Voting-based Opinion Maximization

Arkaprava Saha
NTU, Singapore
saha0003 @e.ntu.edu.sg

Xiangyu Ke
ZJU, China
xiangyu.ke @zju.edu.cn

Abstract—We investigate the novel problem of voting-based
opinion maximization in a social network: Find a given number
of seed nodes for a target campaigner, in the presence of other
competing campaigns, so as to maximize a voting-based score for
the target campaigner at a given time horizon.

The bulk of the influence maximization literature assumes that
social network users can switch between only two discrete states,
inactive and active, and the choice to switch is frozen upon one-
time activation. In reality, even when having a preferred opinion,
a user may not completely despise the other opinions, and the
preference level may vary over time due to social influence. To this
end, we employ models rooted in opinion formation and diffusion,
and use several voting-based scores to determine a user’s vote for
each of the multiple campaigners at a given time horizon.

Our problem is NP-hard and non-submodular for various
scores. We design greedy seed selection algorithms with quality
guarantees for our scoring functions via sandwich approximation.
To improve the efficiency, we develop random walk and sketch-
based opinion computation, with quality guarantees. Empirical
results validate our effectiveness, efficiency, and scalability.

Index Terms—social network, opinion maximization, voting

I. INTRODUCTION

Social influence studies have attracted extensive attention
in the data management research community [11], [2l], [3], [4],
[5], [6], [7], [8]. The classic influence maximization (IM)
problem [9], [10] identifies the top-k seed users in a social
network to maximize the expected number of influenced users
in the network, starting from those seed nodes and following
an influence diffusion model (e.g., independent cascade (IC)
and linear threshold (LT) [9]]). Several works also focus on
competitive influence maximization [[L1], [12f], [13], [14]], [15],
[16], [L7], [18] which aims to find the seed set that maximizes
the influence spread for a particular campaigner relative to the
others or maximally blocks the diffusion of a competitor.

However, prior works on IM have two major limitations in
modelling real-world opinion formation and spreading. First,
they consider maximizing the expected number of users adopt-
ing a specific campaign, assuming that the reaction of each
user to the campaign is binary (adopt or not). In reality, a user
may not be completely opposed to the competing opinions,
although she could have a preference for one opinion, where
the degree of preference could vary among users. This scenario
can be accurately modelled by allowing the opinion of a user
for each campaign to be a real number in [0, 1]. Second, in
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the IC and LT models, a user’s choice is frozen upon one-
time activation — not permitting to switch opinions later. While
this is realistic when purchasing one of the many competing
products due to the user’s limited budget, it is insufficient for
modelling opinion formation and manipulation over time, e.g.,
in scenarios like paid movie services, elections, social issues,
where a user’s opinion is highly likely to change over time.
Due to the above shortcomings, we deviate from the classic
influence diffusion (e.g., IC and LT models) and investigate the
problem of opinion maximization by employing models rooted
in opinion formation and diffusion, e.g., DeGroot [19] and
Friedkin-Johnsen (FJ) [20], [21]. In these settings, each user
in a network has a real-valued opinion about each campaign at
every timestamp. Moreover, for each campaign, the opinions
of the users evolve over discrete timestamps according to an
opinion diffusion model such as DeGroot or FJ (defined in
§ [I-A). Given a target campaign and a time horizon (a future
timestamp t), our problem is to select a seed set of size k for
the target campaigner, so that the target campaigner’s odds of
being the winner at the time horizon ¢ are as high as possible.
Since opinion values are non-binary, we require more So-
phisticated winning criteria than the expected influence spread
employed in classic IM [9]. Voting offers a well-understood
mechanism for determining winners in an election among
campaigners by considering the preferences of users (“voters”)
in a principled manner. We investigate voting-based scores
[22], [23], [24] such as aggregated opinion values of all
users about a campaigner (cumulative), rank of the target
campaigner relative to others for all users (plurality), or the
number of campaigners against whom the target campaigner
wins in one-on-one competitions (Copeland). These are nat-
ural choices based on voting theory when users have non-
binary opinion values towards multiple competitors. Existing
works on finding the top-k seeds for opinion maximization
[25], [26] are restricted to a single campaigner and consider
neither a given finite time horizorﬂ nor voting-based scores
with multiple competing campaigner To the best of our
knowledge, voting-based opinion maximization in the presence
of multiple competing campaigns is a novel problem.
Applications. Our problem and solutions can be effective
where users vote and the winner among multiple candidates
is decided based on the election outcome. Examples include
the presidential election, voting in the parliament, a plebiscite

'In practice, the voting is held at a specific time horizon, instead of waiting for the
diffusion to reach the Nash equilibrium as is done in [25].

2Only our cumulative score is similar to theirs due to its aggregate nature.



or a referendum (e.g., the referendum on the independence
of Scotland) [27]], [28]], etc. We conduct a real-world case
study about the ACM general election 2022 (§VIII-B). Our
case study shows that the election result might have reversed
after introducing only 100 optimal seed users. Our solution
selects influential seeds based on (1) their common research
interests with respect to the target candidate and (2) the
initial preferences of the users in various research domains.
Moreover, our approach smartly focuses on switching the
preferences of more neutral users. These demonstrate the
usefulness of our problem and the effectiveness of our solution.

Challenges and Our Contributions. With multiple competing
campaigns in a network, we formulate and study a novel
problem in opinion maximization: Find the top-k seed nodes
for a target campaign that maximize a voting-based winning
criterion for the target at a given time horizon (§ [I-C). Our
contributions are as follows.
e Opinion Maximization and Voting Scores: To the best
of our knowledge, opinion manipulation by introducing seed
nodes has not been investigated before, except, e.g., [2], [25],
[26], [29], [30]. However, apart from [235], [26], prior works do
not consider sophisticated DeGroot/FJ opinion models. Also,
opinion maximization at a finite time horizon with multiple
campaigners has not been explored even in [25], [26]. One of
our novel contributions is bridging two different paradigms: (1)
seed selection for opinion formation and diffusion till a given
finite time horizon, and (2) voting-based winning criteria (e.g.,
plurality, Copeland) with multiple campaigners.
e Sandwich Approximation: Our problem is NP-hard
(§ [IT-A) and non-submodular (§ under various winning
criteri l Despite these, we design bound functions for all our
non-submodular scores to derive accuracy guarantees for the
greedy algorithm via sandwich approximation [31] (§ [[V).
e Random Walks: Computing opinion values at the time
horizon via DeGroot/ FJ requires iterative matrix-vector mul-
tiplications, which is expensive. To improve the efficiency,
we propose random walk and sketching-based computations
with approximation guarantees. Random walks have been used
earlier to improve the efficiency of matrix multiplication and
PageRank computation [32], [33]]. Our novelty is using random
walks to find the k£ seed nodes maximizing a voting-based
score by approximating the opinion values via the walks in k
iterations. Also, we provide novel bounds on the number of
walks required for each voting-based scoring function (§ [V).
o Sketches: While sketches have been used in classic IM [3]],
[71, [34], ours is the first work that uses sketches for opinion
computation. We adapt sketches for opinion diffusion models
and voting-based scores, and derive non-trivial accuracy guar-
antees (§ . Moreover, our sketches are simpler and less
memory-consuming than RR-sets-based sketches [3], [7]].
Our thorough experimental evaluation and case study over
five real-world social network datasets demonstrates the ef-
fectiveness, efficiency, and scalability of our solutions, over

3The proofs of these results in [25] cannot be extended trivially even to our basic
model of the cumulative score for any finite time horizon, warranting new techniques.

several baselines (§ [VII). Related work is discussed in § [VII,
while in § we conclude and discuss future work. Proofs
of theoretical results that are omitted for brevity, as well as
additional details, can be found in our extended version [35]].

II. PRELIMINARIES

A social network is modeled as a (directed) graph G =
(V, E), where V is the set of n nodes (users) and E C V xV
is the set of m edges (relations). We denote matrices with
upper-case letters and use lower-case ones for their entries.
We denote an n x n diagonal matrix by diag(dy,ds, ...,dy),
and the n x n identity matrix by I,,. A matrix A = (a;;) is
column-stochastic if a;; > 0, Vi,j, and Y ., a;; = 1, Vj.

