

Towards Proximity Pattern Mining in Large Graphs

Arijit Khan

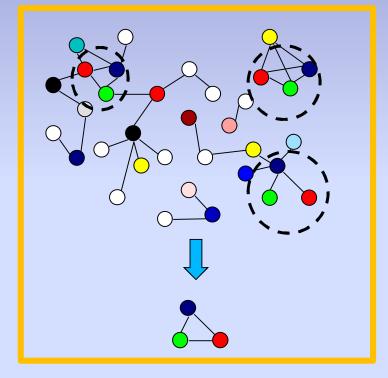
Computer Science Department University of California, Santa Barbara arijitkhan@cs.ucsb.edu

Xifeng Yan

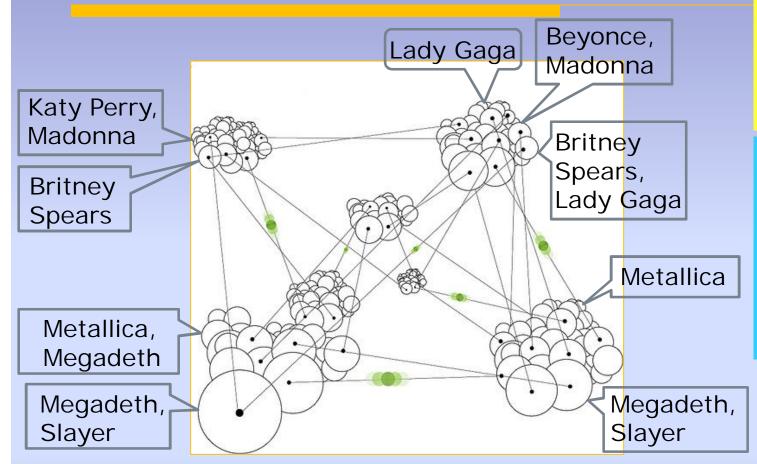
Computer Science Department University of California, Santa Barbara xyan@cs.ucsb.edu

Kun-Lung Wu

IBM T. J. Watson, Hawthorne, NY klwu@us.ibm.com



Motivation



Last.FM

Nodes -> Users

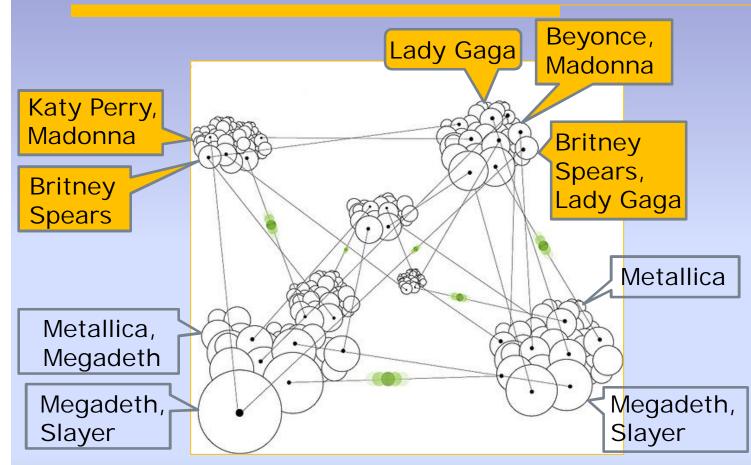
Edges -> Links

List of Musical Bands/ Singers

What are the related Musical Bands/ Singers that co-occur frequently in neighborhood?

Homophily in Social Network

Motivation



Last.FM

Nodes -> Users

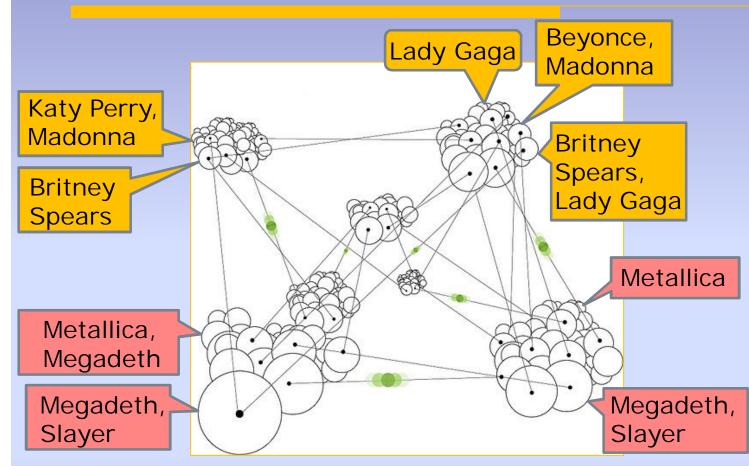
Edges -> Links

List of Musical Bands/ Singers

What are the related Musical Bands/ Singers that co-occur frequently in neighborhood?

