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Abstract
Searching for a community based on query nodes in a

graph is a fundamental problem and has been extensively in-

vestigated. Most of the existing approaches focus on finding a

community in a social network, and very few studies consider

location-based social networks where users can check in lo-

cations. In this paper we propose the GeoSocial Community

Search problem (GCS) which aims to find a social community

and a cluster of spatial locations that are densely connected

in a location-based social network simultaneously. The GCS
can be useful for marketing and user/location recommenda-

tion. To the best of our knowledge, this is the first work to

find a social community and a cluster of spatial locations that

are densely connected from location-based social networks.

We prove that the problem is NP-hard, and is not in APX,

unless P = NP . To solve this problem, we propose three

algorithms: core-based basic algorithm, top-down greedy re-

moving algorithm, and an expansion algorithm. Finally, we

report extensive experimental studies that offer insights into

the efficiency and effectiveness of the proposed solutions.

CCS Concepts
• Information systems→ Clustering.
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1 Introduction
Informally, a community is a subgraph where the nodes

are densely connected internally, and sparsely connected

externally. Community detection problem is to identify all

the communities in a graph.

In contrast, given a set of query nodes and some other con-

straints, community search problem aims to find a densely

connected community containing all query nodes [3, 11, 12,

17, 19, 28]. It is different from community detection since the

query nodes are given and the goal is to find one community.

Many location-based social network (LBSN) services have

emerged in recent years. For example, Foursquare hosts more

than 12 billion check-ins and 105 millions venues
1
. LBSN

contains social network and check-in information. One char-

acteristic of LBSN is Preference locality [22]. It means that

individuals prefer nearby locations for different activity pur-

poses [15]. Figure 1 depicts an example of an LBSN.

In this work, we focus on finding a community and a

cluster in the LBSN, consisting of a group of users and a set

of locations, respectively, that are densely connected. We

aim to find the community and cluster with high check-in

density, since the frequent visiting behaviour implies the

strong intention of common interests for a specific group

of people. Meanwhile, the users in the result community

should also be firmly connected socially and their visiting

locations should be close spatially. To this end, we model the

closeness with structural/spatial constraints. Specifically, we

1
https://foursquare.com/about
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Figure 1: Location-based social network and location
graph generation

propose the GeoSocial Community Search problem (GCS)
which, given a location-based social network and a set of

query nodes, aims to find a subgraph containing the query

nodes such that the users in the subgraph are socially close

and they frequently check-in to a cluster of closeby locations.

Applications. GCS has a wide range of applications.

(1) UserRecommendation [13] Online review services like

Yelp provide a platform to explore and find restaurants, bars

andmore. Such services also enable business owners to target

ads to their potential customers. Suppose that the owner of a

restaurant wants to attract diners by giving away coupons to

potential customers. GCS can be used to find the community

of users who have frequently visited nearby locations of the

restaurant. They will be the ideal target customers, since they

are more likely to visit the restaurant as a group of friends.

Furthermore, the restaurant can form partners with those

nearby locations frequently visited by the user community

for cross-promotion.

(2) Event/LocationRecommendation andOrganization
[24, 26] GeoSocial applications such as Meetup, Meetin, and

Eventbrite support users to organize events in a physical lo-

cation, and recommend events to users. First, to recommend

events to Alice and Bob, GCS can be used as follows: with

Alice and Bob, as well as their current locations, as query

nodes, GCS is used to find those locations that are close to

their current locations, and have been visited frequently by a

community of users containing both Alice and Bob. Then we

can recommend Alice and Bob the events that will happen

in those locations and are organized by users in the com-

munity, since very likely they are of interest to Alice and

Bob. Second, to help Alice and Bob organize an event, GCS
can be employed to find the community containing Alice

and Bob, as well as the set of locations frequently visited

by the community. Thus, candidate invitees can be from the

community, the community size can be used as an estimator

of the participants for event planning, and the event location

can be selected from the set of locations.

(3) GeoSocial Data Analysis Studying features of a social
network or geographical regions is an interesting problem

in data analysis. With GCS, we can infer characteristics of a

community (resp. region) from its region (resp. community).

For instance, if the region contains sport facilities such as

gym or swimming pool, we expect that the users in the cor-

responding community are interested in sports. Similarly, by

analyzing members of a community (e.g., comprising many

IT people), it is possible to better understand the character-

istics of a geographical area (e.g., high-tech region).

The contributions of our work are summarized as follows:

(1) Define the community search problem in LBSNs.
To the best of our knowledge, this is the first work to

find a community of social network users and a cluster

of locations with high check-in density. We have also

suggested applications of this problem.

(2) Theoretical Analysis. We show that the GCS problem

is NP-hard, and is not in APX.

(3) Solutions.We propose three solutions to solve the GCS
problem effectively and efficiently.

(4) Extensive Evaluation. We conduct extensive experi-

ments on real-life networks in terms of efficiency and

scalability. We also show the usefulness of the GCS prob-
lem with case study results.

2 Related Work
Community search problem is first introduced by Sozio et

al. [28]. They propose a global search algorithm to find a sub-

graph that contains query nodes and show that community

search with upper-bound constraints on the size of result is

NP-hard. Cui et al. [10] analyse the challenge of global search

that have to explore the whole graph and propose a local

search algorithm starting from a query node. However, the

algorithm can support only one query node. Barbieri et al. [3]

propose a parameter-free community search algorithm. It

aims to overcome the limitation of local search algorithms by

allowing multiple query nodes. They use k-core decomposi-

tion and heuristic steiner tree algorithm to find a community.