Different news, campaigns, or opinions can propagate con-
currently in the network, leading to competitions [IL1], [12],
[16]. They can be information about similar products of
different brands, multiple politicians campaigning for the same
position, or different attitudes towards a topic, e.g., for or
against gun control. We call them candidates and assume that
there are » > 1 candidates: C' = {c1,¢a,..., ¢, }. All users’
opinions (in the interval [0, 1]) on all candidates are repre-
sented by an opinion matrix B € [0, 1]"*". B, € [0, 1]'*" is
the ¢'" row of B (denoting all users’ opinions on candidate
cq), and bg; is its it" entry (opinion of user i on candidate Cq)-
The opinions evolve over discrete timestamps {0, 1, ...,t}. We
denote the opinion(s) at timestamp t by, e.g., B((It) and bfl?.
A. Opinion Diffusion Models

Unlike the classic influence diffusion, opinion diffusion
involves aggregating the peers’ opinions at each timestamp
[36]]. We introduce a column-stochastic influence matrix [[19],
137] W € [0,1]™*™, where w;; € [0,1] denotes the influence
weight from user ¢ to user j. Different candidates ¢, can
have different matrices W,,. Notice that barring these weights,
the graph structure and the nodes remain the same for all
candidates. The set E is the union of the edges with non-zero
weights across all candidates. This setting is used in topic-
aware IM [38]. We next present two widely used opinion
diffusion models: DeGroot [19]] and its extension FJ [20]], [21]].
The DeGroot Model for a single candidate c, is given by:

t t—1 t—2 2 0 t
B = B{Vw, = B{Pw; = ... = BOW, )

At every timestamp, each user adopts the weighted average
of her in-neighbors’ opinions from the previous timestamp.
Users without in-neighbors retain their initial opinions. Since
W, is column-stochastic, the opinion values remain in [0, 1].
We assume that the opinions about different candidates diffuse
independently. In multi-campaigner and multi-feature settings,
independent propagation of opinions and influences has been
considered in [39]], [40], [41], [42]. Note that in our case,
while the opinion propagation for multiple campaigns happens
concurrently and independently, voting-based scores naturally
incorporate competition among the campaigns (§ [[I-B).

The Friedkin-Johnsen (FJ) Model extends the DeGroot
model by introducing the notion of stubbornness:

B{* = Bw, (1 - D,) + B D, )
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Fig. 1. Running example. All users share the same influence weight
and stubbornness matrices for both candidates.

D, = diag(dg,dg2,...,dqn) is a diagonal matrix: dg;
represents the stubbornness of user ¢ on retaining her initial
opinion about candidate cq. If dg; = 1, the user 7 is fully
stubborn and sticks to her initial opinion about c,. A partially
stubborn user (0 < dg; < 1) aggregates the opinions from
neighbors as well as her original opinion, while non-stubborn
users (dq; = 0) follow the DeGroot model. Since the DeGroot
model is a special case where all users are non-stubborn, all
our results with the FJ model also hold for the DeGroot model.

If the opinions of all users do not change after a specific

timestamp, the diffusion reaches a state of convergence. The
conditions for the DeGroot or FJ model to reach convergence
can be found in our extended version [35]. One of our novel
contributions is the seed selection for opinion maximization at
any given time horizon, which introduces non-trivial additional
hardness, as discussed in § [[II-A] and § [[IT-B]
Example 1. The input graph in Figure || consists of 4 users
and 3 edges. Suppose cy is our target candidate and co
is a competing candidate. Based on the FJ model, for any
x € {1,2}, a user’s opinion about candidate c, at any time
horizon can be computed by taking the weighted average of
her in-neighbors’ opinions at the previous time horizon and
then averaging with that of herself. Thus, users I and 2 will
always keep their initial opinions, as they do not have any
incoming edge. The opinion of user 3 at any time horizon t
can be computed as bgg =3 fbﬁ;” +1 (bf{” + bf;”)},
which is the average opinion of users 1 and 2 at the previous
time horizon, then averaged with that of user 3. For user
4, bgfi =1 [b;{l) +b§f471) , Which is the average of the
opinions of users 3 and 4 at the previous time horizon.

User[| 1] 2| 3 | 4

o
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o

o

B. Voting-based Scores

All campaigns start at timestamp O and proceed concurrently
(FJ model), independently of each other. Given a time horizon
t, we employ several voting-based scores [22], [23], [24]
to decide the winning candidate. In particular, we compute
a score F(B® c) for each candidate c. The one with the
maximum score is the winner at time ¢. We next define three
major voting-based score functions that we study.

Cumulative Score. For a candidate ¢4, the cumulative score
is the sum of all users’ opinion values about her at time ¢:

F (B(”, cq) - Uezvbf;g 3)

Plurality Score. The plurality score counts the number of
users who prefer ¢, to all other candidates at time ¢:

F(B(t>,c): 11{b<’;>> max b;ﬂ 4
¢ ; T e eC\{eq} @

1[] is an indicator that returns 1 if the condition inside is
true, O otherwise. In practice, a user generally votes for only

one politician, or has a limited budget to purchase one specific
type of product. Intuitively, she selects the one with the highest
opinion value in her mind — the plurality score captures this.
In our extended version [35]], we discuss more variants of the
plurality score which suit more application scenarios. We also
show that all our theorems and solutions can generalize to
these variants with minor modifications.

Copeland Score. We define an ordering >, on candidates:
cq =M Cp (i.€., ¢, Wins over cp), if more users have a higher
opinion value for ¢, than for c,, compared to the other way

around, at time ¢. The score counts how many such one-on-one
competitions a candidate ¢, wins:

F (B(t),cq) = {cp: cq =M cp}

~ oy g {Z 1o > 00] > 31 i < bg;g]] ©
cz €C\{cq} veV veV

The Condorcet winner [43]] is the candidate that wins all
such one-on-one competitions, i.e., has the maximum possible
F(BW®,¢c,) score, which is 7 — 1. In general, a Condorcet
winner is not always guaranteed to exist [43]. However,
maximizing the Copeland score boosts the target candidate
to beat as many other candidates as possible, and to be as
close to become a Condorcet winner as possible.

C. Problem Formulation

We study the novel problem of selecting & seed nodes for a
target candidate that maximize one of the voting-based scores
discussed in § for the target candidate at a given time
horizon. All our scoring functions are non-decreasing w.r.t.
seed sets (§ [II-B). Maximizing the score boosts the target
candidate’s odds of being as close as possible to winning.

For each node s in the seed set S for candidate c,, we
increase bS}? and dg, to 1 (i.e., node s becomes fully stubborn
towards retaining the maximum opinion value about c,). We
denote the modified initial opinion row vector B, and the
stubbornness matrix D, as B,[S] and D,[S], respectively. The
problem is formulated as follows.
Problem 1 (FJ-Vote). Given the initial opinion matrix B, a
target candidate c, influence matrix W, stubbornness matrix

Dy, and a time horizon t, find a set of k seed nodes S C 'V
that maximizes the score for cq at timestamp t. Formally,

S* = argmax F (B(t) [S],cq) (6)

SCV,|S|=k

Here BM")[S] is computed from B(®)[S] via the FJ model
(Equation . Note that B(?)[S] is obtained from the initial
opinion matrix B(®) by updating its row vector B, to B,[S]
according to the seed set S for c,. The function F' is based
on one of the three voting scores (§ [[I-B).

Example 2. Suppose we aim to choose one seed user to
maximize the score for ci (i.e., improve c1’s odds of winning
against competitor cy) at time horizon t = 1. The optimal
seed sets are quite different for various voting-based scores.
As shown in Table |l selecting user 1 as the seed leads to
the maximum cumulative score; however, we still have only
2 users preferring our target candidate cy to co. Thus, the



TABLE I
SCORES OF CANDIDATE ¢; FOR VARIOUS SEED SETS AT ¢t = 1 IN
FIGUREE]. ASSUMING NO SEEDS FOR c2, THE OPINIONS OF USERS
1,2,3,4 ABOUT c2 ATt = 1 ARE RESP. 0.35, 0.75, 0.78, 0.90.

User Score
Seed Set 1 2 3 4 Cumu. | Plu. | Cope.