Homophily in Social Network

Motivation



Last.FM

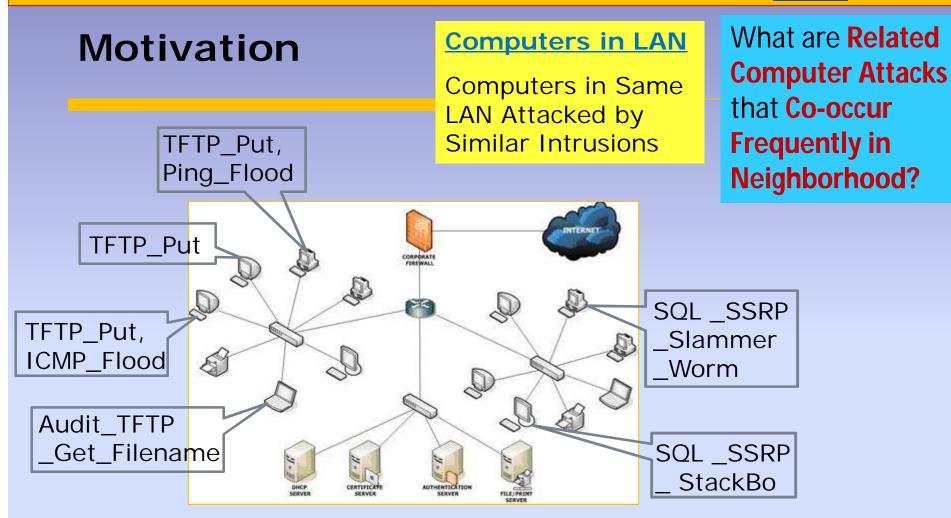
Nodes -> Users

Edges -> Links

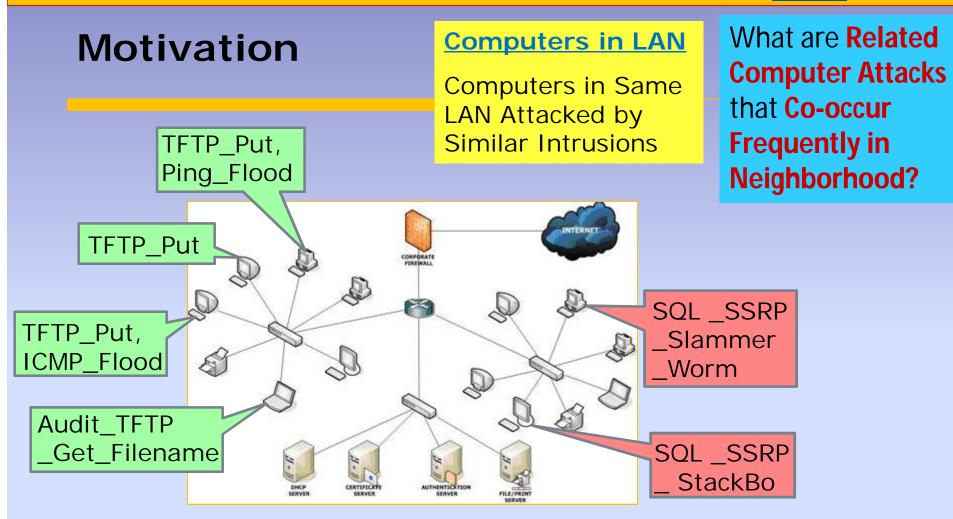
List of Musical Bands/ Singers

What are the related Musical Bands/ Singers that co-occur frequently in neighborhood?

