
Graph Mining and Machine Learning for Shader
Codes Analysis to Accelerate GPU Tuning

Lin Zhao1, Arijit Khan2, Robby Luo3, and Chai Kiat Yeo4

1 Nanyang Technological University, Singapore,
lin018@e.ntu.edu.sg

2 Aalborg University, Denmark,
arijitk@cs.aau.dk

3 Advanced Micro Devices Co., Ltd.,
robby.luo@amd.com

4 Nanyang Technological University, Singapore,
asckyeo@ntu.edu.sg

Abstract. The graphics processing unit (GPU) has become one of the
most important computing technologies. Disassembly shader codes, which
are machine-level codes, are important for GPU designers (e.g., AMD,
Intel, NVIDIA) to tune the hardware, including customization of clock
speeds and voltages. Due to many use-cases of modern GPUs, engineers
generally find it difficult to manually inspect a large number of shader
codes emerging from these applications. To this end, we develop a frame-
work that converts shader codes into graphs, and employs sophisticated
graph mining and machine learning techniques over a number of appli-
cations to simplify shader graphs analysis in an effective and explainable
manner, aiming at accelerating the whole debugging process and improv-
ing the overall hardware performance. We study shader codes’ evolution
via temporal graph analysis and structure mining with frequent sub-
graphs. Using them as the underlying tools, we conduct a frame’s scene
detection and representative frames selection. We group the scenes (ap-
plications) to identify the representative scenes, and predict a new appli-
cation’s inefficient shaders. We empirically demonstrate the effectiveness
of our solution and discuss future directions.

1 Introduction

The graphics processing unit (GPU) was formerly a specialized microproces-
sor for offloading graphically intensive tasks, such as online video games that
adopt real-time 3D graphics, special effects including virtual reality. Recently,
GPUs are involved in many general-purpose, programmable, and multi-core ap-
plications [1, 2]. One of the most exciting applications of GPUs consists of deep
learning and machine learning. GPUs can process tons of data and train deep
neural networks for image and video analytics, speech recognition, natural lan-
guage processing, and self-driving cars. In high-performance computing (HPC),
scientific workflows, and Internet-of-Things (IoT) domains, modern GPUs are
widely adopted to speed-up a variety of computing applications, e.g., gene map-
ping, virus tracing. The computer-aided design (CAD) software utilizes GPUs
to visualize 3D objects in real time.



2 Lin Zhao et al.

1.1 Challenges in Conventional GPU Tuning

From GPU designers’ (e.g., AMD, Intel, NVIDIA) perspective, designing high-
performance, low-power, and small-area chips is crucial for their products to
seize market shares. Based on feedback from our industry collaborators, they
experience three major challenges. First, since GPU designers are not the same
as application designers (e.g., game developers), it is difficult for them to obtain
the application source code and adjust their products accordingly. Second, as
the field of GPU applications expands, a vast number of different programs are
executed on the GPUs. However, engineers often tune GPUs (e.g., customiza-
tion of clock speeds and voltages, VRAM tuning, memory timing, fan tuning)
based on a few benchmark applications for hand-crafted key portions according
to past experiences. This manual tweaking may result in missing critical infor-
mation and sub-optimal performance. GPU tuning also requires an advanced
level of technical knowledge. Incorrect tuning can make the system unstable,
e.g., resulting in crashes, hangs, and/or graphical corruption [3]. Third, since
new games and applications are emerging continuously, it is tedious to design a
new tuning method for each new application.

1.2 Our Solution and Motivation

To solve the aforementioned challenges, we build a unified graph model that aims
to accelerate the GPU performance tuning leveraging graph mining and machine
learning tools. Our model analyzes the characteristics of the application’s code
executed on GPUs to find opportunities for speeding up the tuning process. In
this work, we shall consider gaming programs and their disassembly shader codes,
since graphic functions are still the primary and most complicated applications
on GPUs. Our work can be extended to other applications on GPUs – when
these applications are mapped onto the GPU, they are translated to machine-
level disassembly codes by drivers [5].

