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Abstract—Graph neural networks (GNNs) generally follow a
recursive neighbors aggregation scheme. Recent GNNs are not
powerful than the 1-Weisfeiler Lehman test, which is a necessary
but insufficient condition for graph isomorphism, hence limiting
their abilities to utilize graph structures properly. Moreover,
deep GNNs with many convolutional layers suffer from over-
smoothing, thus cannot capture long-range dependencies. As a
result, downstream applications, such as graph classification, are
impacted. To this end, we design GNNs on top of the minimum
DFS code, which is a canonical form of a graph, and being
injective it captures the graph structure precisely along with
node and edge labels. Due to the sequential structure of the
minimum DFS code, we employ state-of-the-art RNNs (LSTM,
BiLSTM, GRU) and Transformer-based sequence classification
techniques. While one can compute the minimum DFS code
efficiently in practice, LSTM, BiLSTM, GRU, and Transformers
capture long-term dependencies in arbitrary length sequences.
We also consider a novel variant of the minimum DFS code,
which is not injective, but it reduces the complexity of the
feature space, increases generalizability, and also improves the
classification performance over many real-world graph datasets.
Our thorough empirical comparisons with six real-world network
datasets demonstrate the accuracy and efficiency of our methods.
We have open-sourced our solution framework [17] in which one
can plug in different graph datasets and get their classification
results. This will benefit researchers and practitioners, biologists,
social scientists, and data scientists, among others.

I. INTRODUCTION

Graph data are pervasive in many domains, e.g., social

networks, knowledge graphs, road networks, computer vision,

software engineering, and natural language processing. De-

veloping machine learning tools for classifying networks can

be observed in cheminformatics [46], [11] and bioinformatics

[38], malware detection [13], telecommunication networks,

internet-of-things [10], trajectories and social networks [19].

Given a set of graphs with different structures and sizes, the

graph classification problem predicts the class labels of unseen

graphs [11], [51], [52]. This is challenging because network

data contain graphs with different numbers of nodes and edges,

and a generic node order is often not available. Graphs do not

have regular grid structures, since the neighborhood size of

each node differs. The lack of ordered vector representation

complicates machine learning on graphs, and makes it difficult

to build a classifier over the graph space [52], [51].

In the past, graph kernels (e.g., random walks, shortest

paths, subtrees, graphlets, and subgraph kernels) [43], [14],

[39] and structural feature (e.g., frequent and significant sub-

graphs) [48], [35], [27] based classification methods were

developed. Learning task-relevant graph features were con-

sidered in [11], [31]. Attention-based graph classification was

proposed in [23] to focus on small but informative parts of the

graph. Due to the challenges of feature engineering, together

with the hardness of subgraph mining and isomorphism test-

ing, deep learning methods have become popular.

The concept of graph neural network (GNN) was first

proposed in [40], [36], which extended neural networks for

processing of graph data. These early works are called graph

recurrent neural networks (GraphRNN): They learn a node’s

representation by propagating neighbor information in an

iterative manner until a stable fixed point is reached. En-

couraged by the success of convolutional neural networks

(CNNs) in computer vision, their end-to-end learning and

ability to extract localized spatial features, a large number of

graph convolutional neural networks (GCNs) [22], [25], [52],

[51], [12] are recently developed. GCNs follow a recursive

neighbors aggregation (or message passing) model. As one

layer in the GCN aggregates its 1-hop neighbors, after k

rounds of aggregation, a node is represented by its feature

vector that captures the structural information in its k-hop

neighborhood. The graph feature is derived by a readout

function or pooling on node features.

It is proven in [47], [30] that recent GNN variants are not

powerful than the 1-WL (Weisfeiler Lehman) test [45], [29]

in distinguishing non-isomorphic graphs, where the WL test is

a necessary but insufficient condition for graph isomorphism

[7], thus limiting their abilities to adequately exploit graph

structures. Our work is motivated by the following question:

Can we improve the discriminative/representational power of

GNNs than the existing GCNs? To this end, we employ

the minimum DFS code [49], that is a canonical form of a

graph, and captures the graph structure precisely along with

node and edge labels. The canonical form of a graph is a

sequence – two graphs are isomorphic iff they have the same

canonical form. Minimum DFS code encodes a graph into a

unique edge sequence by doing a depth-first search (DFS).

Constructing the minimum DFS code is equivalent to solving

graph isomorphism, and it has the worst-case computation cost

of O(n!), n being the number of nodes. However, real-world

graphs are sparse and have node and edge labels, which prune

the search space significantly, thus we can efficiently compute978-1-6654-3902-2/21/$31.00 ©2021 IEEE



the minimum DFS code in practice [34], [49], [15], [26].

Due to the sequential nature of the minimun DFS code,

we employ state-of-the-art RNN-based sequence classification

techniques (Long short-term memory (LSTM) [20], Bidirec-

tional LSTM (BiLSTM) [37], and Gated recurrent unit (GRU)

[8]) and Transformers [42] for downstream graph classifica-

tion. Our RNN and Transformer-based sequence classification

over minimum DFS codes has following benefits compared to

existing GCNs, which employ adjacency matrix-based graph

representations (e.g., graph Laplacian and degree matrices). (i)

LSTM, BiLSTM, GRU, and Transformers can captures long-

term dependencies in arbitrary-length sequences, and have

achieved great success in a wide range of sequence learning

tasks including language modeling and speech recognition

[44]. On the other hand, a deep GCN with many convolutional

layers suffers from the over-smoothing problem, and generally

cannot capture long-range interactions [2], [24]. (ii) The min-

imum DFS code is unique for all isomorphic graphs, whereas

there areO(n!) mappings from a graph to its adjacency matrix,

therefore GCN designs must be node permutation-invariant.

To further improve the generalization capacity of our so-

lution, we consider a novel variant of the minimum DFS

code, which is not injective, but it significantly improves the

classification quality as shown in our experiments.

