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Abstract—Given the prevalence and volume of local search
queries, today’s search engines are required to find results by
both spatial proximity and textual relevance at high query
throughput. Existing techniques to answer such spatial keyword
queries employ a keyword aggregation strategy that suffers from
certain drawbacks when applied to road networks. Instead, we
propose the K-SPIN framework, which uses an alternative key-
word separation strategy that is more suitable on road networks.
While this strategy was previously thought to entail prohibitive
pre-processing costs, we further propose novel techniques to
make our framework viable and even light-weight. Thorough
experimentation shows that K-SPIN outperforms the state-of-
the-art by up to two orders of magnitude on a wide range of
settings and real-world datasets.

Index Terms—Road networks, points of interest search, spatio-
textual queries, network Voronoi diagrams

I. INTRODUCTION

F INDING the nearest relevant points of interest (POIs)

to a user is an important type of query in map-based

services [1]. A spatial keyword query retrieves POIs that

are close to a user’s location (e.g., in terms of travel time)

with textual descriptions that are relevant to query keywords

provided by the user. Boolean kNN (BkNN) queries retrieve

the closest POIs that satisfy certain keyword constraints. Con-

straints may be disjunctive (POIs contain any query keyword)

or conjunctive (contain all query keywords). On the other

hand, top-k spatial keyword queries return k POIs with the

best scores, where the score of a POI combines the POI’s

proximity to the query location and the relevance of the POI’s

textual description to the query keywords.

A popular search engine like Google experiences ≈2500

search queries with a location component every second on

average [2]. Measuring proximity of POIs using road network

distance is more accurate and supports various metrics, for

example, travel-time via the road network is more accurate

than Euclidean distance (i.e., “as-the-crow-flies”). However,

existing techniques on road networks use an inefficient key-

word aggregation strategy that severely hinders their ability to

meet such high throughput requirements.

Keyword aggregation is a technique used extensively in

Euclidean spatial keyword techniques [1] that involves summa-

rizing keyword occurrences over geographical regions. Spatial

keyword queries are then answered by searching the most

promising regions first while pruning regions that cannot con-

tain results. The drawback of this approach is the generation

of many false-positives when regions appear promising but

in reality, contain no results. Whenever a candidate POI is

encountered, its distance from the query must be computed

to confirm if it is close and relevant enough. Computing

distance in Euclidean space is a quick arithmetic operation,

but in road networks, it is a complex graph operation and far

more expensive. Consequently, the penalty paid for incurring

false-positives in road networks is significantly higher than in

Euclidean space. Ultimately, this makes keyword aggregation

far less effective for road networks.

The problems encountered cannot be solved in straight-

forwards ways due to the permanent loss of discriminating

information that results from aggregation. Detailed examples

of how costly false-positives occur are provided in the full

version of the paper [3]. To overcome these challenges we

present the Keyword Separated Indexing (K-SPIN) framework

employing an alternative keyword separation strategy, which

creates a separate index for each keyword. While this approach

may initially seem to entail prohibitive pre-processing costs,

our techniques make it not only viable but also light-weight.

II. SOLUTION OVERVIEW

The modules that compose the K-SPIN framework are

shown in Figure 1. Here we briefly describe each module and

how they interact to efficiently answer spatial keyword queries.

1. Lower Bounding Module. This module computes a lower-

bound network distance between any two vertices using se-

lected heuristics. For example, a lower-bound can be obtained

using landmarks as in the ALT [4] index. ALT pre-computes

network distances between some chosen landmark vertices

and all vertices in the graph then uses the triangle inequality

to obtain a lower-bound network distance between any two

vertices. Moreover, multiple heuristics can be incorporated to

obtain the tightest lower-bound network distance overall.

2. Network Distance Module. This module computes the

exact network distance between any two given vertices in a

graph. Any Road Network Index technique can be used to

compute network distance, e.g., extremely fast 2-hop labels

[5]. The system administrator may choose a technique based

on its efficiency and/or index size or may simply choose the
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Fig. 1. Keyword Separated Indexing (K-SPIN) Framework

techniques already being used to answer other queries. This

module is the bottleneck as network distance computations are

the most expensive operation performed for a POI.

3. Heap Generator. The Heap Generator is responsible for

creating and maintaining the on-demand inverted heaps. An

on-demand inverted heap for a particular keyword t satisfies

the following property at any point in time (i.e., when the heap

is first created and whenever a heap element is extracted).

Property 1: Given the current top object o in inverted heap

H for keyword t and its lower-bound distance LB(q, o) from

query vertex q; any object ot containing t, not yet extracted

from H, has network distance d(q, ot) ≥ LB(q, o).

Property 1 allows our query algorithms to access objects

associated with a particular keyword t in order of their lower-

bound network distances from q computed using the Lower
Bounding Module. To efficiently create and maintain an in-

verted heap, the Heap Generator utilizes a Keyword Separated
Index (KSI) that indexes inv(t) for each keyword t in corpus

W where inv(t) is the set of all objects associated with t.
Property 1 allows the heap to be populated lazily, i.e., objects

are added incrementally such that the property is met.

Network Voronoi Diagrams (NVDs) are the first choice

data structure to accurately generate candidate objects [6].

However, employing them as our KSI leads to impractical

pre-processing costs in both space and time. Using several

key observations (detailed in the full paper [3]), we propose

an approximate NVD for use as our KSI with significantly

reduced pre-processing time and space by up to an order

of magnitude. Moreover, this comes at a small theoretically

bounded cost to query efficiency and still returns exact results.

4. Query Processor. The Query Processor contains algorithms

to answer various spatial keyword queries. Algorithms use on-

demand inverted heaps to retrieve relevant candidate objects.

The challenge lies in deciding which heap to use and how to

filter poor candidates using an effective lower-bound score.

Hence the efficiency of the Query Processor is critical in

avoiding the false-positive problems of existing methods men-

tioned earlier. The Query Processor uses the Network Distance
Module to compute the network distances between the query

vertex and the filtered candidate objects.

We propose query algorithms to answer both BkNN and

top-k spatial keyword queries. Our techniques carefully exploit

Technique Index Size
(in GB)

Queries/second
Top-k BkNN

K-SPIN [Our Method] + CH [7] 0.6 + 0.6 865 1021
K-SPIN [Our Method] + PHL [5] 0.6 + 15.8 3942 9869
Spatial Keyword G-tree [8] 2.7 266 178
ROAD [9] 4.5 83 �

TABLE I
COMPARISON OF INDEX SIZE AND THROUGHPUT (# OF QUERIES

PROCESSED PER SECOND) ON US ROAD NETWORK DATASET

Property 1 to generate fewer false-positive candidates. In

particular, we propose the idea of a pseudo-lower bound

score for our top-k query algorithm that infers details about

unseen objects in inverted heaps to retrieve more promising

candidates and terminate sooner. Furthermore, we prove that

even though the pseudo-lower bound is not a real lower-bound,

our algorithm still retrieves correct results [3].

III. ANALYSIS & CONCLUSIONS

We conduct an extensive experimental investigation of K-

SPIN using a variety of settings, parameters, and variables

with real-world road network and POI datasets. Table I depicts

spatial keyword query performance and index size for our tech-

niques and competing methods on the US dataset with default

settings [3]. As shown, our techniques support significantly

higher throughput, even when using space-efficient but slower

road network indexes such as Contraction Hierarchies (CH)

[7]. The significant improvement of K-SPIN over competing

methods shows that keyword separation is a more effective

alternative to keyword aggregation on road networks.
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