The application’s code is referred to shader (shader code), a piece of program
to instruct the GPU how to render each pixel. Since shaders support complex,
low-level, generic programming, and due to their proximity to the hardware,
they are an important tool for GPU designers [7–10]. When shader codes are
not available from application developers, we generate disassembly shaders by
running those graphics applications on GPUs using a publicly available graphics
debugger, such as RenderDoc [11]. Graph analytics has been adopted in code
analysis in recent years [12–15]. In shader code analysis, it can simplify the codes
to structural level. In §3.2, we demonstrate that such graph structure is a good
proxy for the shader code . Thus, various graph mining and machine learning al-
gorithms on graphs are beneficial to the analysis of shader codes. Our framework
can process machine-level codes to assist in GPU’s performance improvement by
reducing the numbers of frames from one application and the total number of
applications that need to be investigated. We also identify frequently occurring
low-performance code structures that can lead the way for efficient debugging.

1.3 Our Contributions and Roadmap

Our contributions can be summarized as follows.



Graph Mining for Shader Code Analysis 3

– We are the first to introduce a graph mining framework for analyzing the
shader structures within video games (§3). §3.1 shows the process of prepar-
ing shader graph datasets from disassembly shader codes. In §3.2, we compare
the code content similarity with the graph structural similarity and establish
that graph representations can well encode the structural characteristics of dis-
assembly shader codes. The statistics of the graph datasets and their temporal
evolutions within a game are discussed in §3.3.
– In §4, we demonstrate the functionality which is to predict an unknown frame’s
scene via the Graph Convolutional Neural Network [17] with explanations.

– §5 demonstrates that when there is a new application, first we find similar
existing applications via frequent subgraphs-based clustering methods. Since the
GPU has already been tuned for these similar existing applications, one can
quickly find the optimal tuning for the new application. We next introduce a
method to predict shader’s efficiency using frequent subgraphs, and identify a
new application’s low-efficiency shaders, thus locating its frequent weak points.

With results from our analysis, domain experts can accelerate the optimiza-
tion process by only tuning hardware parameters using representative frames
and representative applications. In addition, hardware engineers can understand
common patterns (i.e., frequent subgraphs) in shader codes and hence, improve
the hardware architecture in the next generation of products by adding specific
hardware structures or re-designing the driver to process frequent sub-patterns
more efficiently. Our code is open-sourced [18] and its demonstration [45] video
is available at the YouTube - https://youtu.be/0WxvrJ6KuqY.

2 Related Work

With the advances in GPU architectures, researchers compared different gener-
ations of GPU designs [28]. Moya et al. [29] discussed the performance improve-
ment due to various shader processing configurations. Many toolkits are devel-
oped by GPU designers and third-parties. AMD offers the Radeon™Developer
Tool Suite, including Radeon™GPU Profiler, Memory Visualizer, GPU Ana-
lyzer, and Developer Panel [31], using which game developers obtain in-depth
access to the GPU and they can profile the computing usage, analyze pipeline
bottlenecks, and other inefficiencies while developing the games. NVIDIA also
provides a few performance analysis tools for CUDA C/C++ optimization [30].
Intel VTune™ is capable of monitoring CPUs, GPUs, and FPGAs to locate
the most time-consuming part of the developer’s code. Additionally, the third-
party tools, e.g., the feed-forward measurement performance tool model in [32]
and HPCToolKit [33] build the call path profiles for GPUs to let developers
know their code performance translated from a high-level language model. The
aforementioned tools optimize GPUs from a single application’s point of view.
They focus on a specific application’s optimization and require the resource sup-
ports such as the application’s source code. In contrast, our model is developed
for GPU designers, who would like to optimize their GPUs for multiple appli-
cations, including the emerging ones. To the best of our knowledge, there is no
publicly available work that uses graph mining and machine learning for shader



4 Lin Zhao et al.

Table 1. An example of disassembly shader and the graph created

Disassembly shader instruction set

s inst prefetch 0x0003
s load dwordx8 s[16:23], s[2:3], null
v mad u32 u24 v2, s12, 16, v0
v mad u32 u24 v1, s13, 16, v1
s waitcnt lgkmcnt(0)
image load v[3:5], [v2,v1], s[16:23]
s waitcnt vmcnt(0)
v mov b32 v6, v3
image store v[3:6], [v2,v1], s[4:11]
s endpgm

nodes and node-labels

0, OTHERS
1, SMEM INSTR
2, IMAGE LOAD INSTR
3, IMAGE STORE INSTR
4, OTHERS

edges and edge-distances

(0,1), 1
(1,2), 4
(2,3), 3
(3,4), 1

code analysis. Adopting graph analysis for GPU performance improvement pro-
cess from the code’s perspective is a novel paradigm which we investigated.