{} 040 | 0.80 | 0.60 | 0.75 2.55 2 0

1 1.00 | 080 | 0.75 | 0.75 3.30 2 0

2 040 | 1.00 | 0.65 | 0.75 2.80 2 0

3 040 | 0.80 | 1.00 | 0.95 3.15 4 1

4 040 | 0.80 | 0.60 | 1.00 2.80 3 1
{1,2} 1.00 | 1.00 | 0.80 | 0.75 3.55 3 1

Copeland score of ¢ remains 0. Choosing user 3 as the seed
will encourage all four users to favor cy over co, which results
in the highest plurality score. Meanwhile, c, will become the
Condorcet winner (Copeland score equals 1) when user 3 or
4 is selected as the seed, since more than half the users will
have higher opinion values for cy than for cs.

Remarks. We assume that the opinion diffusion for multiple
candidates proceeds concurrently and independently, following
[39], [40], [41]], [42]. (1) For the cumulative score, due to its
aggregate nature, the top-k seeds for the target candidate can
be computed independent of the others, similar to the single-
campaigner setting [25[], [26]. In contrast, our other voting-
based scores (plurality and Copeland) incorporate competition
among the candidates via ranking-based formulations using
each user’s preference order. (2) As long as we know the
seed sets for the non-target candidates at the beginning of the
diffusion (i.e., at time 0), our algorithm can compute their
opinions at any time horizon, and we select the & seed nodes
for the target campaign (also at time 0) so as to maximize the
target’s voting-based score at the time horizon, relative to the
placement of seeds for non-target candidates at time 0. Thus,
while our analyses and techniques apply for this general case
where the competing candidates have seeds, for simplicity of
notation and exposition, we assume w.l.0.g. that the non-target
candidates have no seeds. (3) Since we find the seed set of
size at most k that maximizes the score of the target candidate,
winning is not always guaranteed, because even after selecting
the k optimal seed nodes for the target candidate, another
candidate may still have a higher score than the target. In
that case, the target candidate needs more seeds to win. The
following variant of our problem can mitigate this issue.

Problem 2 (FJ-Vote-Win). Given the initial opinion matrix
BO) 4 target candidate cg, influence matrix Wy, stubbornness
matrix D, and a time horizon t, find a set of seed nodes
S* C V of minimum size k* such that the score for cq at
timestamp t is the largest among all candidates. Formally,

Sy = argmax F(B(t)[S],cq)

scv,|S|=k
k* = min {k : {F (B [Si].cq) > L daw F (B [si] cT)] }
S* = 55, %)

In § |III-C}, we show that a solution to Problem [I| can be
extended to solve this new problem.
III. BASIC RESULTS & SOLUTION FRAMEWORK
In this section, we discuss the hardness of our problem

(§ [HI-A) and the submodularity of our scores (§ [II-B)),

TABLE I
PROPERTIES OF OUR VOTING-BASED SCORES

Score [[ NP-hard | Non-negative [ Non-decreasing | Submodular
C lative Yes Yes Yes Yes
Plurality Yes Yes Yes No
Copeland Open Yes Yes No

followed by a greedy solution to our problem (§ [III-C). All
of these are a part of our novel contributions. A summary of
these properties for all our scores is given in Table

A. Hardness

We show that the decision version of Problem[I]is NP-hard
for the cumulative and plurality scores.
Theorem 1. The decision version of Problem |l|is NP-hard
with the cumulative score.

Proof. We prove by a reduction from the NP-hard VERTEX
COVER problem [44]. A vertex cover in an undirected graph
G = (V, E) is a subset of nodes such that every edge in E is
incident to at least one of them. Given GG and an integer k, the
decision version of the problem asks if G contains a vertex
cover of size at most k.

Let |V]| =n and |E| = m. G is transformed into a directed
graph G = (V| E’), where E’ contains directed edges (u,v)
and (v,u) for each undirected edge (u,v) € E. We create
two candidates ¢, (our target) and c,. For each y € {q,z},
we set the following: for each i € V, bfﬁ) =0, dy; = 0; and
for each (i,7) € E', wy;; = 1/deg(j), where deg(v) denotes
the degree of node v in G. This ensures that W, is column-
stochastic. The time horizon ¢ is set to 1. This reduction takes
O(m + n) time. We prove that a set S of at most k& nodes is
a vertex cover of G if and only if F(BM[S],¢,) > n.

(1) If S is a vertex cover in G, then each node v in G
either belongs to S or has all of its incoming neighbors in
S. In the former case, b,(;)) [S] = 1 by definition. In the latter
case, since W, is column-stochastic, it follows from Eq.
that by)[S] = 1. This implies that F(BM[S],¢,) = n. (2)
If S is not a vertex cover in G, then there exists at least
one edge (u,v) € E such that neither u nor v is in S. This
implies that bfﬁ) [S] < 1—1/deg(v) < 1, which means that
F(BW[S],¢,) < n. The theorem follows. O
Remark: While Problem[I] with the cumulative score is similar
to [25], a key difference is as follows. Unlike Problem [25]
selects seeds to maximize the sum of the expressed opinions
at the Nash equilibrium, instead of at a given finite time
horizon. The proofs of NP-hardness and submodularity in
[25] rely on showing that an absorbing random walk is an
unbiased estimate of the true equilibrium opinion. However,
we cannot use absorbing random walks to estimate opinions
at a finite time horizon, rendering their proofs inapplicable in
our case. Our NP-hardness and submodularity proofs for the
cumulative score are novel contributions.

Theorem 2. The decision version of Problem [I|is NP-hard
with the plurality score.

Proof. The reduction remains the same as in the proof of
Theorem except that ¢, satisfies bgc%) =1-6 Vv € V, where
0 < § < mingyey 1/deg(v); this ensures that b =1-5. O



The computational complexity of Problem [I] with the
Copeland score is open as of now. We, however, show in
§ that the Copeland score is not submodular.

B. Submodularity

We show that the cumulative score used in Problem [I] is
submodular, while the plurality and Copeland scores are not.
A set function f : 2V — RZ° over a ground set V is
submodular if f(XU{i})—f(X) > f(YU{i})—f(Y), VX C
Y C V,i € V\Y. The classic greedy algorithm returns a
(1—1/e)-approximate solution for maximizing a non-negative,
non-decreasing, submodular function [45]]. Including a user s
into the seed set S will increase her opinion value on ¢4, which
will in turn influence those of some other users. Thus, after the
inclusion of s into S, each user’s opinion value and ranking
of ¢, cannot decrease. Hence, all our scoring functions are
non-decreasing in seed sets for cq.

Submodularity of the Cumulative Score.

Theorem 3. The opinion value of any user i about any can-
didate c, is submodular w.r.t. the seed set for that candidate.
Formally, VX CY CV,seV\Y,

BIIX U {s)] - b [x] >y u s - oY) (®

The cumulative score is the sum of all users’ opinion values
(Equation [3). As the sum of submodular functions is also
submodular, the cumulative score is submodular.

Non-Submodularity of the Other Scoring Functions. We
show the non-submodularity of the plurality and Copeland
scores using the same running example (Figure [T| and Table [I).
Example 3. As shown in Table |l} inserting node 2 into the
empty seed set results in zero marginal gain for both the
plurality and Copeland scores. However, inserting node 2 into
seed set {1} will make user 3 preferring the target candidate
c1 (resulting in marginal gain 1 for the plurality score) and
also the number of users preferring c1 more than the same
for co (resulting in marginal gain 1 for the Copeland score).
Hence, submodularity is violated for both scores.