Our contributions and roadmap. The main contributions of

this paper are as follows:

• To the best of our knowledge, ours is the first work that

employs the minimum DFS code for graphs classifica-

tion. The minimum DFS code, being injective, aims at

improving the expressivity of GNNs.

• We employ state-of-the-art RNN-based sequence classi-

fication techniques (LSTM, BiLSTM, GRU) and the en-

coder layer of Transformer over minimum DFS codes for

graph classification. While minimum DFS codes, LSTM,

BiLSTM, GRU, and Transformers are well-established

techniques, our technical novelty lies in properly inte-

grating them for graph classification. Our method can

capture long-range dependencies in the graph space. We

also consider a novel variant of the minimum DFS code,

which is not injective, but it significantly improves the

classification accuracy over many networks (§III).

• We present thorough experimental comparisons over six

real-world graph datasets from different categories. We

measure the accuracy and efficiency of our methods, and

demonstrate that our accuracy results are significantly

higher than those of existing GCNs, based on several

metrics (§IV).

II. BACKGROUND ON EXPRESSIVITY

OF GRAPH NEURAL NETWORKS

We start with a few definitions. An undirected labeled graph

G is defined as a triple G = (V,E, L) where V is the set of

nodes, E ⊆ V × V is the set of undirected edges, and L is a

labeling function that maps a node or an edge to a label. For

a node v, its neighbors are denoted by N(v).

Graph Isomorphism. Given two graphs G = (V,E, L) and

Q = (V ′, E′, L′), a graph isomorphism is a bijective function

M : V ′ → V such that (1) ∀v ∈ V ′, L′(v) = L(M(v)), and
(2) ∀(v1, v2) ∈ E′, (M(v1),M(v2)) ∈ E, and L′(v1, v2) =
L(M(v1),M(v2)).
Graph isomorphism is not known to be in polynomial or

NP-complete. Recently, Babai prove that graph isomorphism

is solvable in quasipolynomial time: on n-node input graphs,

Babai’s algorithm runs in time np(logn) for some polynomial

p() [3], [16].

Weisfeiler-Lehman Algorithm. We next discuss the 1-WL

algorithm, which is a necessary but insufficient condition for

graph isomorphism over node-labeled graphs (edge labels are

not considered). In each iteration t ≥ 0, 1-WL computes a

node coloring c
(t)
L : V → Σ, which depends on the coloring

from the earlier round. In iteration 0, we set c
(0)
L(v) = L(v). In

iteration t > 0, we compute:

c
(t)
L(v) = HASH

((

c
(t−1)
L(v) , {{c

(t−1)
L(u) |u ∈ N(v)}}

))

(1)

{{. . .}} represents a multiset and HASH maps bijectively

the above pair to a unique color in Σ, which was not used in

previous rounds. If the number of colors between two rounds

does not change, i.e., the cardinalities of the images of c
(t)
L

and c
(t+1)
L remain the same, a stable coloring has reached

and 1-WL terminates. Termination (i.e., stable coloring) is

guaranteed after at most |V | iterations. To test if two graphs G

and Q are isomorphic, we run the 1-WL algorithm parallelly

on both graphs. If the two graphs have a different number of

nodes colored l ∈ Σ at some iteration, 1-WL decides that

the graphs are non-isomorphic. Even though 1-WL cannot

distinguish all non-isomorphic graphs, it can correctly test

isomorphism for a wide class of graphs [4].

GCNs and Expressivity. Graph convolutional neural networks

(GCNs) generally apply recursive neighborhood aggregation

(or message passing). This operation consists of AGGRE-

GATE and COMBINE functions [47]:

a(k)v = AGGREGATE(k)
(

{p(k−1)
u : u ∈ N(v)}

)

p(k)v = COMBINE(k)
(

p(k−1)
v , a(k)v

)

(2)

Here, p
(k)
v denotes the k-th layer feature vector at the v-

th node. The AGGREGATE function aggregates features of

neighboring nodes to derive the feature vector a
(k)
v for layer k.

The COMBINE function combines the previous node feature

p
(k−1)
v with aggregated node features a

(k)
v to output the node

feature p
(k)
v of the k-th layer. Finally, the READOUT function

aggregates node features from the final layer to compute the

entire graph’s representation pG.

pG = READOUT (p(k)v |v ∈ V ) (3)

It has been proven in [47], [30] that the aforementioned GCN

architecture does not have more power in terms of distinguish-

ing between non-isomorphic graphs than the 1-WL test. Xu et

al. [47] further show that if aggregation and readout functions
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Fig. 1. Minimum DFS code-based graph classification

of a GCN are injective, as in the graph isomorphism network

(GIN), then its discriminative/representational power is equal

to the power of 1-WL test. In particular, GIN implements the

aggregate and combine functions as follows:

p(k)v = MLP (k)



(1 + ǫ(k))p(k−1)
v +

∑

u∈N(v)

p(k−1)
u



 (4)

where ǫ(k) is a learnable parameter, and MLP is a multi-layer

perceptron with non-linearity. For readout, the embedded node

features of all layers are added and then concatenated to derive

the final graph feature pG.

p
(k)
G = sum

(

p
(k)
0 , p

(k)
1 , . . . , p

(k)
N

)

pG = concatenate
(

{p
(k)
G }|k = 0, 1, . . . ,K

)

(5)

As stated earlier, 1-WL test is a necessary but insufficient

condition for graph isomorphism over node-labeled graphs.

GCNs work with adjacency matrix-based graph representa-

tions, including graph Laplacian and degree matrices. Other

disadvantages of GCNs are as follows. (i) Deep GCNs with

many convolutional layers suffer from over-smoothing, and are

unable to capture long-range interactions [2], [24]. (ii) There

are O(n!) mappings from a graph to its adjacency matrix,

therefore GCN designs must be node permutation-invariant.