3 Datasets and Characteristics

A scene in the video refers to a series of motions that happen in a single location
and continuous time. The majority of online games have multiple scenes. Within
a scene, there are multiple frames. Within a frame, there are a number of draw
calls which instruct the graphics APIs to draw object. There are different types
of shaders for each draw call. Primarily used shaders in the games that we
consider are vertex shader (VS), pixel shader (PS), geometry shader (GS),
compute shader (CS), hull shader (HS), local shader (LS), and export shader
(ES). Each of them is one piece of shader code. We collected about 4 million
disassembly shaders, corresponding to 64 scenes of 29 games, from our industry
partners in GPU manufacturing. Our dataset includes both benchmarks (3D
Mark and VRMARK series) and online games.

3.1 Graph Data Extraction

We describe the data preparation in two steps.

Step1: from video to shader code. There are a few open source tools that
convert the video from a game into disassembly shaders such as AMD Radeon
GPU Profiler [19] and RenderDoc [11].

Step2: from shader code to graph format. The long-time running instruc-
tions are represented as nodes along with node-labels based on the GPU func-
tional blocks involved. For the rest of instructions such as arithmetic calculations,
the number of such successive instructions between two nodes are counted and
stored as the edge-distance. As table 1 shows, the instructions are categorized
into a few groups (shown with different colors). In the node list, the first line
s inst prefetch 0x003 is categorized in the group of OTHERS and is labeled as



Graph Mining for Shader Code Analysis 5

(a) GS shader, 3DM (b) CS shader, 3DM (c) CS shader, GTA5 (d) HS shader, GTA5

Fig. 1. Content (TF-IDF) vs. graph similarity (WL kernel)

node 0 (red color). The second line is categorized as SMEM INSTR which uses
scalar memory and it becomes node 1 (blue color). The consecutive short-running
instructions are grouped as edges. For this reason, a few instructions are skipped
until IMAGE LOAD INSTR (line 6, magenta color, this becomes node 2). No-
tice that this graph is a chain graph. Complex structures, e.g., branches, cycles,
and complex patterns also exist in our graphs. In §3.3, we show the number of
cycles over different frames.

3.2 Effectiveness of Graph Structure

A piece of shader code can be considered as an algorithm that specifies where
to take input data and how they will perform computation and data storage.
Looking purely at the text contents of shader codes, we use the widely-used
TF-IDF Vectorizer [20] method to represent shader codes as vectors. We
then compute the cosine similarity (a value in [0,1]) between a pair of vectors.
Finally, we report the similarity between two consecutive frames which is the
average similarity value over all pairs (one from the first frame and another from
the second frame) from all distinct shader codes (considering a specific type
of shader, e.g., compute shader) in these two frames. Figure 1 demonstrates
text contents-based similarity values for consecutive frames from two games:
3D Mark Time Spy (3DM TS) and Grand Theft Auto 5 (GTA5), considering
specific types of shaders, e.g.,GS,CS, andHS. Figures 1(a)-(b) show that frame
structures change slightly considering all 600 frames for 3DM TS and both GS
and CS shader types. Figures 1(c)-(d) show text contents-based similarity for
GTA5 using CS and HS as examples. From this five-scene dataset, a clear
change at the boundary between scenes can be observed for CS. Within each
scene, the similarity value may vary because of addition or deletion of a few
pieces of shader codes.