C. Solution Overview

Since the cumulative score is non-negative, non-decreasing,
and submodular, the greedy framework (Algorithm [I)), which
identifies the node that maximizes the marginal gain in score
at each round, can provide a (1 — 1/e)-approximate solution.
We show in our extended version [35] that there is a problem
instance for which the well-known submodularity ratio ) [46],
[47] becomes O for our other non-submodular voting-based
scores; thus their approximation factor (1 — e~%) degrades
and goes to 0. However, in § with the help of Sandwich
Approximation [31l], we prove that the greedy framework can
still generate good approximate solutions for these scores.
Time Complexity with the Cumulative Score. To find the
node that maximizes the marginal gain at each round of
Algorithm[I] one can apply Eq.[2]¢ times (due to the input time
horizon t). Since every such matrix-vector multiplication has
time complexity O(m) using a sparse matrix package, we have
k rounds (to find the top-k seed nodes), and O(n) candidate
nodes from which a seed node is selected in each round,

Algorithm 1 Greedy Seed Selection

Require: Graph G = (V, E), initial opinion matrix B (9 influence matrix W; and
stubbornness matrix D; for each candidate c;, target candidate c,, seed set size
budget k, time horizon ¢, and a scoring function F'

Ensure: Seed set S™ of size k

1: S* « 0

2: for j =1 to k do

31 u < argmax,cy g+ [F (B“‘)[S* U {v}], cq) - F <B(")[S*], cq)]

4: S* +— S* U {u}

5: return S*

the final time complexity is O(ktmn). As the cumulative
score is monotone and submodular, we also apply the CELF
optimization [48]]. In § [V] and § we propose random
walk- and sketching-based estimation, respectively, to further
improve the efficiency, with theoretical quality guarantees.
Remark. (1) This greedy solution can be extended to solve
Problem [2] about finding the smallest seed set size k* such that
the target candidate wins. Since 0 < k* < n and our scoring
functions are non-decreasing, we resort to a binary search for
k*, with the initial lower (resp. upper) bound as 0 (resp. n).
In each iteration, we compute the optimal seed set S of size at
most the value midway between the bounds. If the target wins
(resp. loses) with the seed set .S, the upper (resp. lower) bound
is updated to the middle value and the process is repeated till
the bounds converge. (2) Due to the hardness of our problem
(§ [M-A), we find an “approximately optimal” seed set (e.g.,
using Algorithm [T). Since such a seed set will lead to a lower
voting-based score than that for the optimal solution, the final
seed set size obtained could be larger than the true minimal
one to achieve the winning criterion.

IV. PLURALITY AND COPELAND SCORES:
SANDWICH APPROXIMATION

Sandwich Approximation [31] (§IV-A) is a powerful
framework for providing approximation guarantees for non-
submodular function maximization. Our novel contribution is
to construct non-trivial upper and lower bound functions to
enable sandwich approximation for our plurality (§ and
Copeland (§ scores, as they must satisfy certain prop-
erties to admit good approximations. Furthermore, we empiri-
cally validate that the additional ratio introduced by sandwich
approximation (which degrades the overall approximation) is
reasonably high for our proposed bounding functions in all
cases (§ [IV-D). For simplicity, we rewrite F(B®[S],¢c,) as
F(S), since the target candidate ¢, is arbitrary but fixed.
A. Sandwich Approximation

For any non-submodular set function F'(S), S C V, suppose
UB(S) and LB(S) are any set functions defined on the
same ground set V, such that LB(S) < F(S) < UB(S),
VS C V. If we are able to compute approximate solutions
for both UB(S) and LB(S), then we can obtain the sand-
wich approximation for the targeted set function F(S) as
follows. (1) Run the approximation algorithms to obtain an
n-approximate solution Sy to UB(S) and a T-approximate
solution Sy, to LB(S), where 7 (resp. 7) is the approximation
factor afforded by the algorithm for UB(S) (resp. LB(S5)).
(2) Find a feasible solution Sg to function F(S), e.g., by



applying the standard greedy algorithm. (3) Report the final
solution S#: S# = argmaxge s, s, 5.} F(5)-
Theorem 4 ([31]]). Sandwich approximation guarantees:
F(5%) > max {17 . % F(Sp),7- LB (5;)} ©)
where S} maximizes F'(S) subject to a constraint, e.g., a
cardinality constraint |S| < k, or a matroid constraint.
B. Bounds on the Plurality Score
Motivated by this result, we design non-negative, non-
decreasing, submodular lower and upper bounding functions
LB(S) and UB(S) such that 0 < LB(S) < F(S) < UB(S),
VS C V, thus enabling sandwich approximation with n = 7 =
1—1/e (Eq.[9), via running Algorithm[Ijon LB(S), F(S), and
UB(S), respectively. Note that ensuring the submodularity of
LB(-) and UB(-) is one (not the only) way to enable sandwich
approximation. We first define two useful terms.

Definition 1 (Favorable Users Set). The favorable users set,

denoted by V(t), is the set of nodes (users) who would have the
highest opinion value about the target candidate c, compared
to the other candidates at the time horizon t, even without
introducing any seed for c,. Formally,

bt }

Vq(t):{UEV:bfﬁ)>

Since the opinion of a user about ¢, increases with the
seed set for ¢4, and the users in V}I(t) prefer ¢, to the other
candidates at the time horizon ¢ even without any seed for
cq, they will continue doing so on the addition of seed nodes
for ¢4. Recall that the set of such users at the time horizon ¢
decides c,’s plurality score. Hence, we use Vq(t) to construct
a lower bound for the plurality score (Definition [3).

max

(10)
ca €C\{cq}

Definition 2 (Reachable Users Set). The reachable users set,

denoted by N (t), is the set of nodes (users) at most t outgoing
hops away from any node in a seed set S. Formally, denoting

by u ~~ v the existence of a path with h edges from u to v,

Né”:UO{ueV:siév} (11)

S€ES h=0

On adding seeds for ¢4, along with the users in Vq(t), some
additional users can also have higher opinions about ¢, at time
t, who according to the FJ model, can be at most ¢ outgoing
hops away from a seed node. Hence, Vlz(t) and N ét) are used to
construct an upper bound for the plurality score (Definition [)).

Definition 3. The lower bounding function LB(S) for the
plurality score F(S) is defined as the aggregated opinion
value about c, at time t for all users in the favorable users
set, on the introduction of a seed set S for c,.

> bS]

UEVq“’)

LB(S) = (12)

Definition 4. The upper bounding function UB(S) for the
plurality score F(S) is defined as the total number of users
either in the favorable users set or in the reachable users set.

UB(S) = (Ng) uv® (13)

Correctness Guarantee. We now have:

Theorem 5. LB(S) is (1) non-negative, (2) non-decreasing,
(3) submodular, and (4) a lower bound for F(S).
Proof. (1) Since b{2[S] > 0 Vv € V, LB(S) > 0. (2) LB(S)

is the sum of b((ltv) [S] Vv € Vq(t), and each of them is non-
decreasing w.r.t. the inclusion of seeds in S. (3) From Theorem

each bg? [S] is submodular, and hence so is LB(S), which is
the sum of such functions Vv € Vq(t). (4) Notice that v € Vq(t)
implies: bgi)) [S] > bfﬁ)) > maXe, o\ {c,} b\%). Thus,

LBS) = 3 WRIs)< 30 1= 30 1{bdls) > max bl
vGVq(t) vGVq(t) vGVq(f‘) ce €C\{cq}
& )
< 1 |bgy [S] > max by | = F(S
_v%;/ [q = ez €C\{cq} } &)

Lemma 1. If a user v is not in the reachable users set, then
the opinion of v about c, does not change by virtue of the
seed set. Formally, if v ¢ Nét), then bgi)) [S] = bfﬁ).

Intuitively, this follows from the FJ model; the influence of
the seed set diffuses by one hop in each timestamp, and hence
cannot spread beyond ¢ hops at timestamp ¢.

Theorem 6. U B(S) is (1) non-negative, (2) non-decreasing,
(3) submodular, and (4) an upper bound for F(S).