To overcome the aforementioned challenges with existing

GCNs, in this work we design an orthogonal and novel frame-

work for RNN and Transformer-based graph classification via

minimum DFS codes.

III. MINIMUM DFS CODE BASED GRAPH CLASSIFICATION

We describe the minimum DFS code in § III-A and our

classification approach in § III-B. Our framework is presented

in Figure 1. In § III-C, we additionally consider a novel

variant of the minimum DFS code, which further improves

the classification accuracy.

A. Minimum DFS Code

The minimum DFS code [49] is a canonical form of a graph

that captures the graph structure precisely along with node and

edge labels. We represent an edge e = (u, v) with a 5-tuple:

(u, v, L(u), L(e), L(v)); u and v are the two corresponding

node ids (based on time-stamps as discussed below) with node

labels L(u) and L(v), respectively, and L(e) is the edge label.
A list of 5-tuples for all edges of a graph is referred to as a

code. We construct a DFS code [49] by performing a depth-

first search (DFS), starting from any node in the graph. During

the DFS traversal, we assign to each node an id which is

based on the time-stamp when it is discovered (that is, the
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(b) Two DFS codes

Fig. 2. DFS code construction

time when the node is first visited during traversal). Therefore,

the starting node is assigned an id 0. If an edge (u, v) is in the

DFS traversal, then u < v, where u, v are assigned node ids

based on time-stamps, and we refer to such an edge a forward

edge. Edges that are not part of the DFS traversal, are called

backward edges.

Given a DFS traversal, the next step is to define a total

order of all the edges in the graph. Forward edges appear in

their natural order based on when they are traversed during

the DFS. A backward edge from a node must appear before

any forward edge from that node. In fact, any backward edge

from a node must appear right after the node is introduced

in the DFS code. Among the backward edges from the same

node u of the form (u, v) and (u, v′), (u, v) has a higher order
if v < v′, where u, v, v′ are assigned node ids based on time-

stamps.

Example 1. Consider an input graph in Fig-

ure 2(a). The left one in Figure 2(b) shows

a DFS code: 〈(V0, V1, A, a, A)(V1, V2, A, a, C)
(V2, V0, C, b, A)(V1, V3, A, b, B)(V3, V4, B, b, B)〉. The

backward edge is shown as a dotted edge, while

the forward edges are solid edges. The right one in

Figure 2(b) presents another DFS traversal, the DFS code is

〈(V0, V1, A, b, C)(V1, V2, C, a, A)(V2, V0, A, a, A)(V2, V3, A,

b, B)(V3, V4, B, b, B)〉.

Since each graph may have multiple DFS traversals, we

follow the order defined in [49] to compare pairs of code lexi-

cographically. The lexicographic order is a linear order defined

as follows. If A = (a0, a1, . . . , am) and B = (b0, b1, . . . , bn)
are the codes, then A ≤ B iff either of the following is true.

(1)∃t, 0 ≤ t ≤ min(m,n), ∀k < t, ak = bk, at <e bt,

(2)∀0 ≤ k ≤ m, ak = bk, and n ≥ m.

Assume the forward edge set and the backward edge

set for A and B are EA,f , EA,b, EB,f , and EB,b, re-

spectively. at = (ua, va, L(ua), L(ai), L (va)) <e bt =
(ub, vb, L(ub), L(bj), L(vb)) iff one of the following is true.

(1) at ∈ EA,b and bt ∈ EB,f ,

(2) at ∈ EA,b and bt ∈ EB,b and va < vb,

(3) at ∈ EA,b and bt ∈ EB,b and va = vb and L(ai) < L(bj),

(4) at ∈ EA,f and bt ∈ EB,f and ub < ua,

(5) at ∈ EA,f and bt ∈ EB,f and ub = ua, and L(ua) < L(ub),

(6) at ∈ EA,f and bt ∈ EB,f and ub = ua, and L(ua) = L(ub)

and L(ai) < L(bj),



(7) at ∈ EA,f and bt ∈ EB,f and ub = ua, and L(ua) = L(ub),

and L(ai) = L(bj), and L(va) < L(vb).

The minimum DFS code is the one with the minimum

lexicographic order. Finally, each graph can be represented

by the corresponding minimum DFS code, and vice versa.

Theorem 1. [49] Given two graphsG andQ, G is isomorphic

to Q if and only if they have the identical minimum DFS code.

Minimum DFS Code Computation. The algorithm to com-

pute the minimum DFS code consists of four major steps.

(1) Select the nodes with the minimum label as the candidate

roots. (2) Construct the DFS spanning tree from each root,

always visit edges with smaller labels first, and if two edges

have the same label, then visit the ones whose second node

has smaller label. (3) Insert the backward edges to complete

the construction of DFS codes. (4) Among the DFS codes

constructed as above, pick the lexicographically minimum one.

The worst-case computation cost for the minimum DFS

code is O(n!), n being the number of nodes. However, steps

1-2 prunes the search space significantly, and thereby we can

efficiently compute the minimum DFS code in practice.

Example 2. For the graph in Figure 2(a), the minimum DFS

code is 〈(V0, V1, A, a, A)(V1, V2, A, a, C) (V2, V0, C, b, A)(V1,

V3, A, b, B)(V3, V4, B, b, B)〉, corresponding to the DFS

traversal in Figure 2(b) (left). Computing this minimum DFS

code is not expensive. The only possible starting nodes for the

minimum DFS code are the two nodes with label A, which is

lexicographically the smallest. Moreover, their one-hop neigh-

bors are sufficient to decide which one will be the starting node

for the minimum DFS code. Clearly, (V0, V1, A, a, A)(V1, V2,

A, a, C) must be the first two edges in the minimum DFS code

as they are lexicographically the smallest.