Next, we convert shader codes into graphs (§3.1) and compute similarity be-
tween pairs of graphs via the Weisfeiler-Lehman Graph Kernel (WL kernel)
[21]. The WL kernel maps an original graph into a sequence of graphs (kernel
features), whose node attributes capture both structural and label information.
We apply the WL kernel function from the GraKel library [22] to extract ker-
nel features and compute the similarity between a pair of graphs. Analogously,
we also report in Figure 1 the similarity between two consecutive frames by
computing the average WL kernel similarity value over all pairs (one from the
first frame and another from the second frame) from all distinct shader code
graphs (considering a specific type of shader, e.g., compute shader) in these two
frames. Furthermore, the pairwise graph similarity values are normalized be-
tween 0 and 1, by dividing it with

√
ΠiK(Gi, Gi), where K(Gi, Gi) is the WL



6 Lin Zhao et al.

(a) 3DM FS, # cycles

over frames

(b) GTA5, # cycles

over frames

(c) 3DM FS, degree,

in- and out-degree dis-

tributions

(d) GTA5, degree, in-

and out-degree distribu-

tions

Fig. 2. Evolution of structural properties over frames

kernel-based self-similarity of graph Gi to itself, and we consider all Gi’s from
these two frames. We observe that the WL kernel-based similarity plots gen-
erally have the same trends as those based on TF-IDF text contents similarity.
This indicates that the graph representation is a good proxy to reflect the con-
tents in shader codes. Besides, graphs can represent both syntactic and semantic
structures of code, compared to mainly syntactic notions in program text [16].
Therefore, we shall use graph structures of disassembly shader codes.

3.3 Graph Data Characteristics and Key Frames Selection

Each game consists of a large number of frames and draws for different rendering
functions. We study the characteristics and evolution of shader code graphs
across frames for each game and identify the representative frames. We show our
results using 3D Mark Fire Strike (3DM FS, a benchmark game) and GTA5
(an online game). We study graph changes across frames/scenes and show the
variation of the number of nodes, edges, cycles, as well as the degree distribution.
These provide an overview of the evolution of shader code graphs.

Figures 2 (a)-(b) depict the number of cycles existing in each frame for the
two games. The x-axis shows successive frames and the y-axis indicates the total
number of cyclic structures in that frame. 3DM FS has more loop structures in
Scene 2. InGTA5, majority of the frames in Scene 3 have more cycles, compared
to that in frames from other scenes. It indicates that there are more branches and
loops implemented in this part. Figures 2 (c)-(d) show the degree distribution of
nodes from every scene. The x-axis presents various node degrees for each scene.
The y-axis is the percentage of nodes having the specific degree, with respect
to the total number of nodes in that scene. For each scene, node degrees vary
from 1 to 5. The majority of nodes have two edges, with one in-edge and another
out-edge, implying the chain-like structure. The in-degree and out-degree values
vary from 0 to 5. Most nodes have balanced in- and out-degrees.
Structural changes across scenes. In Figure 1,WL kernel similarity results
reveal that the shader code graph structures remain almost same with a small
variation within one scene, but often have noticeable changes between two scenes.
We can conclude that within the same scene, the algorithms adopted are roughly
the same. However, across different scenes, the algorithms used can be quite
different. Sudden changes in frame structures can be detected based on the
changes in WL kernel similarity across successive frames. Within a specific
scene, we select the frame as the representative that has the highest WL kernel
similarity with all other frames in that scene. In this way, by studying this frame,



Graph Mining for Shader Code Analysis 7

(a) Class=Scene 1 (b) Class=Scene 2 (c) Class=Scene 3 (d) Class=Scene 4 (e) Class=Scene 5

Fig. 3. GTA5: Scene prediction interpretability and important nodes

the GPU designers are able to cover most of the algorithmic patterns in that
scene. If the algorithm structures do not vary too much within a scene, it is
possible to reduce the number of times each algorithm is executed by storing the
data into cache or local memory, and all these data can be retrieved in a very
short time, compared to applying the algorithm again to render the image.

4 Predicting A Frame’s Scene

In §3.3, we illustrate the similarities and difference of frame structures within
scenes. Thus, it is possible to predict which scene a frame belongs to given
an unknown frame, in a supervised manner. In particular, we employ a Graph
Convolutional Neural Network (GCN) [17, 23] for classification of frames and
thereby predict an unknown frame’s scene. Our GCN architecture includes two
graph convolutional layers with the first layer having 128 units and the second
layer having 64 units. Both layers use the ReLU activation function. The next
layer is a global mean pooling layer, followed by a softmax classifier.