These proposals define community by minimum degree. In

contrast, Huang et al.[17, 19] find k-truss community, where

every edge in the community is contained in at least (k − 2)

triangles. The algorithms proposed in these studies on com-

munity search cannot be used for our problem, which is

different from these existing community search problems.

One extension of community search is to consider other

information. For example, Fang et al. [12] consider struc-

ture cohesiveness and keyword cohesiveness. They claim

that considering keywords helps better understanding of

the formation of a community. Huang et al. [18] study the

attribute-driven k-truss community search problem. They

consider the pairwise distances of the nodes and aim to maxi-

mize attribute score. Spatial information is also considered as

attributes of users in finding a community [7, 11, 29]. Fang et

al. [11] assume that each user is associated with a single loca-

tion, and identify a spatial-aware community (SAC). Given a

query node, SAC is to find a k-core community in a minimum

covering circle with the smallest radius, and the resultant
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Table 1: Comparing GCS and related work
GCS SAC[11] MCC[7] (k, r )-core[30]

Check-in graph Yes No No No

Query type users, locations, or both a user No No

Result a community and a cluster a community top-k communities maximal (k, r )-core communities

Objective maximize check-in density minimize radius maximize size enum. all maximal (k, r )-core

community contains the given query node. Chen et al. [7]

make the same assumption that each user is associated with

a single location, and define a maximum co-located com-

munity (MCC) search problem. This problem is to find the

largest k-truss community in which the pairwise distance

is smaller than a threshold specified by the user. Zhang et

al. [30] introduce (k, r )-core problem in an attributed social

network, where each user has an attribute. They aim to enu-

merate all the maximal (k, r )-core, where each (k, r )-core
comprises a set of densely connected users, which form a

k-core community, and the similarity between the attributes

of any two users exceeds a given threshold r ; A (k, r )-core is
maximal if none of its supergraphs is a (k, r )-core.

Ourwork is fundamentally different from SAC[11],MCC[7],

and (k, r )-core [30] in at least four aspects as summarized in

Table 1. First, our input is a check-in graph with two sides:

social network and location, and each user can check-in mul-

tiple locations. Second, GCS can take both locations and

users as query nodes. Third, our result comprises a com-

munity of users, a cluster of locations, and the check-in

connections between them. Finally, our objective is to maxi-

mize the check-in density between the two levels of graphs.

Therefore, SAC, MCC, and (k, r )-core cannot be used for the

applications of GCS given in Introduction.

3 Problem and Basic Solution
3.1 Problem statement
A social network G = (V , E) is a graph consisting of a

set V of nodes and a set E ⊆ V ×V of edges. In this study,

we assume that all graphs considered in this work are sim-

ple and undirected. Given a subset of nodes H ⊆ V , we
denote G[H ] = (H , E[H ]) the subgraph of G induced by

H , i.e., E[H ] = {(u,v) ∈ E |u,v ∈ H }. A bipartite graph

GC = (VU ,VL, EC ) is a check-in graph, where VU is a set of

user nodes,VL is a set of locations, (u, l) ∈ Ec withW (u,v) ∈
R being the weight of the edge (u,v) ∈ EC . The check-in
weightW can consider the frequency of check-in as well as

the recency of the check-in. Finally, A location-based social
network (LBSN) S = (GU ,VL,GC ) consists of a social network

GU , location data VL , and check-in graph GC .

DEFINITION 1. [User Community]. A user community is a
connected subgraph H = (VH , EH ) ⊆ Gu that satisfies δ (H ) ≥

m, where δ (H ) is the minimum degree of any node v ∈ VH
andm is a user-specified degree threshold.

We employ the minimum degree within a subgraph as its

goodness measure, since it has been widely used in commu-

nity search problems [3, 10–12, 28], and is generally utilized

for measuring the structural cohesiveness [27].

DEFINITION 2. [Distance Reachable]. Two locations l1 and
lk are distance reachable if there exists a sequence of locations <
l1, l2, · · · , lk > such that dist(li , li+1) ≤ r for any i ∈ [1,k − 1].

DEFINITION 3. [Location Cluster]. Give a user-defined
distance threshold r and degree thresholdm, a set of location L
form a cluster when the following constraints hold.
(1) ∀l ∈ L, there are at leastm nearby locations within r

distance in L ;
(2) Any two locations in L are distance reachable.

DEFINITION 4. [Location Network]. Given location data
VL and a user-defined distance threshold r , the location net-
work GL = (VL, EL) is constructed as follows. When any two
locations li , lj ∈ VL , li , lj , are located within radius r (i.e.,
the distance between li and lj , denoted as: dist(li , lj ) ≤ r ), we
connect these two locations by an edge.

Figure 1 demonstrates how to form a location graph with

radius r = 2. Here, we choose a radius r to construct the

network, which is intuitive — the closer the locations are,

the more accessible they are from each other.

Note that in our algorithm, we do not materialize a com-

plete location network. The concept of location network is

for presentation convenience, and to see the similarity of

the constraints used in user community and location cluster.

With the concept of location network, we can see that the

constraints for defining a location cluster are actually the

minimum degree constraints on a connected location sub-

graph, which are the same as those for defining a community.