Homophily in Social Network



Intrusion Network



Intrusion Network

Roadmap

Problem Formulation

- Problem Definition
- Preliminaries
- Framework
 - Neighborhood Association Model
 - Information Propagation Model
- Probabilistic Itemset Mining
- Experimental Results
- Conclusion

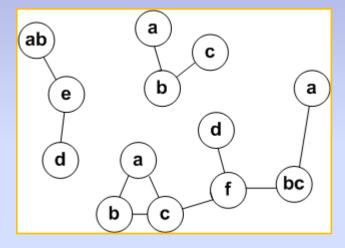
Problem Definition

Mining Proximity Patterns in Large Graphs.

CHARACTERISTICS

Proximity

Frequency



a, b – YES a, b, c – YES d, e, f - NO

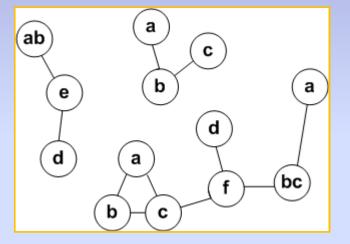
Problem Definition

□ Will Frequent Subgraph Mining Work? - NO !!!

Flexibility

□ Will Frequent Itemset Mining Work? - NO !!!

No Notion of Edge in Frequent Itemset Mining



{a, b, c}

Frequent Subgraph – No Frequent Itemset - No Proximity Pattern - Yes

Preliminaries

- $\Box \text{ Labeled Graph } G = (V, E, L)$
- Item Set $I \subseteq L$ is a subset of Labels.
- □ SUPPORT: The support sup(I) of an itemset $I \subseteq L$ is the number of transactions in the data set that contain *I*.
- DOWNWARD CLOSURE: For a frequent itemset, all of its subsets are frequent; and thus for an infrequent itemset, all of its superset must be infrequent.

Roadmap

Problem Formulation

 Problem Definition
 Preliminaries

 Framework

 Neighborhood Association Model
 Information Propagation Model
 Probabilistic Itemset Mining

- Experimental Results
- Conclusion

Towards Proximity Pattern Mining in Large Graphs

Neighborhood Association Model

EMBEDDING:

- {v₁, v₂, v₃} an embedding of {a, b, e} with two possible Mappings:
- Φ_1 : a to v_2 , b to v_1 , e to v_3 .

Arijit Khan, Xifeng Yan, Kun-Lung Wu

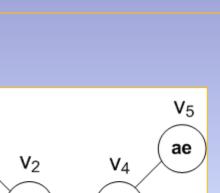
•
$$\Phi_2$$
: a to v_2 , b to v_3 , e to v_3 .

V1

hd

 \Box $f(\pi)$ measures how tightly the mapped labels in the embedding π are connected. i.e., the inverse of diameter of π

SUPPORT: Find all embeddings π_1 , π_2 , ..., π_m of an itemset *I*. Define $sup(I) = \sum_i f(\pi_i)$.



Towards Proximity Pattern Mining in Large Graphs

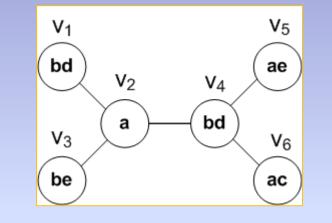
Neighborhood Association Model

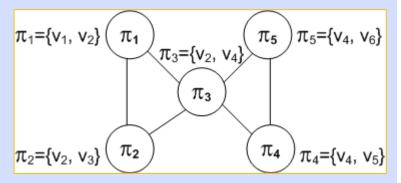
- + Not Downward Overlap Closure !!!
- Use maximum independent set of all embeddings of an itemset. (S. N. Bringmann, PAKDD'08)

Sup(a, b) =
$$f(\pi_1) + f(\pi_4)$$

Arijit Khan, Xifeng Yan, Kun-Lung Wu

- Downward Closure.
- Finding the maximum independent set is NP-hard





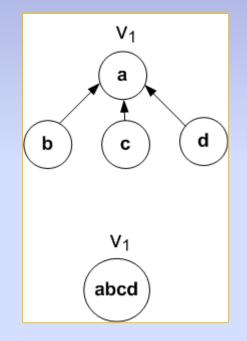
Embeddings of {a, b}

13

Information Propagation Model

- Influence Based Information Propagation.
- Information Propagation is modeled using First Order Markov Model.
- Labels are propagated with certain probability from each node to its neighbors.

Labels are propagated independent to each other.