Proof. (1) Since the size of any set is non-negative, U B(S) >

0. (2) UB(S) is non-decreasing because, for any X C Y,

UB(Y) = UB(Y UX) = ’NSZ,X uv®

_ ‘N;” UNP UV®

> ’N)(f) uy®

— UB(X)
(3) UB(S) is submodular as for X CY C Vand s € V\Y,

UB(XU{s}) —UB(X) = ( NSL{S}

uv?| - NP uv))
[ (40 o) i (v )|

= (|

W Y Vq(t)‘ - ‘N}ﬁ uv® D = UB(Y U{s}) — UB(Y)

(4) Suppose v ¢ N. ét) and v ¢ Vq(t). Then, from Equation

and Lemma ey € C\ {cq} - ) > bgtv) = b((ﬁ,) [S]. Thus,

b((;;) [S] > MaXe, e\ {c,} bffg implies v € Nét) U Vq(t). Hence,
max

_ (t) (t)
H&—Zl%ﬁb%@M&J

veV
<> ifvenPuv?] = ]Ng> v =UB(S)

veV

C. Upper Bound for the Copeland Score

We construct a non-negative, non-decreasing, submodular
upper bounding function for the Copeland score in a similar
way as in § under the constraint that no user has equal
opinion values about any two candidates at the time horizon.
Notice that this constraint does not change the definition of
the Copeland score (Eq. [5) in any way; rather, whether this
constraint holds or not depends on the input dataset, the seed
set, and the time horizon. We enable sandwich approximation
via running Algorithm [If on F(S) and UB(S) only, and
we get 7 = 1 — 1/e in Eq. 0] As in § ensuring the
submodularity of UB(-) is one (not the only) way to enable
sandwich approximation. The construction of a useful lower



bound and the case when a user has equal preference to two
candidates at the time horizon are open for future work.

Definition 5 (Weakly Favorable Users Set). The weakly favor-

able users set, denoted by Uét), is the set of nodes (users) who
prefer cq to at least one other candidate at the time horizon
t, even without having any seed for c,. Formally,

Uét) = {U eV: bgﬁ,) > min b;i)}
ca €C\{cq}

Since the Copeland score computes the number of one-on-

one competitions won by ¢, only those users who prefer ¢, to

at least one other candidate, i.e., those in Uq(t), can contribute

to this score, along with those users who could be influenced

by the seed set, i.e., those in Nét). Thus, Uét) and Ng’) are
used to construct an upper bound as below.

Definition 6. The upper bounding function UB(S) for the

Copeland score F(S) is defined as the total number of users

either in the weakly favorable users set or in the reachable

users set, times the ratio of the number of non-target candi-
dates to one more than half the total number of users.

UB(S) =

(14)

—1
77;J I NGO uu® (15)

E;
Correctness Guarantee. We show that UB(S) is a non-
negative, non-decreasing, submodular upper bound for F'(.S).
The proof, similar to that of Theorem [6] is given in [35].

Theorem 7. UB(S) is (1) non-negative, (2) non-decreasing,
(3) submodular, and (4) an upper bound for F(S).

D. Practical Effectiveness of Our Bounds

We empirically study the ratio % (see [35] for details),
since sandwich approximation ensures an approximation factor
of at least UFéng) (1 — é) according to Equation (9] On all our
Twitter datasets (see § for details), the ratio reaches 0.7
in 90% of the trials, and in about 60% of them, it exceeds
0.8 for both the plurality and Copeland scores. This results in
an empirical approximation factor of at least 0.8(1 — 1/e) ~
0.51 in more than half of our trials. In practice, our algorithm
performs much better than several baselines (§ [VIII).

The greedy algorithm for finding Sty is much faster than that
for computing Sy (Algorithm [T, since it does not involve any
expensive opinion computation. Meanwhile, Sy, is obtained via
greedily maximizing the cumulative score on Vq(t) (Definition
3), which is also much faster, since (1) “/q(t)’ < V] in
practice, and (2) the greedy algorithm for the cumulative
score is much faster than that for the other scores (§ [VIII-C).
Empirically, the running times for finding Sy and S, are about
2% and 5%, respectively, of that for finding Sp.

V. EFFICIENT RANDOM WALK-BASED ESTIMATION

The greedy framework (Algorithm [I) has time complexity
O(ktmn) via inefficient direct matrix-vector multiplication
(§ [M-C). In this section, we first introduce a random walk
interpretation for the opinion value of any node at any times-
tamp (§ [V-A). Next, as our novel contribution, an efficient
random walk-based method with a smart truncation strategy
is designed to estimate the marginal gain (§ [V-B). Finally, we

establish novel quality guarantees of the proposed method for
all our voting-based scores (§ [V-C).
A. Random Walk Interpretation

As the influence matrix W, is column-stochastic for any
candidate c,, the probabilities on the outgoing edges of each
node add up to 1 in the reverse graphE] This enables the
following Direct Generation of t-step random walks with seed
set S. (1) Each node v in the reverse graph has a termination
probability dg, [S] € [0, 1] that is equivalent to its stubbornness
(recall that d,,[S] =1 if v € S and dg,[S] = dgv otherwise),
and the probabilities on its outgoing edges add up to 1. (2) If
a random walk is at node v in the current step, it terminates
at v with probability dg,[S]. Otherwise, it proceeds to an out-
neighbor of v chosen according to the edge probabilities. (3)
From a start node u, we repeat step (2) to generate a random
walk. It terminates when step (2) has been conducted ¢ times,
or the walk stops early (i.e., before reaching length t) at a
node due to the termination probability. (4) If the random
walk terminates at node v, then the node u at time ¢ adopts
the initial opinion of node v: Xéz) [S] = bé%) [S]. We show that
the expected opinion value of any node u at any time ¢ when
serving as the start node of the above reverse random walk is
the same as the exact opinion value of u at time ¢ computed
by matrix-vector multiplicationE]
Theorem 8. For any t > 0 and seed set S, the expected

value of the estimated opinion Xéz) [S] of any user w about

any candidate c, at timestamp t using a t-step reverse random
walk by Direct Generation is equal to the exact opinion of u
about cy at timestamp t according to the FJ model. Formally,

E [X{[s]] = b{l1s] (6)
B. The Algorithmic Workflow

We estimate the opinion of every user v about any candidate
cq at time t by generating ), independent t-step reverse
random walks starting from v. The estimated opinion of node
v about candidate ¢, is computed as the average of the initial
opinions of the end nodes across all A, random walks. The
seed set is generated greedily as in Algorithm [T} In Line [3]
we select the best new seed based on the maximum estimated
marginal gain instead of the maximum actual marginal gain. In
each iteration, given the previously selected seed set S* for ¢,
we need to compute the marginal gain of including a candidate
seed node w into S*, and hence the estimated opinions with
the new seed set. The Direct Generation approach would
require the generation of new walks with the new seed set,
which would be expensive. Thus, we use an alternative Post-
Generation Truncation technique as follows: Before running
Algorithm [} we generate (only once) A, random walks from
each node v using the same approach as in § but with
the empty seed set. Thereafter, for any given seed set .S, the

4The reverse graph has the same set of nodes and edges, but with edge directions
reversed. The weights on the edges, now interpreted as probabilities, remain the same.

SRandom walks for approximating matrix-vector multiplication are employed in [33]
and in PageRank [32], albeit with subtle differences from ours. While [32], [33] require
a one-time estimation of the vector entries, we do so in an efficient way for k iterations
of the greedy algorithm. Also, the quality guarantees required are different from [32],
[33] and specific to each voting-based score (more details in [35]).



estimated opinion Y}](ﬁ) [S] for a given walk is the initial opinion
of the end node of the walk truncated at the first occurrence of
a node from S. The overall estimated opinion bffy) [S] of v is
the average of Yq(qf) [S] across all A, walks from v. The above
approach is clearly more efficient since it does not involve
regenerating random walks for each seed set. It also does not
introduce any further error, since the estimates Yq(,f) [S] satisfy
the same property as Xéf)) [S] in Theorem |8 as shown below.

Theorem 9. For any t > 0, any node u and any seed set S,
let Yq(qﬁ) [S] denote the estimated opinion of u about c, at time
t by the Post-Generation Truncation approach, i.e., the initial
opinion of the end node of the resultant random walk after
initially sampling a t-step reverse random walk starting from
u without any seed and then truncating the walk at the first
occurrence of a node in S. Then

E [v{)15]] = bi218] (a7)

Time Complexity. For the target candidate, the generation
of t-step reverse random walks starting from all nodes takes
@) (t D vev )\v) time. First, we analyze the time complexity
of finding the top-k seed nodes for the cumulative score via
random walk-based estimation. In each iteration, as detailed
in [35], choosing the next seed node w scans all the random
walks once and takes O (¢, ., Ay) time. Next, all walks
containing w are truncated at w for the subsequent iterations.
This step also takes O (t Y vy )\v) time. As the entire process
is repeated k times (to find the top-k seed nodes), the running
time of the seed selection phase is O (kt >, oy Av)-

For plurality and Copeland scores, we additionally compute
the exact opinion values of each user about all other candidates
at time ¢ via direct matrix-vector multiplication, taking an ad-
ditional O ((r — 1)tm) time. Thus, the overall time complexity
for these scores is O (kt >, oy Ay + (7 — 1)tm). Practically,
thanks to the sparseness of the matrices, the dominant term is
the first one due to the seed selection phase.