All distinct shader code graphs in each frame are merged to form one single,
disjoint, large graph. The resulting graph is labeled based on the frame’s scene
number. In 3DM FS, there are two classes corresponding to two scenes . GTA5
contains five classes, denoting five scenes. We apply 4-fold cross validation. The
learning rate is set to 0.0005 and the dropout rate is 0.5. The number of epochs
is 50 for 3DM FS and 900 for GTA5. For 3DM FS, training and test accuracy
quickly reach 100%, indicating that the frames are easily separable across differ-
ent scenes. For GTA5, after 900 epochs, the training and test accuracy reach
90.64% and 88.46%, respectively, with average ROC AUC score 97.04%. This
shows that the GTA5 dataset, with five scenes, is relatively harder to classify.

Explainability study. We use the Gradient-Weighted Class Activation Map-
ping (Grad-CAM) interpretability method [24] to derive node importance in
frame classification. In Figure 3, we show the graphs corresponding to five test
frames, one from each scene of GTA5. Clearly, as the frames are different, their
graph structures are different too. The nodes highlighted in the red color indicate
those nodes having higher positive contributions to the activation of the specific
class label output (i.e., scene number). Finally, we identify the top-20 nodes from
each of these five frames (each belonging to a different scene) having the highest
positive contributions. We count the node-labels present in those top-20 nodes
from each test frame and report these counts corresponding to each scene in
Figure 4(a). The x-axis indicates the node-labels (i.e., GPU functional blocks
involved in the shader code instruction) from these important nodes. Same color
bars represent that they are the same functional block. The figure shows that the
most important GPU functional blocks considered to distinguish each scene by



8 Lin Zhao et al.

(a) (b)
Fig. 4. (a) # GPU functional blocks in the top-20 nodes from each scene, having the
highest positive contributions in scene prediction. (b) Scene clustering results with K-
Means (shown with two principal components)

our GCN-based classification method are quite different. These results demon-
strate the effectiveness and interpretability of our frame classification approach.

5 Tuning for A New Application

We first provide an overview of our method for analyzing existing and new game
datasets. With the existing game datasets, we obtain representative frames from
various scenes by studying graph similarity over frames (§3.3). Next, frequent
subgraphs are extracted from representative frames (§5.1). The game datasets
and scenes are clustered into different groups based on similarity of their frequent
subgraphs (§5.2). Thus, only representative games from each group need to be
investigated to cover the majority of graph patterns across existing games. This
minimizes the tuning effort for engineers. Furthermore, frequent patterns from
representative games are annotated as high-efficiency or low-efficiency by domain
experts. The engineers can upgrade and tune the GPU architecture and hardware
parameters by knowing the common patterns. When a new game is given, its
representative frames and frequent subgraphs are extracted. Next, we verify if
the new game is similar to any of the groups of existing games. If it belongs to
one of them, the tuning result from similar existing games can be re-used. If not,
we predict its low-efficiency shaders in a supervised manner.

5.1 Frequent Subgraphs Mining

We mine frequent subgraphs with the gSpan algorithm [25] from each of 64
scenes spanning across 29 different games. The minimum support (minsup) value
is set to 25% of the number of graphs in each representative frame. A frequent
subgraph pattern is a subgraph that appears in at least minsup graphs in a graph
database. For even higher support values, the frequent patterns get smaller and
less in number. For lower support values, gSpan does not terminate in one day.
Among output frequent subgraphs, we consider those with the number of nodes
at least 5. In this way, we eliminate smaller subgraphs which appear frequently;
however, they are less useful in hardware tuning.