Table 2: Notations

Notation Definition
community: GCU subgraph GCU ⊆ GU w/ cohesiveness

cluster: GCL subgraph GCL ⊆ GL w/ cohesiveness

δ (G) minimum degree in graph G
ρ(G) check-in density of graph G
EC [S,H ] check-in edge from H to S
WH [C] sum of check-in weight from C to H
G[H ]; H ⊆ V subgraph G[H ] of G = (V , E),

induced by node set H
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For convenience, we call the constraints of minimum degree

threshold and connectivity as Cohesiveness constraint. We

say that a user community or a location cluster satisfies the

cohesiveness constraint.

DEFINITION 5. [Check-In Density]. Consider a check-in
graph GC = (VU ,VL, EC ). Given a user community HCU =

(VCU , ECU ) and a location cluster HCL , the check-in density
ρ(HCU ,HCL) betweenHCU andHCL is defined as ρ(HCU ,HCL) =∑
u ∈HCU ,v ∈HCL

W (u,v)/(|VCU | + |HCL |).

In Figure 1, let us consider a community induced by the

users VCU = {u1,u2,u3}, and a cluster induced by the loca-

tionsVCL = {l1, l2, l3, l4}. The check-in density of the bipartite
subgraph induced by VCU ∪VCL is: 9/7.

We are now ready to define our problem. The notations

are summarized in Table 2.

PROBLEM DEFINITION 1. [GeoSocial Community
Search (GCS)]. Given a location-based social network S =(GU ,
VL , GC ), query nodes Q ⊆ VU ∪VL , a degree thresholdm, and
a radius r , the GCS problem aims at finding a communityVCU
and a cluster VCL containing all the query nodes Q such that
the check-in density between VCU and VCL is maximized.

Note that bothm and r are input parameters, known only

at query time. The intuition of our problem is as follows.

Given a setQ of query nodes, we search for a user community

VCU and a location clusterVCL , covering all query nodes and
satisfying the cohesiveness constraints, such that the check-

in density between the user community and the location

cluster is maximized.

The GCS problem is designed for the applications given in

Section 1. Both the cohesiveness constraints and the check-in

density maximization are important for those applications.

3.2 Theoretical characterization
Our problem is, however, nontrivial. The following theo-

rem shows that the GCS problem is intractable. For simplicity,

we assume that the weight of all check-in edges to be one.

THEOREM 1. GCS problem is NP-hard.

Proof. We prove that GCS problem is NP-hard by reduc-

ing an instance of the mCST(minimum Community Search

with Threshold constraint) problem which is NP-hard to an

instance of GCS in polynomial time. Given a graph G =
(V , E), a query node q ∈ V , and degree thresholdm, the goal

of mCST[10] is to find nodesH ⊆ V , such that (1)H contains

q; (2) the subgraph G[H ] induced by H is connected; (3) the

minimum degree in G[H ] is greater than or equal tom (i.e.,

δ (G[H ]) ≥ m); and (4) the size of H is minimized.

Consider an instance of mCST:G1 = (V1, E1),m,q, with
q ∈ V1. We construct a complete graphG2 = (V2, E2) having
|V2 | =m + 1 nodes. We use G1 as the social graph and G2 as

(complete graph)

connected to
all nodes in 

Figure 2: Construct an instance forGCS fromMSMDd .

the location graph in the corresponding instance of the GCS
problem . Next, we add a check-in edge between every node

in V2 and q ∈ V1. Thus, we construct an instance of GCS
problem : we select query nodes Q = {q} ∪V2, and employ

the same node degree thresholdm. The optimal solution of

GCS will have all nodes in V2 as a cluster (due to cohesive-
ness constraints). Furthermore, assume that the community

selected fromG1 in the optimal solution of GCS is induced by
the subset of nodes C1 ⊆ V1. Then, this optimal solution has

check-in density:
m+1

|C1 |+(m+1)
. Now, the solution has the maxi-

mum check-in density when |C1 | is minimized. Recall that

the subgraph induced by C1 is a community, thus it satisfies

the cohesiveness constraints. However, this is same as the

mCST problem overG1. Therefore, GCS problem is NP-hard
due to the polynomial-time reduction from mCST. □

THEOREM 2. GCS is not in APX for any m ≥ 4, unless
P = NP .

Proof. Wegive an L-reduction [9] fromMSMDd (Minimum

Subgraph of Minimum Degree) [1, 2] to an instance of GCS
problem in polynomial time.MSMDd problem is a minimiza-

tion problem and is not in APX, when d ≥ 3 and unless

P=NP [1]. For convenience, we consider the inverse problem

of GCS to make the minimization problem, which is because

L-reduction preserves PTAS and APX if the original problem

is the minimization problem[9]. Since the original problem

MSMDd is not in APX when d ≥ 3 and unless P = NP , our
claim is that GCS problem is also not in APX, unless P = NP .

We show how to make an instance of GCS from the in-

stance of MSMDd in Figure 2. The reduction step is as fol-

lows.

(1) It is known thatMSMDd is not in APX [1, 2]. The problem

is as follows : given a graph G = (V , E) and a degree

threshold d , the goal of MSMDd is to find a subgraph

H ⊆ V , such that (1) the degrees of every node in H are

larger than or equal to d , i.e., δ (H ) ≥ d (2) the size of

the subgraph H is minimized. We note that the result of

MSMDd is a connected component due tominimizing the

size. Furthermore, the optimal solution of the MSMDd
problem must have at least d + 1 nodes.

