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Mining Proximity Patterns in Large Graphs.

CHARACTERISTICS

 Proximity

 Frequency

a, b – YES
a, b, c – YES
d, e, f - NO
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 Will Frequent Subgraph Mining Work?  - NO !!!

 Flexibility

 Will Frequent Itemset
Mining Work? - NO !!!

 No Notion of Edge in
Frequent Itemset Mining

{a, b, c} 

Frequent Subgraph – No
Frequent Itemset - No
Proximity Pattern - Yes
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 Labeled Graph G = (V, E, L)

 Item Set I µ L is a subset of Labels.

 SUPPORT: The support sup(I) of an itemset
I µ L is the number of transactions in the
data set that contain I.

 DOWNWARD CLOSURE: For a frequent
itemset, all of its subsets are frequent; and
thus for an infrequent itemset, all of its
superset must be infrequent.
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 EMBEDDING:

 {v1, v2, v3} an embedding of {a, b,
e} with two possible Mappings:

 Φ1: a to v2, b to v1, e to v3 .

 Φ2: a to v2, b to v3, e to v3.

 f(π) measures how tightly the mapped labels in the
embedding π are connected. i.e., the inverse of
diameter of π

 SUPPORT: Find all embeddings π1, π2, …, πm of an
itemset I. Define sup(I) = ∑i f(πi).
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 Overlap + Not Downward
Closure !!!

 Use maximum independent
set of all embeddings of an
itemset. (S. N. Bringmann,
PAKDD’08)

 Sup(a, b)=f(π1)+f(π4).

 Downward Closure.

 Finding the maximum
independent set is NP-hard Embeddings of {a, b}
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 Influence Based Information
Propagation.

 Information Propagation is
modeled using First Order
Markov Model.

 Labels are propagated with
certain probability from each
node to its neighbors.

 Labels are propagated
independent to each other.
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 NEAREST PROBABILISTIC ASSOCIATION 
(NPA):

 If label l present in node u, A u(l ) = 1.

 Otherwise, propagate l to u from its immediate
neighbor v.

 A u(l ) = A v(l ) . e-α

 α > 0 is the decay constant.

 Recursive to propagate beyond one hop.

 SUPPORT:
sup(I) = (1/|V|) u € V A u (l1) A u (lm) 

I = {l1, , lm}.
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 Downward Closure.

 Consistent with graph structure.

Table (a)
l1 l2 l3

node1 1 0.37 0.37
node2 0.37 1 0.37
node3 0.37 0.37 1

Sup(l1, l2, l3) = 0.14 

Table (b)
l1 l2 l3

node1 1 0.37 0.14
node2 0.37 1 0.37
node3 0.14 0.37 1

Sup(l1, l2, l3) = 0.08 
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 PROBLEM WITH NEAREST PROBABILISTIC 
ASSOCIATION (NPA):

sup(l1, l2)=0.37  !!!
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 NORMALIZED PROBABILISTIC ASSOCIATION 
(NmPA):

A u(l ) = A v(l ) . [m/(n+1)] e-α

m = # of 1-hop neighbors of u containing label l.
n = # of 1-hop neighbors of u. 

sup(l1, l2)=0.37×(1/2)=0.19
sup(l1, l2)=0.37×(2/3)=0.25
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1
a

b

cd

a bd

da

c

c

b

b

a1

2 23 3

4 4

Information
Propagation

a b c d
1 1.00 0.12 0.00 0.12
2 0.19 0.00 0.00 1.00
3 0.12 1.00 0.12 0.00
4 0.00 0.19 1.00 0.00

NmPA

 Frequent-Pattern (FP) Tree cannot
handle fractional association values
because of the new definition of Support.

 Modify FP Tree Structure and Algorithm.

 C. C. Aggarwal et. al (KDD ’09),
Bernecker et. al (KDD ‘09).

Frequent Itemset
Mining (Probabilistic)
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 Probabilistic FP-Growth (pFP):

associating a bucket with each node of the FP-tree.
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 PROBLEMS WITH PROBABILISTIC FP-TREE (pFP):
slow because of frequent disk access to load and 
store the buckets.

 Is it possible to approximate the buckets so that the 
complete tree can be loaded in the main memory?

 Approximate FP-Tree (aFP)
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 APPROXIMATE FP-TREE (aFP):

sup(l1, l2) = 0.4
sup(l1, l2) = 0.35
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 How to measure “Interesting-ness”? –
Randomization Test.

 Generate graph Q from graph G by randomly
swapping the labels among nodes. Let, p and q
be the support values of itemset I in G and Q
respectively. High difference indicates
interestingness.

 G-test Score:
 Vertical Pruning by Yan et. al (SIGMOD ‘08).

 Proximity Patterns minus Frequent Patterns.
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# of 
Nodes

# of 
Edges

# of 
Labels

Avg. # of 
Labels/ Node

Last.FM 6,899 58,179 6,340 3
Intrusion 200,858 703,020 1,000 25
DBLP 684,911 7,764,604 130 9

Last.FM Intrusion DBLP
NmPA 2.0 sec 5.0 sec 187.0 sec
FP-Tree 
Formation

1.0 sec 10.0 sec 89.0 sec

Top-k Mining 4.0 sec 2.0 sec 254.0 sec

 DATASET:

 EFFICIENCY:
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 EFFECTIVENESS (Last.FM):

Proximity 
Patterns

 ATB, Paul van Dyk – German DJ
 Tiesto, Ferry Corsten, Armin van Buuren – Dutch DJ
 Britney Spears, Lady Gaga, Katy Gaga – American Female Pop Singers
 Neaera, Caliban, Cannibal Corpse – Death Metal Bands
 Lucuna Coil, Nightwish, Within Temptation – Gothic Metal Bands
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 EFFECTIVENESS 
(Intrusion):

Proximity 
Patterns

Proximity Patterns
Minus

Frequent Patterns
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 SCALIBILITY

Information 
Propagation 
(NmPA) Time 

vs.
No. of Nodes
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 SCALIBILITY

Mining Time 
vs.

No. of Nodes
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 pFP (Exact Mining) vs. aFP (Approximate Mining) 
[Last.FM]: 

aFP (Approximate Mining) pFP (Exact Mining)
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 Novel Concept of Proximity Pattern Mining in
Large Graphs.

 Neighborhood Association Model and
Information Propagation Model. Probabilistic
Itemset Mining Algorithms.

 Effective, Efficient and Scalable framework.

 How to determine the optimal propagation
measure and depth?
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Thank You ! 

Questions ??