5.2 Scenes Clustering

We identify representative scenes and games for GPU performance tuning, thus
improving the tuning efficiency by eliminating duplicated works on games having



Graph Mining for Shader Code Analysis 9

similar characteristics. We consider all maximal frequent subgraphs as features
for each scene to cluster them. Thus, we get 64 data points (one for every scene),
each with dimensionality 825 (representing all maximal frequent subgraphs). For
a specific scene Si and dimension dj , the value Si[dj ] ∈ (0, 1) is computed as the
maximum pairwise WL kernel similarity between each frequent subgraph of
Si and the maximal frequent subgraph corresponding to dj . Next, we apply K-
Means [20], Gaussian Mixture [26], and Birch algorithms [27] for clustering these
data points. Before clustering, Principal Component Analysis (PCA) is adopted
to reduce the number of features so to avoid the curse of dimensionality. The
optimal number of clusters is determined based on the Elbow method [43]. The
Elbow method selects K where the within-cluster variance no longer decreases
sharply (e.g., 4 for K-Means in our case).

Experimental results. We observe that K-Means and Gaussian Mixture pro-
duce clustering with 93.75% overlap, while BIRCH have 95.31% overlap with K-
Means clustering. Scenes with different grouping results are near the boundary
of two groups based on the three clustering methods. We visualize the K-Means
clustering in Figure 4(b). Each group is labeled with a different color. The cross
sign refers to the centroid of that group. Scenes in the same group have similar
frequent subgraph structures, which means that the frequent algorithmic pat-
terns used in these scenes are also similar. Therefore, selecting one scene, which
is the nearest to the centroid of each group, for performance analysis and tuning
will be both effective and efficient.

5.3 A New Game’s Shader Efficiency Prediction

The frequently occurring sub-patterns from shader codes are valuable also for
the code efficiency analysis and improvement. The overall GPU efficiency can be
improved if the frequent patterns can be efficiently processed. The engineers can
upgrade and tune the GPU architecture and hardware parameters by knowing
the common patterns.

Due to their larger sizes and relatively complex shapes, by looking at a com-
plete piece of shader code, it is often difficult even for domain experts to predict
its efficiency or to identify the frequently occurring weaknesses. However, we ob-
serve that our industry collaborators can quickly recognize if a frequent shader
subgraph is inefficient or not, due to its small size. To this end, we aim at pre-
dicting the efficiency of frequent shader subgraphs in a supervised manner. The
mined frequent subgraphs are annotated as high (Label 1) or low efficiency/
utilization (Label 0) by our industry collaborators based on GPU functional
blocks and latency information. Moreover, we associate the counts of various
GPU functional blocks in frequent subgraphs as their features. In this way, we
get our data points (one for every frequent subgraph) having dimensionality 43
(representing all GPU functional blocks involved). The dataset is unbalanced
with 88.02% in Label 1 and 11.98% having Label 0.

Experimental results. We employ the Random forest classifier, with 4-fold
cross validation, to predict the efficiency of frequent shader subgraphs. We find
the average accuracy to be 0.9865, AUC-PRC 0.9943, and AUC-ROC 0.9574.



10 Lin Zhao et al.

(a) Subgraph 1 (b) Subgraph 2

Fig. 5. Two examples of low-efficiency shader patterns

These results demonstrate that we can predict the efficiency of frequent shader
subgraphs in a supervised manner. Moreover, given a new game, one can predict
its performance by mining its own frequent subgraphs and using our supervised
frequent subgraphs classification model.

Case study. Figure 5 presents two examples of low-efficiency shader patterns
which are correctly predicted by our method. For the subgraph in Figure 5(a),
there are many branches (indicated by LABEL) and long-time wait commands
(indicated by WAITCT); it is likely that during jump or wait time, GPU re-
sources are under-utilized. For the pattern in Figure 5(b), the structure, though
simple, consists of many LOAD and STORE actions, which take longer time.

6 Conclusions

We proposed a unified graph model to denote shader codes as graphs, employed
graph mining and machine learning to analyze disassembly shader code struc-
tures. We investigated a few research questions: Our single game analyses reveal
that the algorithms used in each frame within a scene are similar, thus we can
predict the scene for an unknown frame, and identify the representative frame
from each scene. Our inter-game analyses demonstrate that we can group scenes
and games based on their frequent sub-structures in the shader codes. As a re-
sult, only one or a few sample scenes are sufficient to cover the typical patterns
in that group; hence, engineers can focus on the specific scenes and games for
performance tuning. Finally, our novel shader efficiency prediction method based
on frequent subgraphs accelerates the tuning process by identifying frequent al-
gorithmic structures, including frequently occurring weaknesses. In future, we
shall consider other portions of the shader code, such as input data, in addition
to algorithmic structures, as well as disassembly machine codes from different
applications, for a more comprehensive analysis. Besides, the frequent subgraph
mining algorithm can be improved, e.g., SPMiner [42], to consider various at-
tributes after additional information is added to the graphs, thereby extracting
more sophisticated features.