(2) Consider an instance of MSMDd : (G = (V , E),d). We

construct a complete graph G2 = (V2, E2) with V2 =
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{Q1,Q2, · · · ,Qd+2} nodes and another graphG1 = (V1, E1)
where V1 = V ∪Q0. Let the node Q0 ∈ V1 be connected
to all the nodes in V1 \Q0. We consider G1 as the social

graph and G2 as the location graph in the correspond-

ing instance of the GCS problem. Next, we add check-in

edges between every node inV2 andQ0 ∈ V1. The sum of

check-in edge weights is exactlyd+2. Thus, we construct
an instance of theGCS problem (LBSN S = G1∪G2, query

nodes Q =
⋃d+2

i=0 Qi and the degree thresholdm = d + 1).
(3) Based on generating the instance of GCS problem from

MSMDd , we know that the solution of GCS problem

contains all nodes in V2 and Q0 ∈ G1. This is because

G2 is a complete graph and |V2 | is the minimum size to

become a cluster. Our goal is to maximize the check-in

density. Tomaximize the check-in density, we should find

a community having a minimum size, i.e., the optimal

solution has check-in density:
m+1

|C1 |+(m+1)
where C1 is a

community inG1. Now, it is easy to verify that the nodes

in C1 \Q0 correspond to theMSMDd .

Now, we are ready to show L-reduction fromMSMDd to

GCS. We switch GCS for convenience from maximization to

minimization. New problem GCS is to minimize the inverse

check-in density. In this proof, we use following notations.

• x is an instance of MSMDd .

• f (x) is an instance of GCS.
• if y ′

is a solution to f (x), then д(y ′) is a solution to x .

• OPT (.) defines the cost of the optimal solution for the

given instance of a problem.

• Sol ′MSMDd
(д(y ′)) is the cost of the solution д(y ′) for the

instance x of MSMDd .

• Sol ′
GCS

(y ′) is the cost of the solutiony ′
for the instance

f (x) of GCS.

There is an L-reduction (f ,д) if two positive constants α and

β exist such that

OPTGCS(f (x)) ≤ αOPTMSMDd (x) (1)

|OPTMSMDd (x)−Sol
′
MSMDd (д(y

′))| ≤

β(|OPTGCS(f (x)) − Sol ′
GCS

(y ′)|)
(2)

We find that there exist such α = 1 and β = (d + 2)2.

Equation 1 holds when we use α = 1. Recall that d ≥ 3 and

OPTMSMDd (x) is always larger than or equal to d + 1.

OPTMSMDd (x) + d + 3

d + 2
≤ OPTMSMDd (x) (3)

Equation 2 holds when we use β = (d + 2)2. Recall that

Sol ′
GCS

(y ′) is equal to the

Sol ′MSMDd
(д(y′))+d+3

d+2 .

OPTMSMDd (x) − Sol ′MSMDd (д(y
′)) ≤

β(
OPTMSMDd (x) + d + 3

d + 2
−
Sol ′MSMDd

(д(y ′)) + d + 3

d + 2
)

=(d + 2)(OPTMSMDd (x) − Sol ′MSMDd (д(y
′))

(4)

L-reduction preserves membership in APX and PTAS for the

minimizing optimization case [9]. Since MSMDd is not in

APX for d ≥ 3 and unless P = NP , our GCS problem is also

not in APX form ≥ 4 and unless P = NP . □

Corollary 2.1. The GCS problem is not in PTAS form ≥ 4,
unless P=NP.

Since PTAS is a subclass of APX and we have already

shown that GCS is not in APX, the above corollary holds.

3.3 Basic Algorithm (BA)
Our basic method follows the notion of core decomposition

[27] of a graph: The k-core of an undirected graphG = (V , E)
is a maximal subgraph G[Ck ] = (Ck , E[Ck ]) such that the

minimum degree within the subgraph δ (G[Ck ]) ≥ k . In other
words, the k-core of a graph is a maximal subgraph in which

every node is connected to at least k other nodes within

that subgraph. The k-core has the following two properties.

Uniqueness: The k-core of a graphG is unique. Containment:
The (k + 1)-core of a graphG is a subgraph of its k-core. The
maximalk for which a nodev belongs to thek-core is the core
index of v . The set of all k-cores V = C0 ⊇ C1 ⊇ . . . ⊇ Ck∗

(k∗ = argmaxk Ck , ϕ) is the core decomposition ofG . Based
on the containment property, the (k+1)-core can be obtained
by peeling the k-core. It means to recursively delete, from

the k-core of G, all nodes with degree less than k + 1; what
remains is the (k + 1)-core of G [5].

While thek-coreG[Ck ] ofG , for a givenk , is unique,G[Ck ]

may not be a connected graph. To guarantee the connectiv-

ity, we define a set Γ of nodes as a Core-Based Connected
Component iff the subgraph induced by Γ is a connected com-

ponent and its minimum degree is larger than or equal to k .
We refer to k as its core value and use CBCC(k) to denote

the set of CBCCs whose core values are k .

We notice that every k-core-based connected component
Γ ∈ CBCC(k) satisfies the cohesiveness constraints if the input
degree threshold m ≤ k . Our basic approach exploits this

property. In particular, for a given degree thresholdm, we

compute all core-based connected components in CBCC(k),
for all k ≥ m, both from the social network and the loca-

tion network. Next, we discard those connected components

from the user (resp. location) side, which do not contain all

query user (resp. location) nodes. If there is no connected

component, our algorithm returns null. Among the remain-

ing connected components, we consider every pair (one from

the user side and the other from the location side), compute
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the check-in subgraph density for this pair, and finally report

the pair having the maximum check-in subgraph density as

the solution to our problem.