B. RNN and Transformer-based Classification

We employ RNN and Transformer-based sequence classifi-

cation models over minimum DFS codes. RNNs are powerful

tools for modeling sequential data such as time series and

sentences. An RNN layer uses a for loop to iterate over the

timesteps of a sequence, while maintaining an internal state

that encodes information about the timesteps it has seen earlier.

For instance, each minimum DFS code from a graph can be

considered as a “sequence”, and every 5-tuple (denoting an

edge) in it as a “word”. We instantiate our vocabulary with all

seen words (i.e., all distinct 5-tuples present in the dataset),

then we convert each unique word in our sequences into a

unique integer using the vocabulary (that is, we “tokenize”

each distinct 5-tuple into a unique integer or token), and finally

we embed each integer into a 32-dimensional vector using

an embedding layer [53]. We process the sequence of vectors

using an RNN/ Transformer layer. Therefore, the novelty of our

work is to employ the minimum DFS code (which is injective),

coupled with the RNN/ Transformer, for graph classification

that results in higher accuracy than existing GCNs. Later we

also consider a novel variant of the minimum DFS code, which
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Fig. 3. Architecture of an LSTM cell

is not injective, but it significantly improves the classification

accuracy, as demonstrated in our experimental results. The

result of the RNN/ Transformer layer is passed through a

dense layer with one hidden unit and finally a sigmoid function

for classification. We train our network in Figure 1 using

the binary cross-entropy loss function along with the ADAM

optimizer.

Standard RNNs suffer from the vanishing gradient problem

[20], which makes learning over long data sequences difficult.

More recent RNNs, including LSTM [20], BiLSTM [37],

GRU [8] solve this problem, and they are capable of learning

long-term dependencies. We apply them for classification of

minimum DFS codes. As an alternative to RNNs, we also

consider the encoder layer of Transformers [42]. A Trans-

former model attends all words in the sequence and uses the

attention mechanism, thus it has extremely long-term memory.

We briefly discuss them in the following.

LSTM. Long Short-Term Memory is a specialized RNN to

mitigate the gradient vanishing problem (Figure 3). LSTMs

learn long-term dependencies using gates, which can learn

what information in the sequence is important to keep or throw

away. LSTMs have three gates: input, forget, and output.

An LSTM cell works in three steps. The first step is to

decide which information to be removed from the cell in that

particular step. It looks at the previous information along with

the current input and computes the following via a sigmoid

function (σ).

ft = σ(Wf · [ht−1, xt] + bf ) (6)

ft is the forget gate, it decides which information to delete

from the previous time step that is no more important. ht−1

denotes the output from the LSTM cell at time step t − 1,
i.e., the output of previous cell and xt denotes the input to

the LSTM cell at time step t. Wf and bf denote matrices and

vectors of parameters, respectively.

The second step in LSTM is to decide how much this cell

adds to the current state. This step consists of two parts. First

is the sigmoid function whose value varies between 0 to 1, it

helps to decide which information to pass through. Second is

the tanh function whose value varies between -1 to 1, which
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Fig. 4. Architecture of BiLSTM

gives weight to the information being passed, deciding their

level of importance.

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC) (7)

it is the input gate that decides which information to let

through based on its significance in the current time step. ht−1

is the output from LSTM cell at time step t−1, i.e., the output
of previous cell, and xt denotes the input to LSTM cell at time

step t. Wi, Wc, bi, and bc are parameter matrices and vectors.

The third step in LSTM is to decide what part of the current

cell state makes it to the output. Starting with the sigmoid

function, which decides what parts of the cell state make it to

the output, we next put the cell state through tanh function to

normalize the values between -1 and 1, and multiply it by the

output of the sigmoid gate.

ot = σ(WO · [ht−1, xt] + bO)

ht = ot · tanh(C̃t) (8)

ot is the output gate that allows the passed-in information to

impact the output in the current step. ht−1 and ht denote the

output from the LSTM cell at time step t−1 and t, respectively,
and xt denotes the input to the LSTM cell at time step t. Wo

and bo denote parameter matrices and vectors.

BiLSTM. Bidirectional LSTM is an extension of LSTM

which can further increase the performance of the model on

the problem of sequence classification. BiLSTMs aggregate

previous and upcoming input information of a certain time

step in LSTM cells. The main difference is that instead of just

one LSTM, there are two LSTMs: one taking the input in a

forward direction, and the other one in a backward direction,

that is, a reversed copy of the input sequence (Figure 4).

BiLSTMs effectively increase the amount of information,

thereby improving the context available to the algorithm, for

example, knowing what edges immediately follow and precede

an edge in a minimum DFS code.

GRU. Gated Recurrent Unit (GRU) is a similar, but a more

sophisticated version of the LSTM, which is also capable of

learning long-term dependencies. Here, the major variation

from LSTM is that the forget gate and the input gate are

combined into a single gate, called the update gate (Figure 5).

The hidden state and cell state are also merged. The resulting

model is much easier to understand than normal LSTM
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Fig. 5. Architecture of a GRU cell

models, and it is gaining popularity. Due to less number of

states, this is less complex and hence faster than LSTM.

zt = σ(Wz · [ht−1, xt] + bz)

rt = σ(Wr · [ht−1, xt] + br)

h̃t = tanh(W · [rt · ht−1, xt] + bh)

ht = (1− zt) · ht−1 + zt · h̃t (9)

Here, h̃t is the candidate activation vector, zt is the update

gate and rt is the reset gate. ht−1 and ht denote the output

from GRU cell at time step t−1 and t, respectively. xt denotes

the input to GRU cell at time step t.W and b denote parameter

matrices and vectors.
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Fig. 6. Architecture of an encoder of the Transformer

Transformer. Transformer was introduced to solve the

sequence-to-sequence tasks efficiently while handling long-

term dependencies with ease. In its structure, it neither uses

the convolutional neural network (CNN), nor the recurrent

neural network (RNN), but only the mechanism of self-

attention, specifically, multi-head self-attention. The original

Transformer model consists of an encoder and a decoder.