7 Acknowledgement

This research is supported by Novo Nordisk Foundation grant NNF22OC0072415
and Singapore MOE tier-2 grant 2019-T2-2-042. Lin Zhao acknowledges support
from Nanyang Technologies University, Advanced Micro Devices Co., Ltd.



Graph Mining for Shader Code Analysis 11

References
1. S. Huang, S. Xiao, and W.-c. Feng. 2009. On the Energy Efficiency of Graphics

Processing Units for Scientific Computing. In IPDPS
2. J.D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips. 2008.

GPU Computing. Proc. IEEE 96, 5 (2008), 879–899
3. AMD. [n.d.]. How to Tune GPU Performance Using Radeon Software. https://www.

amd.com/en/support/kb/faq/dh2-020.
4. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open

Grid Services Architecture for Distributed Systems Integration. Technical Report,
Global Grid Forum (2002)

5. P. Zandbergen. 2022. Machine Code and High-level Languages: Us-
ing Interpreters and Compilers. https://study.com/academy/lesson/
machine-code-andhigh-level-languages-using-interpreters-and-compilers.html/

6. 2021. Pipelines and Shaders with Direct3D 12. https://docs.microsoft.com/enus/
windows/win32/direct3d12/pipelines-and-shaders-with-directx-12.

7. C. S. de La Lama, P. Jääskeläinen, H. Kultala, and J. Takala. 2019. Programmable
and Scalable Architecture for Graphics Processing Units. Trans. High Perform. Em-
bed. Archit. Compil. 5 (2019), 21–38.

8. S. T. Fam and A. Sowerby. 2015. Shader Program Profiler https://patents.google.
com/patent/US9799087B2

9. X. Ren and M. Lis. 2021. CHOPIN: Scalable Graphics Rendering in Multi-GPU
Systems via Parallel Image Composition. In IEEE International Symposium on
High-Performance Computer Architecture, HPCA. IEEE, 709–722.

10. S. I. Zaidi, S. T. Fam, P. Lotfi, V. R. Indukuru, J. Pan, A. M. Sowerby, and
J.-L.Duprat. 2018. Shader Profiler.

11. B. Karlsson. 2021. RenderDoc. https://renderdoc.org/docs/index.html
12. H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. 2013. Structural Detection of

Android Malware using Embedded Call Graphs. In AISec.
13. R. Alanazi, G. Gharibi, and Y. Lee. 2021. Facilitating Program Comprehension

with Call Graph Multilevel Hierarchical Abstractions. J. Syst. Softw. 176 (2021),
110945

14. U. Tekin and F. Buzluca. 2014. A Graph Mining Approach for Detecting Identical
Design Structures in Object-oriented Design Models. Sci. Comput. Program. 95
(2014), 406–425.

15. 2021. greenspector https://greenspector.com/en/home/
16. M. Allamanis, M. Brockschmidt, and M. Khademi. 2018. Learning to Represent

Programs with Graphs. In ICLR.
17. T. N. Kipf and M. Welling. 2017. Semi-Supervised Classification with Graph Con-

volutional Networks. In ICLR.
18. L. Zhao, A. Khan, and R. Luo. 2022. Our Code and Datasets. https://github.com/

forest2022/graphForest.
19. 2021. Radeon™ GPU Analyzer. https://https://gpuopen.com/rga/
20. J. Leskovec, A. Rajaraman, and J. D. Ullman. 2014. Mining of Massive Datasets,

2nd Ed. Cambridge University Press.
21. N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borg-

wardt. 2011. Weisfeiler-Lehman Graph Kernels. J. Mach. Learn. Res. 12 (2011),
2539–2561

22. G. Siglidis, G. Nikolentzos, S. Limnios, C. Giatsidis, K. Skianis, and M. Vazirgian-
nis. 2020. GraKeL: A Graph Kernel Library in Python. Journal of Machine Learning
Research 21, 54 (2020), 1–5.