C. Accuracy Guarantees

Cumulative Score. The cumulative score aggregates the opin-
ion values of all users about a target candidate c,. We provide
a probabilistic accuracy guarantee about the estimated opinion,
which follows from Hoeffding’s inequality, as shown in [35].

Theorem 10. Given 6,p > 0, if A, > 55z In (%p) for any
node v the following holds with probability at least p:

bS] — b [5]( <6 (18)

Plurality Score. Each user contributes a binary value (0/1) de-
noting whether she ranks c, as the highest or not. Theorem E]
ensures that, with a high probability, our approach correctly
estimates this contributed value.

Theorem 11. Given a user v and a seed set S for can-

didate cq, let v,[S] = ming cc\ e} ‘bz(fv) —bétv) S, A >

m In (1%,;) Assume v, [S] # 0. Then, with probability

at least p, the following holds:

max
ca€C\{cq}

max

1[31s] > | =1 o1 > e 2] a9
x q

In each iteration of Algorithm [I] the estimation of the
opinion of user v about ¢, involves an average over A, random
walks. However, the quantity 7, [S] in Theorem [L1]depends on
the seed set S for candidate ¢,. For a given S, 7,[S] can be
computed exactly via matrix-vector multiplication. But since
S differs from iteration to iteration (specifically, one node is
added in each iteration), a value of +,[S] (and hence A,) that
works well in one iteration may not work well in another
iteration. As we generate random walks right in the beginning
and reuse them for the subsequent iterations, a value of ~,[S]
that works well in all iterations is: v, = mingcy . |gj<k Yo[S]-
However, efficiently computing the minimum over all seed
sets S of size at most k is challenging. Thus, we estimate it
heuristically using a greedy approach. Starting with S = ), we

first estimate the opinion of user v about ¢, by averaging over

o random walks; o could, for example, be set to 74> In (%

in order to guarantee that, with probability at least p, each
estimate differs from the true value by at most . Once these
estimates are found, we can estimate v, [S] as 4, [S]. After this,
we repeatedly add to .S that node which minimizes the new
v [S] computed using the newly estimated opinion values. The
repetition stops once |S| = k or there is no decrease in 7, [5],
at which point we return 4, [S] as our estimate of .

Copeland Score. This score denotes the number of candidates
against whom the target candidate wins in one-on-one compe-
titions. Thus, we need the one-on-one winner to be predicted
correctly (with high probability) using the estimated opinions.

Theorem 12. Given a user v and a seed set S for candidate
g let 7, [S] = ming ec\{e,} ‘b,(,tv) — b{(ﬁ,) [S] ‘ Suppose v, S| #
0 and N, > m In (ﬁ) Then the following holds with
probability at least p for any cg # cq.

1 [Ef;ij [S] > bggg] -1 [bffv) [S] > bgg] (20)

VI. SKETCH-BASED ESTIMATION

Random walk-based approximation (§ requires the gen-
eration of reverse random walks starting from all nodes,
which could still be expensive. In this section, we further
propose a more efficient reverse sketching-based approxima-
tion technique. Notice that reverse sketching was used earlier
in influence maximization (IM) [34], [7], [3]. We are the
first to prove that the real-valued opinions in the FJ model
can be estimated via reverse sketching and use it for opinion
maximization. Moreover, our sketches (i.e., walks) are simpler
and less memory consuming than the ones based on RR-sets
(i.e., BFS trees), used in the classic IM.

A. The Algorithmic Workflow

We repeat the following 6 times independently: Generate
Ay t-step reverse random walks starting from a node v chosen
uniformly at random. We refer to the set of generated walks as
the sketch set. These sketches are similar to the tree-structured
sketches used in the classic IM [34]], [[7]], [3] (see full version
[35] for an intuition and formal proof). However, our sketches
are walks, which are simpler and less memory consuming.



The opinions and the corresponding voting-based scores are
estimated with the sketch set, as detailed in § [VI-B] The greedy
seed selection workflow remains the same as in Algorithm
Time Complexity. The main difference between the
sketching-based estimation method (§ and the random
walk-based estimation method (§ is the total number
of nodes from which we need to generate random walks.
Therefore, the running time of random walk generation is
reduced to O (t% > vev Av), and the running time of the seed
selection phase is reduced to O (kt2 3" 1, A,).

For the plurality and Copeland scores, the computation of
the opinion values of each user about all other candidates
takes an additional O ((r — 1)¢m) time. Thus, the overall time
complexity is O (kt£ 3", Ay + (r — 1)tm).

B. Accuracy Guarantee for the Cumulative Score

We discuss the number of sketches (6) required to ensure
that F(BW[S],¢,) is a good estimate of F(BM[S],¢c,). Let
v; denote the j th sampled node, i.e., the start node of sketch 7,
j € [1,6]. Denoting by b, [S] the average of Yoi)[S] (§ [V-B
across all )\Uj random walks from v;, the estimated cumulative
score is defined as:

0
F(BYISe,) = 5 > 0 [8]
j=1

Let OPT be the maximum cumulative score for any size-k
seed set. As shown in [35], we can derive the following.
Theorem 13. If 0 is at least

oz - ) () e ()]
2)

(
our algorithm returns a (1 — 1/e — €)-approximate solution

S*, with probability at least 1 — n~"'. More formally,

Pr (F (B“)[s*],cq) > <1 - % - e) OPT> >1- %

Since the above holds for any value of \,, we set A\, =
1 Vv e VE] OPT in Equation is estimated in a similar
way (with similar accuracy guarantees) as Algorithm 2 in [3]].
C. Heuristic Estimation of 0 for the Other Scores

While theoretical bounds on 6 for the plurality and Copeland
scores can be derived analogously (see the extended version
[35]), we find them to be not so effective: (1) From the
inequalities obtained in the theoretical guarantees, it is difficult
to compute a closed-form expression for 6; (2) The sandwich
approximation factor is smaller than (1 — 1/e) (§ [[V-D);
coupled with the approximation via sketches, the overall ap-
proximation factor is even smaller. Instead, we use a heuristic
method to compute the optimal value of 6. Note that our
sketch-based method is more efficient than our random walk-
based approach only when 6 < n. For a given dataset and
score, we empirically find the smallest & when that score
converges (for some k and t). This one-time estimate of 6 can
be re-used on the same dataset and score, even with different

@n

(23)

6Although Ay = 1 could result in a very inaccurate estimate i;((ztv) , we sample 6
start nodes (not necessarily distinct) uniformly at random; thus, it is sli’il likely that the
number of walks from a particular start node is more than 1. By ensuring that € is large

enough, our overall cumulative score estimate is very accurate with a high probability.

number of seeds (k) and time horizon (f) as inputs, since
we find such an estimate to be less sensitive to k£ and ¢. In
§ we demonstrate that the above mentioned heuristic
estimation of 6 produces good-quality results.

VII. RELATED WORK

Opinion Manipulation. [49], [50], [51] consider network
modification to enable (or prevent) opinion consensus (or
convergence). [52] proposes strategies for manipulating users’
opinions with the voter model. Opinion maximization with
the voter model is considered in [53]], [54]], [29]. Conformity,
an opposite notion of stubbornness (used in the FJ model),
measures the likelihood of a user adopting the opinions of her
neighbors. Conformity-based opinion maximization has been
studied in [55], [30], albeit in a single-campaign setting. [25l],
[26] study seed selection for opinion maximization in a single-
campaign and without a given finite time horizon (details in
[35]). To the best of our knowledge, (a) we are the first to
bridge two different disciplines: (1) seed selection for opinion
maximization at a finite time horizon and (2) voting-based
winning criteria with multiple campaigners. Moreover, (b) we
are the first to design random walk and sketch-based efficient
algorithms, with theoretical guarantees, for DeGroot and FJ
model-based opinion maximization.