For the classification task, we only use its encoder. There

are two sub-layers in the encoder layer. The initial sub-layer

performs a multi-head self-attention mechanism, and the latter



TABLE I
PROPERTIES OF DATASETS

datasets category #classes & distribution #node-labels #edge-labels (avg.) #nodes (avg.) #edges
per graph per graph

MUTAG bioinformatics 2 [inactive:63, active:125] 7 4 18 20
NCI-H23 bioinformatics 2 [inactive:2000, active:500] 15 3 29 31
Tox21 AR bioinformatics 2 [no-toxic:8553, toxic:369] 41 4 18 18
PTC FR bioinformatics 2 [no-toxic:230, toxic:121] 19 4 15 15
IMDB-BINARY social network 2 [action:500, romance:500] 65 1 20 97
DBLP collaboration 2 [DBDM:1500, CVPR:1500] 11083 3 11 20

is a position-wise fully connected feed-forward network. A

residual connection is employed around each of the two sub-

layers, followed by a normalization layer. The inputs are first

embedded into d-dimensional vectors as we cannot directly use

strings. Since, unlike RNNs, the model contains no recurrence

and no convolutional network, for the model to remember how

sequences are fed into it, it must provide some information

about the relative or absolute positions of the tokens in

the sequence – this is what the positional embedding does.

These positional embeddings are added to the embedded d-

dimensional vector representation of each word.

In our encoder layer, we use two attention heads and small

dimensions (d=32) for projection heads and feed-forward

network. The Transformer layer outputs one vector for each

time step of the input sequence. Here, we take the mean of

Transformer outputs at all time steps and use a two-layered

feed-forward network over it to classify minimum DFS codes

as shown in Figure 6.

C. Improving Performance with Minimum DFS Code Variant

In every edge representation as a 5-tuple, that is,

(u, v, L(u), L(e), L(v)), the minimum DFS code includes the

two corresponding node ids based on their time-stamps. This

imposes a constraint that a particular subgraph pattern (e.g., an

edge, a cycle, a path, a clique, etc.) would occur at a specific

location in the input graph. However, in the context of graph

classification, it is often beneficial if one simply detects the

presence of a pattern in a graph, irrespective of its location.

This is because in real classification tasks, we rarely deal with

the exact isomorphic graphs, but rather graphs that are similar,

and share many identical patterns. Past literature about kernel

and structural feature-based graph classification were based on

similar ideas [48], [35], [27], [43], [14], [39].

To this end, we develop a variant of the minimum DFS code,

where we still consider edges in the minimum lexicographic

order; however, each edge e = (u, v) is represented with a

3-tuple: (L(u), L(e), L(v)), instead of 5-tuple representation.

As earlier, each minimum DFS code variant is considered as

a “sequence”, and every 3-tuple (denoting an edge) in it as a

“word”. We instantiate our vocabulary with all seen words,

then we convert each unique word in our sequences into

a unique integer using the vocabulary, that is, we tokenize

each distinct word into a unique integer or token, and finally

we embed each integer into a 32-dimensional vector [53].

This ensures that our RNN/ Transformer-based classification

models can employ the “presence” of a pattern in a graph as

a feature, and may disregard its location. It also reduces the

complexity of the feature space and improves generalizability.

While such minimum DFS code variant is no longer injective,

it improves the classification performance over many real-

world graph datasets as shown in our experiments.

IV. EXPERIMENTAL RESULTS

We conducted experiments to measure the accuracy and

efficiency of our framework, and compared them against four

state-of-the-art GNNs, using six real-world networks.

V. EXPERIMENTAL SETUP

We employed Keras [53] and TensorFlow v2.4.1 deep

learning libraries [1] to build LSTM, GRU, BiLSTM, and

Transformer models. The NetworkX library [18] was used to

load network data as Python objects. To perform experiments,

we used the Central Processing Unit (CPU) of Google Colab

[5] whose specifications are: Intel(R) Xeon(R) Processor with

two cores @ 2.20GHz and 13GB RAM. Our codebase and

datasets are at [17].

Datasets. We used six real-world graph datasets 1 from three

different categories (Table I).

The first four datasets belong to bioinformatics benchmarks:

MUTAG [9] contains mutagenic aromatic and heteroaromatic

nitro compounds classified according to their mutagenic effects

on a bacterium. Tox21 AR [46] dataset consists of quali-

tative toxicity measurements of compounds. PTC FR [41]

contains chemical compounds classified according to their

carcinogenicity on female rats. NCI-H23 is a dataset of anti-

cancer screens for cell lung cancer over small molecules. For

experiments on NCI-H23, we randomly sample 500 active

compounds and 2000 inactive compounds [48].

The fifth dataset belongs to the social networks bench-

mark: IMDB-BINARY [50] is a movie collaboration dataset

in which each graph corresponds to an ego-network for each

actress/actor and is derived from the “Action” and “Romance”

genre movies in the IMDB. In these graphs, each node

corresponds to an actress/actor and an edge connects them

if they appear in the same movie.

The sixth network belongs to the research collaboration

category: DBLP consists of bibliography data in computer sci-

ence. Each paper in DBLP is associated with several attributes,

e.g., abstract, authors, year, venue, title, and references. A

graph is built for each paper as follows [32]. (1) Each paper

ID is a node; (2) if a paper P.A cites another paper P.B, there is

an edge between P.A and P.B; (3) each keyword in the title is

1https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets



also a node; (4) each paper ID node is connected to keyword

nodes of the paper; and (5) for each paper, its keyword nodes

are fully connected with each other. Our task is to classify

a paper if it belongs to DBDM (database and data mining)

or CVPR (computer vision and pattern recognition) field. We

randomly selected 1500 graphs from each class.