Information Propagation Model

NEAREST PROBABILISTIC ASSOCIATION (NPA):

- If label *l* present in node $u_i A_u(l) = 1$.
- Otherwise, propagate *l* to *u* from its immediate neighbor *v*.

$$\Box A_u(l) = A_v(l) \cdot e^{-\alpha}$$

- \square $\alpha > 0$ is the decay constant.
- Recursive to propagate beyond one hop.

SUPPORT:

 $sup(\mathbf{I}) = (\mathbf{I}/|V|) \sum_{u \in V} A_u(I_1) \dots A_u(I_m)$

$$I = \{ I_1, \dots, I_m \}.$$

Information Propagation Model

Downward Closure.

Consistent with graph structure.

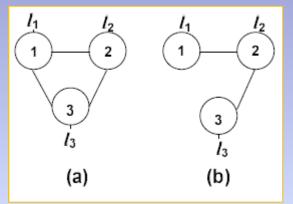
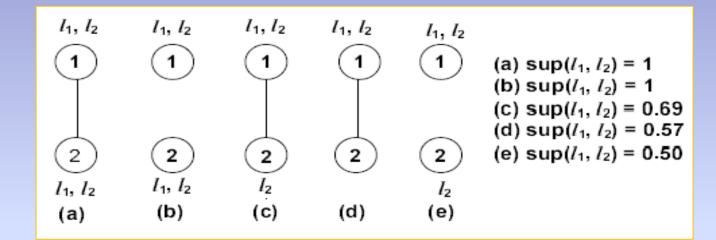


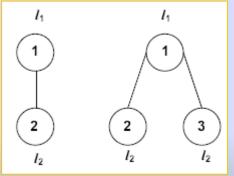
Table (a)						
l_1 l_2 l_3						
node ₁ 1 0.37 0.37						
node ₂	0.37	1	0.37			
node ₃ 0.37 0.37 1						
$Sup(l_1, l_2, l_3) = 0.14$						

Table (b)						
l_1 l_2 l_3						
node ₁	0.37	0.14				
node ₂	0.37	1	0.37			
node ₃ 0.14 0.37 1						
$Sup(l_1, l_2, l_3) = 0.08$						

Information Propagation Model



PROBLEM WITH NEAREST PROBABILISTIC ASSOCIATION (NPA):



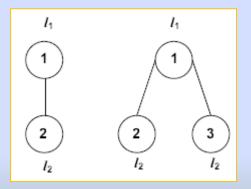
 $sup(I_1, I_2) = 0.37$!!!

Information Propagation Model

NORMALIZED PROBABILISTIC ASSOCIATION (NmPA):

$A_u(l) = A_v(l) \cdot [m/(n+1)] e^{-\alpha}$

m = # of 1-hop neighbors of *u* containing label *l*. n = # of 1-hop neighbors of *u*.