Recall that the cumulative score, due to its aggregate nature,
is independent of the other campaigns; thus it is similar to [25]].
Hence, the greedy algorithm in [25], with proper modifications
(e.g., adapted for a finite time horizon), would become similar
to our Algorithm [I] via direct matrix-vector multiplication
for the cumulative score. Regarding this score, however, we
make the following novel contributions: (a) our NP-hardness
and submodularity proofs for the cumulative score (those in
[25] cannot be trivially extended to our case with any finite
time horizon); (b) our random walk and sketch-based efficient
algorithms, with theoretical guarantees, for the cumulative
score (more efficient than the greedy algorithm in [23]]).

Other Opinion Diffusion Models. Opinion diffusion has been
investigated both from network science and statistical physics
[S6], [S7] perspectives, and via discrete and continuous mod-
els. In discrete models, an individual opinion is confined to be
one of several integers; examples include the voter model [58]],
Axelrod model [59], Sznajd model [60], majority rule models
[61], [62], and social impact theory [63]. For instance, in the
voter model, at each timestamp, a node chooses a random
neighbor and adopts the state (i.e., preference for a certain
candidate) of this neighbor. In contrast, continuous models,
including DeGroot [19] (the classic model) and its extensions
— FJ [20], [21]], Deffuant [64], bounded confidence (BC) [65]
and HK [66] models, permit opinions to be real numbers. As
such, continuous models are well-suited to be integrated with
voting-based winning criteria in a multi-campaign setting.

VIII. EXPERIMENTAL RESULTS

We perform experiments to analyze the accuracy, efficiency,
scalability, and memory usage of our methods. Our code [67]
is executed on a single core, 512GB, 2.4GHz Xeon server.



TABLE III
CHARACTERISTICS OF OUR DATASETS
Name || #Nodes #Edges #Candidates
DBLP 63910 2847120 2
Yelp 966 240 8815788 10
Twitter_US_Election 2246 604 4270918 4
Twitter_Social_Distancing 3244762 4202083 2
Twitter_Mask 2341769 3241153 2

A. Experimental Setup

Datasets. We obtain five directed graphs from three real
sources (Table [[). (1) DBLP [68] is a well-known collabo-
ration network. Nodes are users and edges are co-author rela-
tions. We only consider senior researchers who have published
at least 50 papers. (2) Yelp [69] is a network of users who
review businesses. Nodes are users and edges are friendships.
We generate a graph based on restaurant-related records. (3)
Twitter is a social network. Nodes are users and edges are
re-tweet relationships. We generate graphs from 24M tweets
(Jul. 1 to Nov. 11, 2020) related to US elections [70], and 75M
tweets (Mar. 19 to Oct. 5, 2020) related to two topics (“Social
distancing” and “Wear a mask”) about COVID-19 [71].
Candidates. (1) DBLP. We consider the candidates for the
post of President in the ACM general election 2022, i.e.,
Yannis E. Ioannidis and Joseph A. Konstan. (1) Yelp. We
use the restaurant categories as candidates, e.g., American,
Chinese, Italian, etc. (2) Twitter. The political parties (Demo-
cratic, Republican, Green, Libertarian) are the candidates in
Twitter_US_Election. For each of the topics related to COVID-
19, people may tweet for or against it. These two stand-
points are the candidates in the respective Twitter COVID-19
datasets. Without loss of generality, we consider the following
default target candidates for the respective datasets: “Joseph
A. Konstan”, “Chinese Restaurant”, “Democratic Party”, “For
Wearing a Mask”, and “For Social Distancing”.

Edge Weights. Intuitively, for each category in Yelp, if user v
visits a restaurant within one month of her friend u (called a
common visit), we say that v influences v. Also, more common
visits implies higher influence, and hence a larger edge weight.
Thus, the edge (u,v) is assigned a weight of 1 — e~/# [72],
where a is the number of common visits. We set p = 10
by default (details given in [35]). Similarly, we obtain edge
weights (1) using the co-authorship counts for DBLP; and (2)
using the number of retweets of a user pair for the Twitter
datasets. Finally, we normalize the edge weights such that the
incoming weights of each node add up to 1.

Initial Opinion Values. (1) DBLP. A user’s initial opinion is
computed as the cosine similarity between the embeddings
(obtained using SpaCy [73]) of her papers to those of a
candidate. (2) Yelp. We use the average rating of a user
towards a category as the initial opinion value. (3) Twitter.
We set the average sentiment score (computed using VADER
[74]) of each user about each candidate as her initial opinion.
All the initial opinion values are normalized to [0, 1].

Stubbornness Values. (1) DBLP (resp. (2) Yelp). We set the
stubbornness value of a user to 1 minus the variance of her
yearly (resp. monthly) average opinions (as above), since a
stubborn user is less likely to change her opinion about a

TABLE IV
CASE STUDY ON THE ACM GENERAL ELECTION 2022: DOMAINS
OF ACTIVITY OF THE TOP-10 SEEDS

Top-10 Seeds and their distribution across domains

Domain in which they influence the most

Data Management
(DM)
Human-Computer
Interaction (HCI)
Machine Learning (ML)
Computer Networks
CN)

Algorithms (AL)
Software (SW)
Hardware (HW)

Jiawei Han, Victor Leung, Philip Yu, Witold Pedrycz,
Lei Zhang, Athanasios V. Vasilakos, Dusit Niyato
Yoshua Bengio, H. Vincent Poor, Lei Zhang,

Dusit Niyato

Yoshua Bengio, Philip Yu, Witold Pedrycz, Jiawei Han
H. Vincent Poor, Dusit Niyato, Luca Benini,

Victor Leung, Lei Zhang

Athanasios V. Vasilakos, Witold Pedrycz

Luca Benini

Luca Benini, H. Vincent Poor

candidate. (3) Twitter. Since most users have only 1 tweet, we
assign stubborness values uniformly at random in [0, 1].
Methods Compared. We find the best seed set by (1) Direct
Matrix Multiplication (DM) via the greedy framework, cou-
pled with CELF optimization [48]. (2) Random Walk Sim-
ulation (RW) and (3) Reverse Sketching (RS) methods are
implemented for better efficiency, with accuracy guarantees.
We compare them with (4) Independent Cascade (IC) and
(5) Linear Threshold (LT) models-based seed selection, both
coupled with IMM [3], considering only the edge weights,
and assuming that a user has only one chance to accept or
reject a candidate. In addition, we also compare against the (6)
Greedy algorithm in [23] for opinion maximization, adapted
for a finite time horizon, which is denoted by GED-T. Other
baselines include seed selection via (7) PageRank score
(PR) (based on the intuition that more frequently reached
nodes in a random graph traversal are more likely to influence
other users), (8) Random Walk with Restart (RWR) [23]]
and (9) Degree Centrality (DC). All baselines differ only in
the seed selection methods. All of the returned seed sets are
evaluated in the same multi-campaign setting with the same
diffusion model and scores as in § [l We could not compare
against [26] since their algorithms only work for small graphs
and require more than 512GB memory on our datasets.
Parameters. (1) Seed set size (k). We vary k from 100
to 2000. In § k is set to 100 by default. (2) Time
horizon (t). We vary ¢ from O to 30 steps (default: 20 steps).
(3) Random Walk Simulation. We vary p from 0.75 to 0.95
(default: 0.9). § is set to 0.1. (4) Sketches. We vary € from
0.05 to 0.3 (default: 0.1). [ is set to 1 following [3l].
Performance Metrics. (1) Accuracy. We report the cumula-
tive, plurality, and Copeland scores (§ of the seed sets
returned by each method. (2) Efficiency. We report the running
time of each method to find the best seed set.

B. Case Study: ACM General Election 2022; DBLP Dataset

We observe that after including only the top-100 seeds,
the number of users favoring our target candidate Joseph
A. Konstan will significantly increase from 13990 (21.8%)
to 46433 (72.7%), which might have reversed the election
result. We select 7 frequent domain{] for the users who change
their preferred candidates, and show the top-10 seeds and the

7We assume that a user may belong to at most 3 domains based on the
frequencies of several keywords in the titles of their publications. The selected
keywords for each domain can be found in our extended version [35]].
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(a) Without Seeds
Fig. 6. Case study on the ACM general election (k = 100, t =
20). The size of each circle denotes the population of users in each
domain, while darker colors denote higher percentages of users who
vote for the target candidate (Joseph A. Konstan).