Node and edge labels. In the first four bioinformatics datasets,

the node labels are chemical atoms, e.g., N, C, O, etc., and

the edge labels are types of chemical bonds, e.g., single bond,

double bond, etc. In IMDB-BINARY, as there were no existing

node labels and edge labels, we assigned node label as the

degree of the respective node [15], and we assumed that all

edges have the same label. In our final dataset, DBLP, the node

labels are keywords or Paper IDs, and each edge denotes the

citation relationship between papers or keyword relations in

the title which are of three types: W2W (word-to-word), W2P

(word-to-paper), and P2P (paper-to-paper).

Hyperparameters selection. We performed 5-fold cross-

validation. All data splits were stratified, i.e., class proportions

were preserved. We employed the Binary Cross-Entropy loss

function and the ADAM optimizer. The learning rate was

selected from {0.01, 0.001, 0.0001} and the number of epochs

was selected from (1, 350). The batch size was set as 64.

For each dataset, we instantiated our vocabulary with all seen

words (i.e. all distinct words present in the processed dataset).

For RNN models, that is, LSTM, GRU, and BiLSTM, we used

one layer of the respective type with 50 internal units. For

the Transformer model, we used one layer of the Transformer

block with 32 hidden units in the feed-forward network.

Competing methods. Recent GCNs perform a recursive

neighborhood aggregation via message passing. We considered

four state-of-the-art GCNs [12], that develop more sophisti-

cated pooling operations for graphs. We followed the same

GCN architectures as in the original papers, since these

settings also performed well (for that specific GCN) in our

experiments. Hyperparameters for the competing methods

were also tuned via the ADAM optimizer.

GCN+GAP [33], [25]. This architecture consists of graph

convolutional layers [22], followed by a global average pooling

(GAP) layer, and a softmax classifier. Convolutional layers

extract localized spatial features from graphs, and the GAP

layer enforces correspondences between the feature maps and

the classes. The global average pooling has no parameter to

optimize, thus it acts as a structural regularizer. We used the

GCNN+GAP architecture as in [33]: three graph convolutional

layers of size 128, 256, and 512, respectively, followed by a

GAP layer, and a softmax classifier.

DGCNN [52] consists of graph convolutional layers, followed

by a SortPooling layer, classic convolutional and dense layers,

and finally a softmax classifier. The convolutional layers

extract localized spatial features from the input graph, and

define a sorting order among nodes. The SortPooling layer

sorts nodes based on the previously defined order and selects

the top-k nodes. The classic convolutional and dense layers

read the sorted graph representation and predict the class

TABLE II
MINIMUM DFS CODE-BASED GRAPH CLASSIFICATION RESULTS

datasets performance metrics LSTM BiLSTM GRU Transformer

MUTAG
AUC-ROC 0.956 0.955 0.961 0.960
AUC-PR 0.981 0.981 0.974 0.982

Avg. Epoch Time (s) 0.12 0.16 0.12 0.12

NCI-H23
AUC-ROC 0.854 0.848 0.842 0.868

AUC-PR 0.670 0.660 0.653 0.698

Avg. Epoch Time (s) 2.57 3.57 2.32 3.29

Tox21 AR
AUC-ROC 0.843 0.837 0.840 0.843

AUC-PR 0.587 0.584 0.589 0.599

Avg. Epoch Time (s) 11.14 16.18 9.44 17.61

PTC FR
AUC-ROC 0.594 0.585 0.600 0.588
AUC-PR 0.452 0.444 0.458 0.484

Avg. Epoch Time (s) 0.27 0.40 0.26 0.32

IMDB AUC-ROC 0.812 0.804 0.802 0.821

-BINARY AUC-PR 0.816 0.810 0.810 0.829

Avg. Epoch Time (s) 8.26 12.39 7.72 48.23

DBLP
AUC-ROC 0.597 0.624 0.575 0.617
AUC-PR 0.612 0.627 0.575 0.613

Avg. Epoch Time (s) 0.85 1.12 0.89 0.81

TABLE III
MINIMUM DFS CODE VARIANT-BASED GRAPH CLASSIFICATION RESULTS

datasets performance metrics LSTM BiLSTM GRU Transformer

MUTAG
AUC-ROC 0.953 0.950 0.928 0.937
AUC-PR 0.978 0.977 0.968 0.969

Avg. Epoch Time (s) 0.12 0.16 0.11 0.12

NCI-H23
AUC-ROC 0.901 0.900 0.897 0.865
AUC-PR 0.764 0.762 0.748 0.632

Avg. Epoch Time (s) 2.49 3.43 2.18 3.32

Tox21 AR
AUC-ROC 0.843 0.840 0.835 0.844

AUC-PR 0.585 0.594 0.572 0.553
Avg. Epoch Time (s) 10.38 15.62 8.98 16.80

PTC FR
AUC-ROC 0.691 0.686 0.617 0.636
AUC-PR 0.547 0.560 0.518 0.533

Avg. Epoch Time (s) 0.27 0.41 0.25 0.32

IMDB AUC-ROC 0.818 0.820 0.808 0.834

-BINARY AUC-PR 0.816 0.827 0.809 0.836

Avg. Epoch Time (s) 9.38 12.92 8.78 48.09

DBLP
AUC-ROC 0.794 0.811 0.806 0.831

AUC-PR 0.811 0.828 0.818 0.846

Avg. Epoch Time (s) 0.90 1.10 0.83 0.77

TABLE IV
MINIMUM DFS CODE-BASED GRAPH CLASSIFICATION;WITHOUT

CONSIDERING EDGE LABELS

datasets performance metrics LSTM BiLSTM GRU Transformer

MUTAG
AUC-ROC 0.966 0.966 0.960 0.969

AUC-PR 0.985 0.984 0.982 0.986

NCI-H23
AUC-ROC 0.869 0.866 0.857 0.870

AUC-PR 0.690 0.694 0.680 0.701

PTC FR
AUC-ROC 0.620 0.611 0.602 0.599
AUC-PR 0.479 0.469 0.483 0.464

DBLP
AUC-ROC 0.617 0.630 0.610 0.626
AUC-PR 0.607 0.638 0.600 0.631

label via the softmax classifier. Following [52], our DGCNN

architecture has four graph convolution layers with 32, 32, 32,

1 output channels, respectively. We set the k of SortPooling

such that 60% of the graphs have nodes more than k. The

remaining layers consist of two 1-D convolutional layers and

one dense layer. The first 1-D convolutional layer has 16

output channels followed by a MaxPooling layer with filter

size 2 and step size 2. The second 1-D convolutional layer has

32 output channels, filter size 5, and step size 1. The dense

layer has 128 hidden units, followed by a softmax layer as the

output layer.

