prefetch 0x0003
s_bfe_u32 s1, s2
s_cbranch_scc1 label68
v_mad_u32_u24 v2, s12, 16, v0
tbuffer_load_format_x
v_mov_b32 v6, v3
ds_write2_b16
label_68
s_waitcnt vmcnt(0)
s_barrier
v_mov_b32 v1, v2
s_endpgm

nodes and node-labels
0, OTHERS
1, OTHERS
2, OTHERS
3, BUFFER_LOAD
4, LDS
5, BARRIER
6, OTHERS

edges and edge-distances
(0,1), 2
(1,2), 1
(1,3), 2
(3,4), 2
(2,5), 2
(4,2), 1
(5,6), 2

Greenspector [1] uses Abstract Syntax Tree (AST) representation
of code to analyze power and memory consumptions.

The aforementioned tools optimize GPUs from a single appli-
cation’s point of view. They concentrate on optimizing certain
applications and require resource supports such as the application’s
source code. In contrast, our system, ShaderNet is aimed at GPU
designers, who would like to optimize the new generation of GPU
products for multiple applications, including the emerging ones.
ShaderNet applies graph mining and machine learning techniques
over a number of applications to accelerate the whole debugging
process, by reducing the numbers of frames from one application
and the total number of applications that need to be investigated.
We also locate weak points in applications, which can lead the way
to improving the overall hardware performance.

Graph analytics has been adopted in static code and call graphs
analysis for program similarity, bugs and malware detection [1, 6,
13, 16, 17, 25, 35]. Frequently used graph representations in pro-
gram analysis are abstract syntax tree (AST), control graphs (CG),
control flow graphs (CFG), and program dependency graphs (PDG).
Management and optimizations of codes, machine learning models
and workflows, data frames and libraries have recently become
popular in the data management community with the prevalence of
data science [21–24, 29, 37]. Unlike these graphs constructed from
codes in high-level programming languages, nodes and edges in
our framework represent the hardware resource groups and the
number of consecutive, short-running instructions, respectively,
which are critical for machine-level shader codes analysis. To the
best of our knowledge, ShaderNet [42], which we demonstrate in
this work, is the first publicly available toolkit that adopts advanced
graph mining and machine learning techniques for shader code
analysis to accelerate the GPU’s performance tuning process.

2 SYSTEM OVERVIEW

Solution architecture. Figure 1 presents ShaderNet’s architecture
and the interaction between its three layers. The core layers of
ShaderNet – ML and analytics model layer and application layer
– are implemented in Python 3.8. The Displayer, which permits
visualization and end-user interaction at the application layer, is
developed with the D3.js library (http://d3js.org/).

https://youtu.be/0WxvrJ6KuqY
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Table 2: Key software components of ShaderNet
Shader Graph’s Description
Structural Evolution

node_count.py Variation of node counts in shader graphs across scenes and
plot the result

edge_count.py Variation of edge counts in shader graphs across scenes and
plot the result

cycle_count.py Variation of cycle counts in shader graphs across frames and
plot the result

degree_count.py Variation of node degrees in shader graphs across frames
and plot the result

Scene Prediction Description
and Explainability

merge_allGraphs_PerFrame.py Merge shader graphs from a frame to one disjoint graph for
that frame

GCN_with_CG.py Predict which scene the unknown frame belongs to using
graph convolutional neural network (GCN) and explainabil-
ity method saliency map with contrastive gradients (CG)

New App’s Tuning Description

gSpan.py Frequent subgraphs mining
fsm_file_to_edgelist_hash.py Convert results from gSpan to graph edge list and node list
graph_similarity_measure.py Measure pair-wise similarity value between graphs in each

scene dataset
prepare_dataset_culstering.py Select the highest similarity one from pair-wisemeasurement

and form dataset for clustering
Kmeans_PCA.py Cluster games into groups using K-Means with PCA model.

The result is viewed in a plot
New App’s Inefficient Description
Shaders Prediction

randomForest.py Classify frequent sub-structures into high/low efficiency

Data storage layer. Disassembly shader codes are stored in .sp3
files. An example of a disassembly shader code is given in Table 1.
Instructions are divided into a few groups (shown with different col-
ors) based on the GPU functional blocks in each line. Only the long-
running commands in a shader code (e.g., accessing memory) are
represented as nodes; the GPU functional blocks are used as node la-
bels. Consecutive short-running commands (e.g., arithmetic compu-
tations) between two nodes are grouped together as one weighted,
directed edge. The count of the short-running commands across
an edge is assigned as the edge’s weight. The graphs are stored in
edge-list and vertex-list format. Next, shader code graphs are loaded
as Python objects via the NetworkX library (https://networkx.org/).
We store distinct shader graphs per frame and across scenes — these
form our snapshot-based temporal graph datasets to study the evo-
lution of shader code structures over different frames and scenes
within an application (e.g., a game).

ML and analytics model layer. The second layer stores ML mod-
els and pre-processed mining information that are useful for in-
teractive and online queries in the application layer. We mine and
store frequent subgraphs (e.g., via the gSpan algorithm [38]) from
the representative frame’s shader code graphs for each scene. The
minimum support value is set to 25% of the number of graphs
in each representative frame. The minimum number of nodes in
the resulting subgraphs is set to 5. In this way, smaller subgraphs
with more appearances are removed, since they do not add much
value in our overall analysis. We further cluster the scenes by us-
ing frequent subgraphs as features. Before applying a clustering
algorithm, e.g., K-Means, Gaussian Mixture, Birch, etc., we con-
duct Principle Component Analysis (PCA)-based dimensionality
reduction to overcome the curse of dimensionality.