(b) With Seeds

domains in which these seeds influence the most (Table [[V).
Figure [6] visualizes the domain overlaps and the percentage of
users voting for our target candidate Joseph A. Konstan. Notice
that a seed user may influence users from several domains.
As DM is a common domain of both candidates, 7 out of
the top-10 seeds are also active in the DM domain. Only 1-
2 seeds are from the SW and HW domains, since (1) the
users in the SW domain already favor our target candidate
more based on their initial opinions (thus introducing seeds
who can influence users in this domain is not that useful); (2)
the HW domain does not overlap with the DM domain. The
number of seeds who influence the HCI, ML, and CN domains
are higher, because (1) these domains have larger populations;
(2) these domains have large overlaps with DM; and (3) the
users in these domains initially prefer the competitor (Yannis
E. loannidis) more, thus introducing seed nodes who can
influence users in these domains is more helpful. Furthermore,
we investigate the average distance between the candidates and

those users who change minds after introducing the seeds.
14.5% of them are closer to the target candidate, and 10.2%
of them are closer to the competitors (about 2 hops away). The
majority of these users (75.3%) are almost equidistant from
both candidates (more than 3 hops away). This demonstrates
that our solution focuses more on affecting the neutral users
whose preferences are usually easier to switch.

C. Performance Analysis

Accuracy. Our proposed methods outperform the baselines in
all voting-based scores (Figures B3] (a-c)), with the exception
of our DM vs. baseline GED-T for the cumulative score.
The scores increase with the number of seeds k, and the
growth rates are higher when k is small. For the plurality
and Copeland scores, the proposed methods outperform the
baselines more significantly. For example, in Tivitter_Mask, the
best baseline DC reaches up to 70% of RW with the cumula-
tive score, while it attains only 50% of RW with the plurality
score (the actual score difference is nearly 100K users, which
can lead to a significant impact in, e.g., an election’s outcome).
The classic IMM algorithm coupled with the IC and LT models
performs poorly with voting-based scores, as does GED-T,
since their seeds maximize different objective functions. Recall
that GED-T is the greedy algorithm for opinion maximization
[25]], adapted for a finite time horizon. The cumulative score,
due to its aggregate nature, is similar to opinion maximization
in the single campaign setting; thus DM and GED-T perform
the same for the cumulative score (only).



TABLE V
MINIMUM SEED SET SIZES ACHIEVED BY OUR PROPOSED METHODS FOR
THE TARGET CANDIDATE TO WIN W.R.T. THE PLURALITY SCORE

Dataset || DM | RW | RS
Twitter_Mask 17 21 24
Twitter_Social_Distancing 69 71 74
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Fig. 7. Cumulative score, seeds finding time vs. time horizon ¢; Yelp

Efficiency. The running time of RW remains nearly the same
for different k& (Figures (d)), while that of RS increases
slightly with k. For RW, we generate a fixed number (inde-
pendent of k) of random walks starting from each node (The-
orem ; while for RS, we generate walks from # randomly
sampled nodes (Theorem [13). A larger k does not necessarily
increase 6 as (1) OPT in the denominator increases with k;
2) (;’) in the numerator also increases with k. Moreover, the
random walk generation dominates the running time of both
RW and RS. The running time of DM increases linearly with
k, since it applies matrix-vector multiplication in each of k
iterations. The running times for the plurality and Copeland
scores are higher than those of the cumulative score, but follow
the same trend. Among our proposed methods, RS is the most
efficient and has accuracy comparable to the others. Therefore,
we recommend RS as our ultimately proposed method. Notice
that RS is about two orders of magnitude faster than GED-T
even for the cumulative score.

Minimum number of seeds for the target to win. As
discussed in § we can adapt our methods to find the
minimum number of seeds for the target to win. Table [V]shows
these values for our three proposed methods. For a “more
approximate” method, the seed sets are “less optimal”, and
hence the minimum number of seeds required is larger.

D. Parameter Sensitivity Analysis

Impact of t. Figure|7|shows that the cumulative score remains
nearly the same after timestamp 20 for all the proposed
methods. This happens for RW and RS slightly quicker than
DM. Thus, we set time horizon ¢t = 20 as default in the rest
of the experiments. The running time of DM is more sensitive
to ¢ than those of RW and RS, because we need to conduct
exactly ¢ rounds of matrix-vector multiplication in DM; while
for RW and RS, random walks often have length less than ¢.
Impact of 6 for the Plurality and Copeland scores. We
heuristically analyze how these scores vary with 6 (§ [VI-C).
Recall that RS is more efficient than RW only when 6 <
n. For a specific dataset and score, we empirically find the
smallest # when that score converges (for some k and t), which
is 219 for Twitter_Mask with the plurality score (Fig. ) and
215 for Yelp with the Copeland score (Fig. [9). Both values are
smaller than the respective n. Moreover, this estimate can be
reused on the same dataset and score, even for different k£ and
t, since it is less sensitive to k and ¢, as shown in Figs.

o
<
IS
<

=10 4 =20 5~

k=100 —4¢— k=500 —=}-k=1000
M = =autll

Plurality Score
Plurality Score

o

.9M
27 29 211 213 215 217 219 221

o

.9M
27 29 211 213 215 217 219 221

0 0
(a) Varying seed set size, k (b) Varying time horizon, t
Fig. 8. Plurality score vs. 0; Twitter_Mask

10 k=400 —>¢— k=800 ——}k=1600

28 {1
87
§6[W‘

27 29 211 213 215 217 219 221

=)

t=10 ¢ t=20 -

—

Copeland Score

® N ® ©

27 29 211 213 215 217 219 221

[¢] [¢]
(a) Varying seed set size, k (b) Varying time horizon, ¢
Fig. 9. Copeland score vs. 6; Yelp

o
El

DM =%~ RW 4=~ RS & 10°F DM > RW - Rs

M 2105[3/5’5’8—6_{]
o S
;585 gmsw

£

Q

; =10

05M 1M 15M 2M 25M 3M 05M 1M 15M 2M 25M 3M
#Nodes #Nodes

(a) Seed set finding Time (b) Memory Usage
Fig. 10. Seed set finding time and memory usage for the cumulative
score vs. graph size; Twitter_Social_Distancing

o
>

Q

Running Time (sec)
> >
N 2

E. Scalability and Memory Usage

We test the scalability and memory usage of our algorithms
with different graph sizes. The Twitter_Social_Distancing
graph has about 3.2M nodes; we generate six graphs by
selecting 0.5M, 1M, 1.5M, 1M, 2.5M, 3M nodes uniformly at
random, and apply our algorithms on the subgraphs induced by
them. Figure demonstrates that the running times of RW
and RS increase almost linearly with the number of nodes (the
y-axis is logarithmic), which confirms good scalability of our
algorithms. The running time of DM increases polynomially
— it has cubic growth with n (§ [[II-C).

DM consumes the least memory (Figure [I0(b)) since it only
stores the edge weights, initial opinions, and stubbornness
values. RW and RS further store random walks (RW far more
than RS). Our ultimately proposed method, RS, consumes
only a few GB for the Twitter_Social_Distancing dataset.

IX. CONCLUSIONS

We formulated and investigated the novel problem of opin-
ion maximization in a social network, coupled with voting-
based scores. We proved that our problem is NP-hard and
non-submodular. To solve the problem, we employed the well-
known Sandwich Approximation, under which we proved
that the greedy algorithm can still provide approximation
guarantees to our objectives. Since exact opinion computation
via iterative matrix-vector multiplications is inefficient, we
proposed random walk and sketching-based opinion computa-
tions, with theoretical approximation guarantees. Experimental
results validated the effectiveness and efficiency of our pro-
posed algorithms. Considering both accuracy and efficiency
results, we recommend the sketching-based approach RS
as our ultimately proposed method. In the future, we shall
consider more opinion diffusion models and voting scores.
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