Generating the location graph. To generate the location

graph, we use the R-tree [14]. Based on the query location, we

incrementally extract a small portion of the location graph.

If the query does not contain a location, we find all the

locations visited by the subgraph which is the result of k-
core containing all user query nodes. We then iteratively

generate a location graph by including the locations as a set

of seed nodes of the location graph.

Time complexity. The complexity of the BA is O(|EU | +

|EL |+m
′
GU

(|VU |+ |EU |)+m
′
GL

(|VL |+ |EL |)+ |VL |
2)where |EU |

and |EL | are for finding core index for both networks [4];

D(V + E) is for finding all CBCC(k) in a network where

m′
G is maximal core index in a network G; |VL |

2
is for gen-

erating a location graph, which is usually much smaller

in practice. Thus, the time complexity of the algorithm is

TBA = O(m
′
U (|VU | + |EU |) +m

′
L(|VL | + |EL |) + |VL |

2).

Difficulties with the basic algorithm. Even if the BA is

efficient, it may return a very large community since the

result is directly depending on the k-core. It is known that

a community search problem that maximizes the minimum

degree also returns a large community[10, 28]. Thus, our BA
also suffers from very large solutions.

Leveraging the result of basic algorithm. In the follow-

ing improved algorithms (GRA and GEA+), we can leverage

the result of the BA as an input graph instead of the original

graph. Thus, Thus, we can reduce the running time (demon-

strated empirically in Section 6) and get a better start point.

4 Greedy Removing Algorithm (GRA)
In this section, we propose a more effective top-down

heuristic algorithm for solving the GCS problem.

Our algorithm is inspired by the top-down approach [6, 21]

which finds the densest subgraph in a graph. However, these

algorithms cannot be directly applied since in our problem

we need to deal with query nodes Q , two layers of network,

and the cohesiveness constraints imposed on the solution.

The high-level idea of our algorithm GRA for finding the

densest subgraph is to iteratively remove nodes which have

the smallest average check-in degree by maintaining cohe-

siveness constraints. For every iteration, we compute the

check-in density. Finally, we pick a subgraph that has the

largest density. In each iteration, our algorithm iteratively

removes a group of nodes instead of a single node. This is

because after removing a node with the smallest check-in

degree, the remaining graph should always satisfy the co-

hesiveness constraints. In order to satisfy the constraints

for the remaining graph, it is necessary to delete the nodes

A network without any query node A network with query node 

Query Node

Figure 3: Toy networks with blocks Bu1 , Bu4 , and Bu8

that do not satisfy the constraints together. The concept of

“block” is inspired by this idea.

DEFINITION 6. [DVS(Degree Violation Set)]. Given a net-
work G and a node w ∈ G, we remove the node w from the
networkG . Then, to hold the degree constraint in the remaining
graphG \ {w}, we may need to remove some other nodes. This
process is iteratively repeated. We denote the set of removed
nodes to hold the degree constraint by DVS(w).

DEFINITION 7. [Block]. Given a network G = (V , E) and
node u ∈ V , block Bu is the union of node u and DVS(u).

To maintain the cohesiveness constraints and existence

of all query nodes Q in the result, we next introduce the

removable block.

DEFINITION 8. [Removable Block]. Given a network G =
(V , E), query nodes Q ⊆ V , and a block Bu ⊆ V , the block Bu
is removable if the block satisfies both conditions: (1) Bu does
not contain any query node in Q (2) removing Bu from G will
not induce multiple connected components.

We briefly show how to generate blocks Bu1 , Bu4 and Bu8
from the toy network in Figure 3.We set theminimum degree

thresholdm as 2.

First, we check blocks in the network without any query

node (left figure in Figure 3). BlockBu1 contains nodes {u1,u2,u3}
since after removing node u1, node u2 does not satisfy the

degree constraint and it needs to be deleted; After removing

node u2, we delete node u3 in a cascading manner due to the

degree constraint. Block Bu1 is removable since it satisfies

both conditions in Definition 8. Block Bu4 contains {u4,u6}
and Bu4 is not a removable block since the result of removing

block Bu4 has two connected components. Block Bu8 contains
{u8} and is removable. Next, consider the same network with

a query node u2 (right figure in Figure 3). Block Bu1 is not a
removable block since it contains query node u2.

In our algorithm, we remove a block instead of a node

to meet the cohesiveness constraints. We next define aver-

age check-in density for each block, which will be used to

prioritize the blocks to be removed.

DEFINITION 9. [Block check-in density]. Given a remain-
ing check-in graph H = (VH , EH ) and a removable block
B ⊆ VH , the block check-in density ρ(B,H ) is WH [B]

|V (B) | .
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Block check-in density is a measure about average check-

in density from a block to the remaining graph H . Since the

size of the graph H is reduced after each iteration, the check-

in density of the blocks may be changed in each iteration.

GRA works as follows. Let H denote the result subgraph.