We additionally obtain labels (e.g., efficient/ inefficient) of fre-
quent shader subgraphs from our industry collaborators. Such label-
ing is relative easy for domain experts due to small sizes of frequent

Figure 2: Shader code graphs’ structural evolution

subgraphs. Next, we build and store a random forest model us-
ing labeled frequent subgraphs for predicting a new application’s
inefficient shaders.

Finally, we also pre-train and store a graph convolutional neural
network (GCN) [18, 20] based classifier for the scene prediction of
an unknown frame.

Application layer. This layer supports predictive queries, visu-
alization, and interaction with end-users. Our displayer module
shows temporal evolution of shader code graphs and their structural
properties (e.g., node degree distribution, count of cycles) across
different frames and scenes. We find that within the same scene,
shader graphs across frames are roughly the same. However, across
different scenes, frames and shader graphs can be quite different.
This facilitates automatic identification of the key frames within
each scene. Using our pre-trained models and mined information,
we also predict an unknown frame’s scene, a new application’s
inefficient shaders, and we find existing applications (for which
the GPU has already been tuned) that are most similar to the new
application. We provide interpretation of our scene prediction re-
sults using saliency map with contrastive gradients (CG) [33], that
is, ShaderNet identifies the most important GPU functional blocks
having higher positive contributions to the scene prediction.
Software. Table 2 shows main software components of ShaderNet
related to four key applications: shader graph’s structural evolution,
an unknown frame’s scene prediction with explainability, a new
application’s tuning based on clustering with known applications,
and a new application’s inefficient shaders prediction.

3 DEMONSTRATION PLAN
We collected about 4 millions disassembly shaders, corresponding
to 64 scenes of 29 games, from our industry partners in the GPU
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Figure 3: New game scenes’ clustering

Figure 4: Unknown frame’s scene prediction

manufacturing domain. Many of these game datasets contain sev-
eral scenes and multiple frames per scene. A scene in the video
refers to a series of motions that happen in a single location and
continuous time. Within a scene, there are multiple (600∼1200)
frames. Each frame refers to a still image. Within a frame, there are
a number of draw calls which instruct the graphics APIs to draw
objects. We construct a shader graph corresponding to every draw
call, each having small numbers (e.g., 10∼600) of nodes and edges
(§2). The number of graphs per frame can be around 8K. When we
consider all shader codes within a frame, the corresponding graph
size can be modest (≈11K nodes and 14K edges). Besides chain-like
structures, complex patterns such as branches and cycles also exist
in our graph datasets.

For demonstration with these games, we shall present a web
application on a laptop (demonstration video available at [42]).
Visualization. The monitor window in Figure 2 shows shader
code graphs’ structural evolution over different scenes for a user-
selected game (e.g., 3DMarks Firestrike). The top portion shows two
different scenes, the middle and bottom portions display variation
of graph structural properties (e.g., node, edge, and cycle counts,
node degree distribution).
Mining. In the monitor window in Figure 3, the user can interac-
tively select scenes from different games, cluster them based on

Figure 5: New game’s efficiency prediction

mined frequent subgraphs, and visualize clustering results (tabu-
lar and 3D formats). Our industry collaborators verified that the
clustering results are effective in identifying important factors, e.g.,
scenes from the same game, game engines and graphics APIs em-
ployed. We include such reasons in the monitor window. Selecting
one scene, which is the nearest to the centroid of each group, for
performance analysis and tuning will be both effective and efficient.
Prediction.We demonstrate two types of prediction results: Fig-
ure 4 shows the scene prediction result for a user-selected frame
from various games. For instance, the user interactively selects
frame #100 from Grand Theft Auto V, and our prediction result
correctly reports it from scene 1. On average, our GCN-based scene
prediction accuracy reaches ≈ 90% for most of the games. Figure 5
displays efficiency prediction results for a new scene (selected inter-
actively from several options). Recall that we use a random forest
classifier built on top of annotated (efficient/inefficient) frequent
subgraphs. We find the average accuracy to be 0.96 in predicting a
new application’s inefficient shader patterns.
Explainability.We display explainability results associated with
the prediction. Figure 4 shows the most important GPU functional
blocks having higher positive contributions to the scene prediction,
identified by saliencymapwith contrastive gradients (CG). In Figure
5, we depict a few examples of high-efficiency and low-efficiency
subgraphs (i.e., shader code fragments) from the selected scene and
provide reasonings behind low-efficiency shaders.

4 CONCLUSIONS
Our demonstration of ShaderNet shows an interesting application
of graphmining andmachine learning for shader codes analysis that
can accelerate GPU’s performance tuning. By analyzing machine-
level shader codes, our framework can reduce the numbers of frames
from one application and the total number of applications that
need to be investigated, thereby accelerating GPU’s performance
improvement. In future, we shall consider other portions in the
shader code, e.g., input data, in addition to algorithm structures, and
disassembly machine codes from different applications, for more
comprehensive analyses.
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