12 Lin Zhao et al.

23. W. L. Hamilton, Z. Ying, and J. Leskovec. 2017. Inductive Representation Learning
on Large Graphs. In NeurIPS.

24. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.
2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based
Localization. In ICCV.

25. X. Yan and J. Han. 2002. gSpan: Graph-Based Substructure Pattern Mining. In
ICDM.

26. X. Lin, X. Yang, and Y. Li. 2019. A Deep Clustering Algorithm based on Gaussian
Mixture Model. Journal of Physics: Conference Series 1302 (08 2019), 032012.

27. T. Zhang, R. Ramakrishnan, and M. Livny. 1997. BIRCH: A New Data Clustering
Algorithm and Its Applications. Data Min. Knowl. Discov. 1 (06 1997), 141–182.

28. D. Schaa and D. R. Kaeli. 2009. Exploring the Multiple-GPU Design Space. In
IPDPS.

29. V. Moya, C. Gonzalez, J. Roca, A. Fernandez, and R. Espasa. 2005. Shader Per-
formance Analysis on a Modern GPU Architecture. In MICRO.

30. 2021. NVIDIA Performance Analysis Tools https://developer.nvidia.com/
performance-analysis-tools

31. 2021. Radeon™ Developer Tool Suite https://gpuopen.com/
32. B. Welton and B. P. Miller. [n.d.]. Diogenes: Looking for an Honest CPU/GPU

Performance Measurement Tool.
33. K. Zhou, L. Adhianto, J. Anderson, A. Cherian, D. Grubisic, M. Krentel, Y. Liu, X.

Meng, and J. Mellor-Crummey. 2021. Measurement and Analysis of GPUaccelerated
Applications with HPCToolkit. Parallel Comput. 108 (2021), 102837

34. C. A. Baddouh, M. Khairy, R. N. Green, M. Payer, and T. G. Rogers. 2021. Princi-
pal Kernel Analysis: A Tractable Methodology to Simulate Scaled GPU Workloads.
In MICRO.

35. J.-C. Huang, L. Nai, H. Kim, and H.-H. S. Lee. 2014. TBPoint: Reducing Simula-
tion Time for Large-Scale GPGPU Kernels. In IPDPS

36. M. Kambadur, S. Hong, J. Cabral, H. Patil, C. Luk, S. Sajid, and M. A. Kim.
2015.Fast Computational GPU Design with GT-Pin. In IISWC.

37. Z. Yu, L. Eeckhout, N. Goswami, T. Li, L. K. John, H. Jin, C.-Z. Xu, and J.
Wu. 2015. GPGPU-MiniBench: Accelerating GPGPU Micro-Architecture Simula-
tion. IEEE Trans. Computers 64, 11 (2015), 3153–3166.

38. D. Sadyrin, A. Dergachev, I. Loginov, Iu. N. Korenkov, and A. Ilina. 2019. Ap-
plication of Graph Databases for Static Code Analysis of Web-Applications. In
MICSECS.

39. J. Liu. 2020. Enabling Static Program Analysis Using A Graph Database. Ph.D.
Dissertation. Wright State University.

40. A. Nair, A. Roy, and K. Meinke. 2020. funcGNN: A Graph Neural Network Ap-
proach to Program Similarity. In ESEM.

41. A. V. Phan, M. L. Nguyen, and L. T. Bui. 2017. Convolutional Neural Networks
over Control Flow Graphs for Software Defect Prediction. In ICTAI.

42. A. Z. Wang, J. You, and J. Leskovec. 2020. Frequent Subgraph Mining by Walking
in Order Embedding Space. In GRL Workshop

43. R. L. Thorndike. 1953. Who Belongs in the Family? Psychometrika 18 (1953),
267–276.

44. 2021. Unreal Engine. https://https://www.unrealengine.com/en-US/
45. L. Zhao, A. Khan, and R. Luo. 2022. ShaderNet: Graph-based Shader Code Analy-

sis to Accelerate GPU’s Performance Improvement (Demonstration). In GRADES-
NDA Workshop