First, we set the initial solutionH satisfying the cohesiveness

constraints from the LBSN. Then, we start removing process

in H . We iteratively remove a block which is removable

and has minimum block check-in density from H . In every

iteration, the selected block will be removed from its network

GU or GL and the currently remaining check-in network

H ′
. Then, we compare the check-in density between H and

H ′
to keep the densest subgraph and update H with H ′

if

H ′
has a higher check-in density, i.e.,ρ(H ′) ≥ ρ(H ). This

process is repeated until there is no remaining removable

blocks. Finally, the algorithm returns a subgraph H having

the largest check-in density

Time complexity. It takesO(|VU | (|VU |+ |EU |)+ |VL |(|VL |+
|EL |)) to generate the blocks in both networks, where (|V | +

|E |) is for traversing a graph and |V | is the number of blocks.

The maximal number of iteration is |VU | + |VL |. Note that
in each iteration, we need to regenerate all blocks. It takes

O(|EU |) and O(|EL |) to find k-core for both networks. Thus,

the complexity of the algorithm isO((|VU |+ |VL |)(|VU |(|VU |+

|EU |) + |VL |(|VL | + |EL |))).

5 Expansion Algorithm
When a graph is very large, GRA may cost long running

time. We next propose a heuristic expansion algorithm.

5.1 Greedy Expansion Algorithm (GEA)
The main idea of our expansion algorithm is to start from

the query nodes, and then gradually expand the size of the

current solution, by adding nodes iteratively to the current

solution based on certain greedy criteria.

In this subsection we introduce a simplied version of our

expansion algorithm. We intialize the initial current solution

with the set of query nodes. The algorithm maintains a prior-

ity queue that stores candidate nodes to be inserted into the

current solution. In the initial stage, the priority queue con-

tains neighbor nodes of query nodes. Initially, if the social

network (resp. the location network) does not contain any

query node, a neighbor node in check-in network of the cur-

rent solution will be inserted into the priority queue. If query

nodes are in both networks, neighbor nodes of query nodes

are inserted into the priority queue. The algorithm then it-

eratively expands the current solution as follows: In each

iteration, it removes the node with the highest priority from

the priority queue and includes it into the current solution;

Then all the neighbor nodes of the removed node in both

networks are inserted into the priority queue; Finally, we

need to update the priority of neighbor nodes of the removed

node in the priority queue. At the end of each iteration, we

check if the current solution satisfies the cohesiveness con-

straint: if yes, we terminate the algorithm and return the

current solution as the result. For checking the connectivity

constraint of a graph, we use Euler tour tree [16].

A key problem in the expansion algorithm is how to set

the priority for the priority queue. We design the following

three criteria to sort nodes in the priority queue:

• CR 1. sum of check-in edge weights to the current solution.

• CR 2. number of neighbor nodes that are in the current

solution but do not satisfy the cohesiveness constraint.

• CR 3. number of neighbor nodes in the current solution.

The first criterion is to give higher priority to nodes with

larger check-in edge weight since they can increase the

check-in density of the current solution. The ties are broken

based on criteria 2 and 3 in order. The second criterion is

to give higher priority to nodes that have more neighbor

nodes in the current solution that do not satisfy the cohen-

siveness constraint. This is because including such nodes

in the current solution will increase the chance of the cur-

rent solution to meet the cohensiveness constraint. The third

criterion is to give higher priority to nodes with a higher

number of neighbor nodes in the current solution as such

nodes contribute more to the cohensivness of the result.

5.2 Advanced Greedy Expansion
Algorithm(GEA+)

The simplfied expansion algorithm (referred to as GEA)
(1) terminates only when the cohesiveness constraints are

satisfied, and (2) till then it iteratively includes neighboring

nodes that have higher check-in density into the current

solution according to the CR 1. This might end up reporting

a low-quality solution (i.e., with low check-in density) as

we explain below. Consider the following scenario that the

neighbor nodes of a query node from the same network must

be included in the solution to satisfy the cohesiveness con-

straints; however they have very few check-in edges with

the other network. In GEA, such neighbor nodes have to be

included in the current solution until the cohesiveness con-

straints are satisfied. Thus, the size of the final solutionwhich

satisfies the cohesiveness constraints may become relatively

large, and the overall check-in density gets reduced. To solve

0 1000

0
5

10
15

3000 5000

IA
IA

Result of IA

Result of IA
Local peak point

Density-based Step
Constraint-based Step

# nodes in solution
Figure 4: Check-in density plot of GEA and GEA+
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this problem, we propose our advanced greedy expansion

algorithm, referred to as GEA+. The key idea of GEA+ is to
change the sorting criteria for the priority queue when a

local peak point in the check-in density is reached for the

first time. The local peak point is defined as follows.

DEFINITION 10. [Local peak point]. Given a series of check-
in graphs T1 ⊂ T2 ⊂ ... ⊂ Tk that are the intermediate results
reported by GEA+, and a sliding window sizew , a local peak
point is an intermediate check-in graph Ti such that ρ(Ti ) ≥
ρ(Ti−w ′) and ρ(Ti ) ≥ ρ(Ti+w ′′) where w = w ′ +w ′′ + 1 and∑w−1
i=1 (ρ(Ti+1) − ρ(Ti )) < 0.

Figure 4 shows an example of the variation of check-in

density over the solution size in GEA and GEA+. The orange
circle is a local peak point. At this point, the priority criteria

used inGEA+ are changed in order to satisfy the cohesiveness
constraints quickly — without significantly reducing the

check-in density, compared to that at the local peak point. In

contrast, GEA would include more nodes in the solution to

satisfy the cohesiveness constraints, which greatly reduces

the check-in density.