DiffPool [51] generates hierarchical representations of graphs,

by learning a differentiable soft cluster assignment for nodes

at each layer of a graph neural network (GNN), mapping

nodes to a set of clusters, which then form the coarsened

input for the next GNN layer. Embedding vectors from the last

DIFFPOOL layer are combined to form one single embedding



TABLE V
MINIMUM DFS CODE VARIANT-BASED GRAPH CLASSIFICATION;

WITHOUT CONSIDERING EDGE LABELS

datasets performance metrics LSTM BiLSTM GRU Transformer

MUTAG
AUC-ROC 0.948 0.932 0.946 0.944
AUC-PR 0.975 0.967 0.973 0.971

NCI-H23
AUC-ROC 0.895 0.886 0.887 0.844
AUC-PR 0.734 0.714 0.706 0.604

PTC FR
AUC-ROC 0.661 0.650 0.644 0.626
AUC-PR 0.521 0.512 0.512 0.518

DBLP
AUC-ROC 0.806 0.818 0.811 0.832

AUC-PR 0.822 0.838 0.815 0.843

TABLE VI
MINIMUM DFS CODE COMPUTATION TIME

datasets min DFS code computation time (avg) per graph in seconds

MUTAG 0.06
NCI-H23 0.06
Tox21 AR 0.05
PTC FR 0.04
IMDB-BINARY 9.89
DBLP 0.05

vector by taking maximum across each embedding dimension.

This final vector is used as input to fully-connected layers,

followed by a softmax classifier to predict the class label. We

employed one DIFFPOOL layer in our implementation. In a

DIFFPOOL layer, the number of clusters is set as 25% of

the number of nodes before applying the DIFFPOOL. Every

DIFFPOOL layer consists of three GCNs (each of size 64)

for embedding generation and another three GCNs (each of

size 64) for computing probabilistic assignments. The final

embedding vector generated from the DIFFPOOL layer is used

as input to three fully-connected layers (each having 50 hidden

units), followed by a softmax classifier.

GIN [47]. In graph isomorphism network (GIN), the aggrega-

tion functions and the readout functions are made injective, as

discussed in § II. GIN’s discriminative/representational power

is equal to the power of 1-WL test. In our implementation,

4 GIN layers were applied and all MLPs had 2 layers. Batch

normalization was applied on every layer. We used the sum

function for neighbor aggregation, and also the sum readout

function. ADAM optimizer was used with initial learning rate

as 0.001, decay rate of 0.5 with a patience of 25 epochs. Batch

size was set to 20 and the number of epochs was 350, in which

the scores of the converging epoch is reported.

Evaluation metrics. AUC-ROC and AUC-PR [46], [35] were

employed to analyze the performance of all classification

models. These evaluation metrics are suitable for imbalanced

datasets (e.g., ours in Table I). AUC-ROC defines the area

under the curve that shows the tradeoff between the true

positive rate (TPR) and the false positive rate (FPR). In the

ROC plot, random classifiers show a diagonal line, thus the

baseline AUC-ROC score is 0.5. Higher AUC-ROC score

indicates that the curve is more top-left, implying a higher

TPR and lower FPR for each threshold, and thereby a better

classifier. AUC-PR measures the area under the curve that

combines precision and recall in a single plot. The baseline

of PR is computed by the ratio of positives (P) and negatives

(N) as: P/(P + N), e.g., for MUTAG the baseline AUC-PR

is 125/(125+63) = 0.66, thus 66% correct predictions, on

average, among the positive predictions by a random classifier.

A higher AUC-PR score indicates a better classifier.
Average epoch time is computed as the total time taken

during training of a model divided by the number of epochs.

This is used to measure the efficiency of training.

A. Accuracy and Efficiency

We report our accuracy and efficiency results for minimum

DFS code-based graph classification in Table II. Clearly,

there is no single winner. We noticed that the Transformer-

based minimum DFS code classification generally outper-

forms RNN-based classification methods (LSTM, BiLSTM,

and GRU) in both AUC-ROC and AUC-PR scores. This could

be due to the attention operation in the Transformer which

provides context for any position in the input sequence. In

terms of the average epoch time, GRU is the fastest (due to

having only two gates), and BiLSTM is often the slowest –

as it consists of two LSTMs taking the input in both forward

and backward directions. We found that the running times of

both LSTM and Transformers are comparable on our datasets.

Furthermore, with GPU support that helps in parallelization,

the average epoch time in Transformer could improve several

folds, since it processes each word independently.

In Table III, we consider the classification of the minimum

DFS code variant. Each edge e = (u, v) is represented with a

3-tuple: (L(u), L(e), L(v)). This consistently produces better

AUC-ROC and AUC-PR scores compared to when the classic

minimum DFS code is used. With the exception of MUTAG

(both scores) and Tox21 AR (AUC-PR score), in all remaining

datasets the minimum DFS code variant results in better

AUC-ROC and AUC-PR. Even in Tox21 AR, this produces a

higher AUC-ROC score. As reasoned earlier, minimum DFS

code variants reduce the complexity of the feature space and

improve generalizability. The minimum DFS code variant-

based sequence classification is also faster for the same reason.