$$sup(I_1, I_2) = 0.37 \times (1/2) = 0.19$$

 $sup(l_1, l_2) = 0.37 \times (2/3) = 0.25$

Roadmap

Problem Formulation

 Problem Definition
 Preliminaries

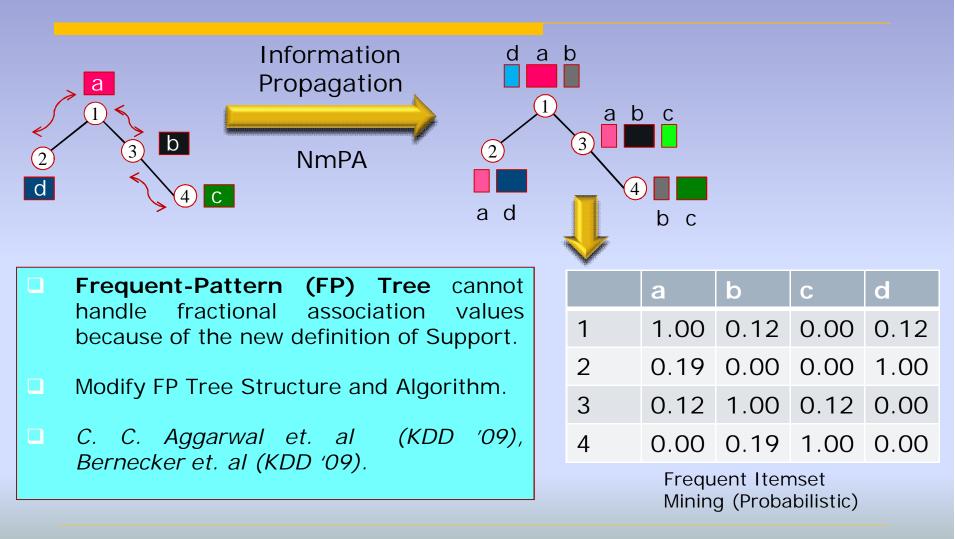
 Framework

 Neighborhood Association Model
 Information Propagation Model

 Probabilistic Itemset Mining

- Experimental Results
- Conclusion

Probabilistic Itemset Mining

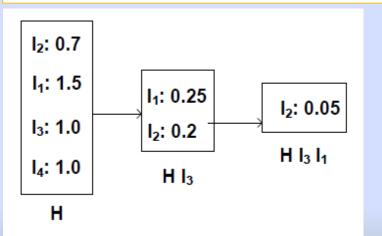


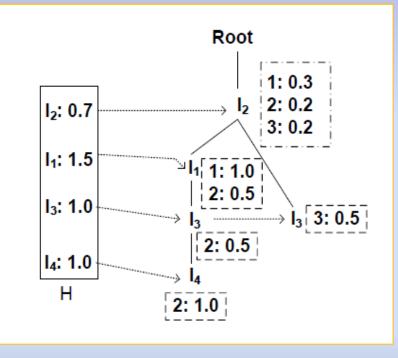
Probabilistic Itemset Mining

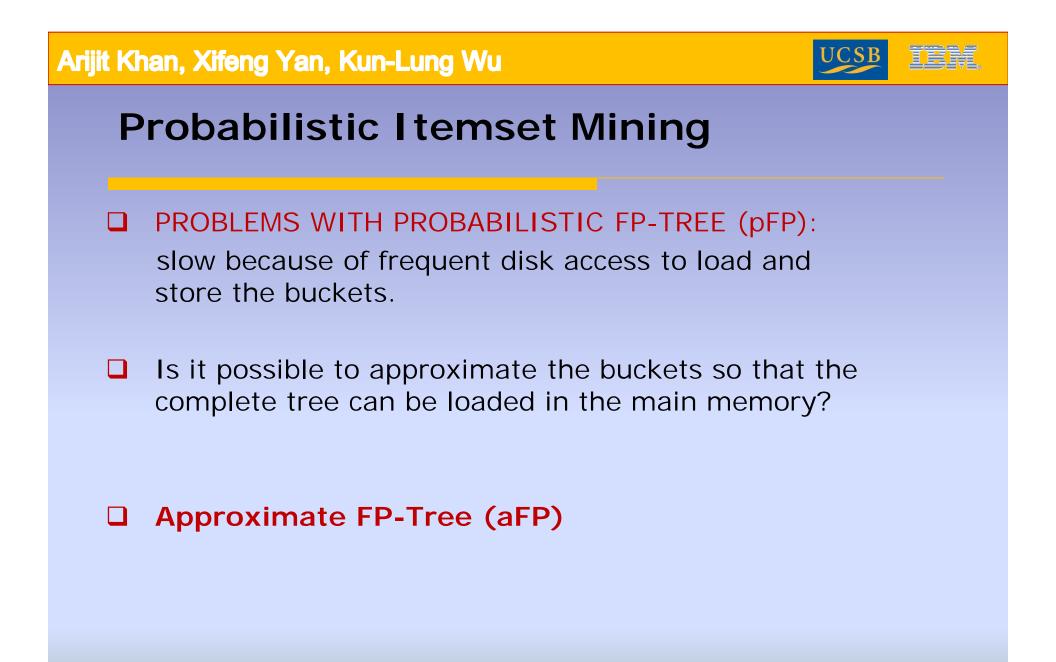
Probabilistic FP-Growth (pFP):

associating a **bucket** with each node of the FP-tree.

transaction id	l_1	l_2	l_3	l_4	l_5
1	1	0.3	0	0	0.1
2	0.5	0.2	0.5	1	0
3	0	0.2	0.5	0	0.05