GEA algorithm works in two steps as introduced next.

Density-based expansion step: The density-based expan-

sion step is the same as GEA. However, the step is to find a

local peak point instead of finding the final solution in GEA.

Constraint-based expansion step:Once a local peak point
is reached, we would like the current solution to satisfy the

cohesiveness constraints by adding as few nodes as pos-

sible, without significantly reducing the check-in density

compared to that at the local peak point. To achieive this

goal, we change the sorting order for priority in the priority

queue—We rearrange all the remaining nodes in the priority

queue in the order of CR 2 > CR 3 > CR 1. In this way, we

can quickly include the nodes in the current solution so that

the cohesiveness constraints are satisfied.

To find a solution with better check-in density,GEA+ algo-
rithm may keep searching the next solutions. If the check-in

density is increased in the next solution, the process contin-

ues. This algorithm terminates when the next solution has

smaller check-in density compared to the previous solution.

Time complexity. GEA+ takesO(|VU | + |EU | + |VL | + |EL |)
time for traversing both networks and O((|EC | + |VU | +

|VL |)loд(|VU |+ |VL |)) time for maintaining the priority queue.

It takes O(|E | log |V |) to setup the Euler tour tree for check-

ing the graph connectivity. It takes O(|V | |Q | log |V |) for the

connectivity test of query nodes when |QU | ≥ 2 or |QL | ≥ 2.

Thus, the complexity of GEA+ isO((|EC |+|VU |+|VL |)loд(|VU |+

|VL |)+ |VU | |QU | log |VU | + |VL | |QL | log |VL |+TBA). Note that
time complexity of GEA+ algorithm is the same as that of

GEA. Clearly, GEA+ has a better time complexity than GRA.

Exploring multiple local peak points. Instead of one lo-

cal peak point, we can explore multiple local peak points to

get a better solution. Specifically, after we get the geosocial

communityC from the first local peak point L1, we continue
the density-based expansion from L1 to reach the second lo-

cal peak point L2. If ρ(L2) > ρ(C), we conduct the constraint-
based expansion from L2 and get a new geosocial community

C ′
. If C ′

has a higher check-in density, we update the result

as C ′
. Then we continue the density-based expansion from

L2 to get the third local peak point. We repeat these steps for

every local peak points.

6 Experiments
We evaluate proposed algorithms over real-world location-

based social networks (LBSNs). All experiments were con-

ducted on a server running Ubuntu 16.04 with 64GB memory

and 2.60GHz Xeon CPU E5-4627 v4.

6.1 Experimental setup
6.1.1 Datasets. Table 3 shows the characteristics of datasets

that we used in our experiments. The largest network (Gowalla)
has 1.4 million nodes.

Table 3: Dataset characteristics
Dataset |U | |S | #check-ins

BK Brightkite [8] 58,228 772,966 4,747,281

GL Gowalla [8] 196,591 1,280,969 6,442,890

YP Yelp [24] 22,917 18,955 860,888

TW Twitter [23] 554,372 534,749 554,372

6.1.2 Parameter setting. The default parameter values and

their variations are given in Table 4. The default sliding

window size w is set as 100, to decide local peak points in

our expansion algorithm.

Query node generation To obtain query nodes Q , we use
the personalized PageRank algorithm [20, 25] in a merged

networkGT = (VU [KU ] ∪VL[KL], EC [KU ∪KL] ∪ EU [KU ] ∪

EL[KL]) where KU and KL are the result of k-core decompo-

sition in social and location networks with minimum degree

thresholdm. We randomly select a query node in GT to run

personalized PageRank. The result PPR score indicates the

importance for the important nodes in the vicinity of that

query node. We select top-|Q | nodes with the highest PPR

scores as query nodes Q .

6.1.3 Algorithms. To the best of our knowledge, our prob-

lem does not have no direct competitor in the literature. Thus,

we compare the proposed algorithms in our experiments.

6.2 Experimental results
Overall performance ondifferent datasetsWefirst study

the performance of our three algorithms on the four datasets.

Here, we set query size |Q | = 2,m = 20, and r = 0.1. One
query node is from social network and the other is from
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Table 4: Parameters with the default values underlined

Variable Variation Description
r 0.1,0.2,0.3,0.4,0.5 max. spatial edge length (km)

m 5,10,15,20 min. degree threshold

|Q | 1,2,4,8,16,32 number of query nodes

Solution size(#nodes)

BK GL TW YP
0

1K

2K

3K

Running time(sec)

BK GL TW YP

BA GEA+ GRA
Check-in density

A
lg
or
ith
m
s BK GL TW YP

BA 0.11 0.06 0.001 0.47

GEA+ 0.3 0.41 0.004 1.44

GRA 0.29 0.48 0.005 1.79

Figure 5: Check-in density, solution size, and running
time for four LBSNs
location network. For each case, we report the average value

over 5 different queries.

Clearly, our greedy removing algorithm GRA achieves the

highest check-in density in GL, TW, and YP, while GEA+

shows the highest check-in density on BK. We also observe

that our advanced expansion algorithm GEA+ acheives com-

parable quality in terms of check-in density. However, in

terms of running time,GEA+ is more than five orders of mag-

nitude faster than GRA. BA has the worst quality, although

it is very efficient. In terms of solution size, BA returns much

larger subgraphs than GEA+ and GRA since BA directly uses

the result of core decomposition for finding a solution as we

discussed in Section 3.3.