In Tables IV and V, we present AUC-ROC and AUC-PR

scores over four datasets without considering edge labels, that

is, we assign same label to all edges in these experiments.

It can be seen that when minimum DFS codes (5-tuples) are

used, not having edge label information further improves these

scores, indicating generalizability in our training process. In

contrast, with minimum DFS code variants that employ only

3-tuples, having edge label information improves the accuracy.

In summary, the minimum DFS code variants with edge labels

(i.e., Table III) generally result in the best AUC-ROC and

AUC-PR scores over our datasets.

The average time to compute the minimum DFS code per

graph is reported in Table VI. We noticed that the overhead due

to the minimum DFS code computation per graph is modest

compared to the average epoch time. The minimum DFS code

for each graph can be computed in parallel, which would

further improve the efficiency.

B. Comparison with Existing GCNs

We compared our minimum DFS code-based sequence

classification method with four state-of-the-art GCNs [12]:

GCN+GAP [33], [25], DGCNN [52], DiffPool [52], and GIN

[47]. Table VII reports their accuracy and efficiency compar-

ison results. Our method always outperforms them in terms



TABLE VII
COMPARISON OF MINIMUM DFS CODE-BASED GRAPH CLASSIFICATION WITH STATE-OF-THE-ART GCNS

datasets performance metrics GCN + GAP [33] DGCNN [52] DiffPool [52] GIN [47] Min-DFS Code/Variant
+ RNN/Transformer [Ours]

MUTAG
AUC-ROC 0.787 0.902 0.838 0.924 0.969
AUC-PR 0.881 0.948 0.901 0.964 0.986

Avg. Epoch Time (s) 0.42 0.41 0.52 0.43 0.12

NCI-H23
AUC-ROC 0.512 0.627 0.698 0.861 0.901
AUC-PR 0.215 0.343 0.436 0.611 0.764

Avg. Epoch Time (s) 8.81 5.46 7.84 6.48 2.49

Tox21 AR
AUC-ROC 0.624 0.718 0.784 0.781 0.844
AUC-PR 0.058 0.139 0.339 0.257 0.599

Avg. Epoch Time (s) 21.54 17.28 24.21 14.64 16.80

PTC FR
AUC-ROC 0.639 0.630 0.606 0.514 0.691
AUC-PR 0.539 0.528 0.522 0.392 0.560

Avg. Epoch Time (s) 0.76 0.76 0.98 0.60 0.27

IMDB AUC-ROC 0.700 0.803 0.790 0.609 0.834
-BINARY AUC-PR 0.663 0.811 0.787 0.623 0.836

Avg. Epoch Time (s) 2.53 2.22 3.05 73.10 48.09

DBLP
AUC-ROC 0.642 0.816 0.705 Out 0.832
AUC-PR 0.598 0.780 0.630 of 0.846

Avg. Epoch Time (s) 5.76 4.66 7.25 Memory 0.77

of both AUC-ROC and AUC-PR scores. This is due to the

following reasons: (1) Minimum DFS codes are injective, (2)

our LSTM, BiLSTM, GRU, and Transformer-based sequence

classification methods can capture long-range dependencies in

the graph space, and (3) the attention operation in Transformer

provides context for any position in the input sequence.

In terms of running times, our method is comparable (or

even faster) than these competing approaches, except on

IMDB-BINARY. This dataset has the largest size graphs among

all our datasets, as a result the minimum DFS code per graph

is also larger. Hence, our sequential implementation of the

Transformer consumes longer times. With GPU parallelization,

we believe that the average epoch time in Transformer could

improve several folds, since it processes each edge in the

minimum DFS code independently.

The above results demonstrate the effectiveness and effi-

ciency of our minimum DFS code-based sequence classifica-

tion approach, compared to existing GCNs.

VI. CONCLUSIONS AND FUTURE WORK

We investigated the novel direction of minimum DFS code-

based graph classification. Two graphs are isomorphic iff they

have the same minimum DFS code, which can be efficiently

computed in practice. We employed state-of-the-art RNN-

based sequence classification techniques (LSTM, BiLSTM,

GRU), and the encoder layer of Transformer over minimum

DFS codes, for graph classification. Our method can capture

long-range dependencies in the graph space. We also consider

a novel variant of the minimum DFS code that improves

generalizability and classification accuracy over many network

datasets. Our experimental results with six real-world graph

datasets demonstrate the accuracy and efficiency of our tech-

niques, compared to existing GCNs. Based on our thorough

empirical evaluation, we recommend the minimum DFS code

variants (i.e., 3-tuple for an edge) with edge label information

to produce the best AUC-ROC and AUC-PR scores. We open-

sourced our solution framework [17] in which one can play

with different graph datasets and get their classification re-

sults – this would benefit researchers, practitioners, biologists,

social scientists, and data scientists.

Future work could be in several directions. First, more

expressive GNNs [28], [30], [6] are being developed that

replicate the increasingly more powerful k-WL tests. How-

ever, such GNNs result in high computational and memory

complexity, non-local message passing, and a large number

of parameters; and this is still an insufficient condition for

graph isomorphism — for every k, there are non-isomorphic

graphs indistinguishable by k-WL [7]. One can compare our

minimum DFS code-based graph classification approach with

them. Second, one drawback of the minimum DFS code is

that it permits only one label for every node and edge, and

the labels must be categorical in nature. Thus, the minimum

DFS code verifies only a strict notion of isomorphism between

two graphs. In reality, a graph dataset may have multiple

features per node and edge, and some of these features could

be numerical (e.g., age, salary, etc.). Thus, we may require

more flexible means to compute similarity across nodes, edges,

and substructures. In future, it would be interesting to consider

minimum DFS code variants that can accommodate multiple

labels per node and edge, as well as support numerical node

and edge labels similarity across graphs.
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