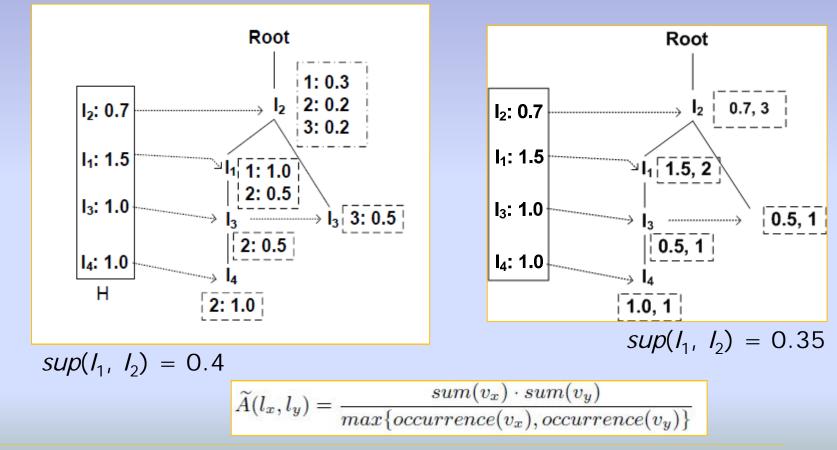






Probabilistic Itemset Mining

■ APPROXIMATE FP-TREE (aFP):



Top-k Interesting Pattern Mining

- How to measure "Interesting-ness"? Randomization Test.
- Generate graph Q from graph G by randomly swapping the labels among nodes. Let, p and q be the support values of itemset I in G and Q respectively. High difference indicates interestingness.

G-test Score:
$$p \cdot \ln \frac{p}{q} + (1-p) \cdot \ln \frac{1-p}{1-q}$$

- Vertical Pruning by Yan et. al (SIGMOD '08).
- Proximity Patterns minus Frequent Patterns.

Roadmap

Problem Formulation
 Problem Definition
 Preliminaries
 Framework
 Neighborhood Association Model
 Information Propagation Model
 Probabilistic Itemset Mining

- Experimental Results
- Conclusion

Experimental Results

DATASET:

	# of Nodes	# of Edges	# of Labels	Avg. # of Labels/ Node
Last.FM	6,899	58,179	6,340	3
Intrusion	200,858	703,020	1,000	25
DBLP	684,911	7,764,604	130	9

EFFICIENCY:

	Last.FM	Intrusion	DBLP
NmPA	2.0 sec	5.0 sec	187.0 sec
FP-Tree Formation	1.0 sec	10.0 sec	89.0 sec
Top-k Mining	4.0 sec	2.0 sec	254.0 sec

Experimental Results

□ EFFECTIVENESS (Last.FM):

Proximity Patterns

#	Proximity Patterns	Score
1	Tiësto, Armin van Buuren, ATB	0.62
2	Katy Perry, Lady Gaga, Britney Spears	0.58
3	Ferry Corsten, Tiësto, Paul van Dyk	0.55
4	Neaera, Caliban, Cannibal Corpse	0.52
5	Lacuna Coil, Nightwish, Within Temptation	0.47

- ATB, Paul van Dyk German DJ
- □ Tiesto, Ferry Corsten, Armin van Buuren Dutch DJ
- Britney Spears, Lady Gaga, Katy Gaga American Female Pop Singers
- Neaera, Caliban, Cannibal Corpse Death Metal Bands
- Lucuna Coil, Nightwish, Within Temptation Gothic Metal Bands

Experimental Results

EFFECTIVENESS (Intrusion):

#	Interesting Patterns	Score
1	ICMP_Flood, Ping_Flood	0.94
2	Email_Error, SMTP_Relay _Not_Allowed, HTML_Null Char_Evasion	0.94
3	Image_RIFF_Malformed, HTML_NullChar_Evasion	0.90
4	TFTP_Put, Ping_Flood, Audit_TFTP_Get_Filename	0.80
5	Email_Command_Overflow, Email_Virus_Double_Extension, Email_Error	0.75