Varying number of query nodes |Q | This set of experi-

ments is to study the effect of query size |Q | on performance.

Figure 6 shows the the result on YP as we vary the number

of query nodes |Q |. We oberve similar trends as we do in

the last experiments: GEA+ achieves comparable check-in

density compared to GRA, while GEA+ is several orders of
magnitude faster than GRA; BA performs poorly in terms of

quality although it runs fast. We also find that the check-in

density, solution size, and running time are not very sensitive

with respect to the number of query nodes. This is perhaps

because all query nodes are nearby for a query set.

Scalability results To demonstrate the scalability of our al-

gorithms, we consider subgraphs of different sizes by chang-

ing the maximum spatial radius r from the original LBSNs.

Figure 7 shows the running time of the three algorithms.

Note that GRA fails to finish on the large datasets GL within

24 hours when maximum spatial edge length r ≥ 0.2. We

observe that the running times of the BA and GEA+ are very
close to each other, and increase almost linearly with the

LBSN size. Note that the running time of GEA+ and GRA
highly depends on the size of BA.

Effect of parameters We first study the effect of the maxi-

mum spatial edge length r on performance. Note that in this

2 4 8 16 32

Check-in density

2 4 8 16 32

Running time(sec)
BA GEA+ GRA
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Figure 6: Varying |Q | on YP (m = 20)
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Figure 7: Scalability analysis by varying LBSN size

experiment we use the default values for other parameters;

We do not show GRA, because it does not finish within 24

hours in most cases. Figure 8 shows that as we increase r ,
the check-in density mostly becomes better, and the size

of the solution becomes larger. This is because in location

graph, the number of candidates for a cluster increases as

the number of edges and nodes having at leastm core index

increases. We observe that as spatial edge length r increases,
the running time of both algorithms increases due to the

increased number of edges in the location graph. We notice

that the solution size of BA increases significantly as we in-

crease r . This is because as the search space increases, more

nodes can be considered, which produces larger solution

due to the characteristics of the basic algorithm that finds

relatively large results.

We next study the effect of the minimum degree threshold

m on performance. Figure 9 shows the result. As we increase

m, the internal density of both social subgraph and location

subgraph in the solution becomes larger. However, we find

that the check-in density decreases with largerm, because

high internal density in user side and location side does not

ensure a high check-in density across them. As expected,

whenm increases, the running time decreases and the solu-

tion size becomes smaller since many nodes do not satisfy

the degree constraint and are disregarded.

Figure 5 shows the check-in density, solution size, and

running time of the three algorithms.

Usefulness of BA and comparing GEA and GEA+ Fig-

ure 10 shows the result of comparing the algorithms without

using BA, and algorithms with BA which is denoted by sub-

script ‘b’ in Figure 10 (on the YP dataset). In the case of

expansion algorithms, using the result of BA consistently

gives better result in terms of the check-in density, solution
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size, and the running time than the expansion algorithms

without using BA. In the case of GRA, there is no much dif-

ference in the check-in density. However, using the result of

BA can greatly reduce execution time.

Summary GRA and GEA+ achieve much better check-in

density than BA. GEA+ returns solutions with comparable

quality withGRAwhileGEA+ is faster thanGRA by orders of

magnitude. BA returns a result of large size with low density,

though its running time is comparable with that of GEA+.

6.3 Case study
We conduct two case studies to show the usefulness of

GCS. We use GEA+ for the case study and setm=3, r=0.1km.

Event OrganizationWe consider two scenarios. First, we

help a user organize a party at a specific venue by recom-

mending a group of people to invite. Intuitively, the invitees

should be densely connected to be engaged in the party.

Moreover, as people prefer to go to nearby locations for

different purposes [22], it would be better if the invitees fre-

quently visit locations near the venue. To find such invitees,

we issue a GCS query, which consists of the organizer (green

circle) and the venue location (green rectangle). The set of

users returned by the GCS problem is shown in Figure 11

CASE #1. We observe that GCS finds a community with 52

users and the check-in density is 4.17.

Query Node          User          Location POI

Cluster B

Cluster A

Community Check-ins

CASE #2

CASE #1

Check-ins

Location query
Community Check-ins

CASE #2

CASE #1

Check-insCommunity 

Figure 11: Two location clusters and their correspond-
ing user communities in Pittsburgh (YP dataset). The
users in the Community, locations in the cluster, as
well as those identified users and locations via the
check-in edges are all densely connected.

Second, we still help the user organize a party, but the

venue for the party is undecided yet. Hence, we would like

to recommend both a group of people to invite and a set of

candidate venues. We use the same organizer (green circle)

as the GCS query node. GEA+ algorithm returns a location

cluster B (highlighted in orange color) with 48 locations and

a user community B with 49 nodes as the result as shown in

Figure 11. The cluster B contains Cafe, French Restaurants,

Dance club, Bar. We observe that different from the first

application, the new GCS query recommends a different

user community and a location cluster.

7 Conclusions
In this paper, we formulated the GeoSocial Community

Search problem (GCS) that aims to find a social community

and a cluster of spatial locations that are densely connected in

location-based social networks. We proved that the problem

is NP-hard and is not in APX. We proposed three solutions

to the problem. Extensive empirical studies on large-scale

real-world location-based social networks demonstrate the

efficiency and effectiveness of the proposed algorithms.
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