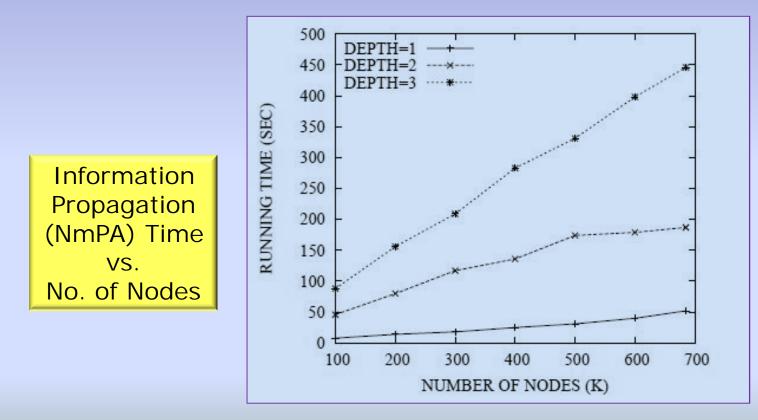
#	Interesting Patterns	Score
1	Ping_Sweep, Smurf_Attack	2.42
2	TFTP_Put, Audit_TFTP_Get_Filename,	2.32
	ICMP_Flood, Ping_Flood	
3	TCP_Service_Sweep, Email_Error	1.21
4	HTML_Outlook_MailTo_Code_Execution, HTML_NullChar_Evasion	1.15
5	SQL_SSRP_Slammer_Worm, SQL_SSRP_StackBo	0.88

Proximity Patterns

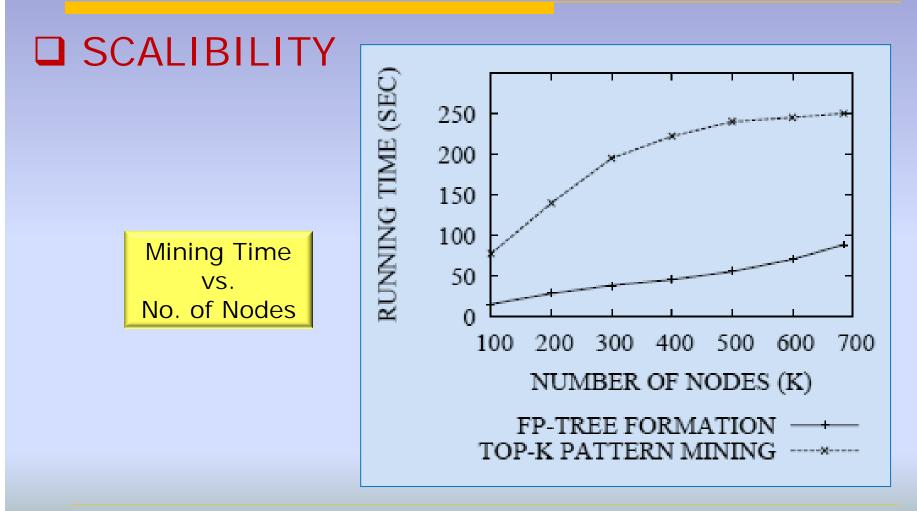
Proximity Patterns Minus Frequent Patterns

Experimental Results

SCALIBILITY



Experimental Results



Experimental Results

pFP (Exact Mining) vs. aFP (Approximate Mining) [Last.FM]:

#	Proximity Patterns	Score
1	Tiësto, Armin van Buuren, ATB	0.62
2	Katy Perry, Lady Gaga, Britney Spears	0.58
3	Ferry Corsten, Tiësto, Paul van Dyk	0.55
4	Neaera, Caliban, Cannibal Corpse	0.52
5	Lacuna Coil, Nightwish, Within Temptation	0.47

#	Proximity Patterns	Score
1	Katy Perry, Lady Gaga, Britney Spears	0.58
2	Ferry Corsten, Tiësto, Paul van Dyk	0.55
3	Tiësto, Armin van Buuren, ATB	0.55
4	Neaera, Caliban, Cannibal Corpse	0.51
5	Lacuna Coil, Nightwish, Within Temptation	0.46

aFP (Approximate Mining)

pFP (Exact Mining)

Steps	${\sf aFP}({\rm approximate})$	pFP(exact)
FP-tree Formation	1.0	3.0
Top-k Pattern Mining	4.0	21.0

Table 10: Runtime Comparison (sec) (Last.fm)

Roadmap

Problem Formulation

 Problem Definition
 Preliminaries

 Framework

 Neighborhood Association Model
 Information Propagation Model
 Probabilistic Itemset Mining
 Experimental Results

Conclusion

- Novel Concept of Proximity Pattern Mining in Large Graphs.
- Neighborhood Association Model and Information Propagation Model. Probabilistic Itemset Mining Algorithms.
- Effective, Efficient and Scalable framework.
- How to determine the optimal propagation measure and depth?

Questions ??

