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Abstract—In a wide array of disciplines, data can be modeled
as an interconnected network of entities, where various attributes
could be associated with both the entities and the relations among
them. Knowledge is often hidden in the complex structure and at-
tributes inside these networks. While querying and mining these
linked datasets are essential for various applications, traditional
graph queries may not be able to capture the rich semantics
in these networks. With the advent of complex information
networks, new graph queries are emerging, including graph
pattern matching and mining, similarity search, ranking and
expert finding, graph aggregation and OLAP. These queries
require both the topology and content information of the network
data, and hence, different from classical graph algorithms such as
shortest path, reachability and minimum cut, which depend only
on the structure of the network. In this tutorial, we shall give
an introduction of the emerging graph queries, their indexing
and resolution techniques, the current challenges and the future
research directions.

I. INTRODUCTION

Recent advances in social and information science have
shown that linked data is pervasive in the natural world
around us [1]. Examples include communication and computer
systems, the World Wide Web, online social networks, bio-
logical networks, transportation systems, epidemic networks,
chemical networks, and hidden terrorist networks. All these
systems are networked systems, in which individual compo-
nents interact with a specific set of components, resulting in
massive, interconnected, and heterogeneous networks.

Given a network modeled as graph, there have been several
types of commonly used, classical queries, such as shortest
path [2], [3], reachability [4], subgraph isomorphism [5],
PageRank [6], influence maximization [7], [8], [9], [10] and
graph clustering [11]. These queries, nevertheless, depend only
on the graph structure, and thus may not be capable to capture
the rich semantics associated with nodes, edges and structures
in the network graph. With the advent of complex information
networks, novel graph queries are emerging, which combine
both the contents and topology information of the graph. Typ-
ical examples of these queries include graph pattern matching
[12], [13], [14] and mining [15], [16], [17], similarity search
[18], [19], [20], anomaly detection [21], graph skyline [22] and
OLAP [23], ranking and expert finding [24], [25], keyword
search [26], [27], and graph aggregation [28], among others.
To answer these queries efficiently, novel graph databases and
graph query processing systems are also proposed, e.g., Neo4j
[29], Pregel [30], SPARQL [31], Trinity [32] and GBase [33].

The emerging novel queries on graph database raises several
challenges. First, unlike the traditional graph queries as men-
tioned earlier, the emerging queries integrate both the structure

and attribute information of the network. Hence, traditional
algorithms and techniques may not directly apply. Second,
when graphs become complex and large, scalability becomes
an issue. For example, the online social network Facebook
includes more than 300 million users. As such, algorithms
for even simple reachability queries may not scale well, as
observed in [4]. Third, due to the lack of fixed schema, missing
type information, as well as the incomplete knowledge about
the structure and contents of the real life information networks,
it might be infeasible to use conventional SQL or SPARQL
framework to answer these queries.

These new challenges require the development of novel
query evaluation algorithms as well as efficient indexing rou-
tines for fast graph data access. In earlier tutorials [34], [35],
Faloutsos et. al. discussed large graph mining using matrix
based methods. In [36], Han et. al. systematically introduced
data mining and knowledge discovery algorithms for informa-
tion networks including graph clustering, ranking (RankClus
and NetClus), SimRank, PageRank and graph OLAP. Apart
from these, in this tutorial we present an overview of the
following novel graph queries - graph pattern mining and
matching, similarity search, keyword search and graph skyline.
Our tutorial, while covers a part of various emerging graph
queries, intends to give a first impression on their challenges
and solutions, as well as several related future topics.

II. TUTORIAL OUTLINE

A. Overview

In this tutorial, we briefly overview of the following three
categories of emerging graph queries. (1) Mining queries,
which are to find all frequent subgraphs and patterns from
a large scale graph or a set of graphs. (2) Matching queries,
which are to find a given query graph or pattern from a target
network. (3) Selection queries. They are to identify the top-k
nodes in a target network based on various input criteria (i.e.,
SimRank, expert search, keyword search, graph skyline). The
basic difference between the matching queries and selection
queries is that, the matching queries have explicit structures
(e.g. query graphs); whereas the structure is implicit in the
selection queries (e.g. keyword search).

B. Mining Queries

Finding all frequent subgraphs and patterns is an active
research topic in data mining, with applications in online
recommendation, viral marketing and intrusion detection. We



introduce the following two types of mining queries.

Frequent subgraph mining. Efficient subgraph mining al-
gorithms have been proposed to discover frequent subgraphs
from a set of graphs, including AGM [37], FSG [38], gSpan
[15], followed by Path-Join, MoFa, FFSM, GASTON, etc.
Techniques were also developed to mine maximal graph
patterns [39] and significant graph patterns [40]. In the area
of mining a single massive graph, [41], [42], [43] developed
techniques to calculate the support of graph patterns, i.e., a
measurement for identifying frequent subgraphs where there
are overlapping embeddings in the graph. Kuramochi and
Karypis [41] proposed the maximum independent set as the
support of subgraphs, which is proved to have the downward
closure property by [43]. [44] proposed a support measure
that is computationally less expensive and often closer to in-
tuition than other measures. All these methods adopt subgraph
isomorphism testing as a way to count the support of graph
patterns in single or multiple graphs.

Frequent proximity pattern mining. Apart from the sub-
graph pattern mining, a novel concept of top-k proximity
pattern mining has been introduced in [16], where strict
isomorphism is not desired. Defined as a set of labels that
co-occur in neighborhoods, proximity pattern relaxes the rigid
structure constraint of frequent subgraphs, while introducing
connectivity to frequent itemsets. Proximity patterns have the
following three characteristics: (1) proximity, the labels in
a pattern appear close to each other in the network; (2)
frequency, the labels occur closely for several times in the
network; (3) flexibility, they are not always connected in
the same way. The third characteristic makes the proximity
patterns elastic enough to capture fuzzy patterns existing in
massive attributed graphs. For example, we may consider
a social network, where each node (i.e., user) is attached
with a set of labels (e.g., movies recommended by the user).
Now, the movies associated with two different users, who
have a friendship link, might also be related due to the
homophily property. Therefore, the top-k proximity patterns
among movies not only consider the collection of movies
watched by each user (which is a traditional itemset mining
problem); instead, they also consider the movies watched
by every user’s friends and friends of friends. In [16], the
authors proposed an information propagation model, called
Normalized Probabilistic Association to measure the proximity
among labels and used a modification of the FP-tree algorithm
to mine the top-k proximity patterns.

C. Matching Queries

Finding a query graph or pattern in a target network has ap-
plications in RDF query answering, network alignment, entity
name disambiguation and schema matching. We introduce the
following two types of matching queries.

Graph pattern matching. A graph pattern specifies certain
conditions in terms of both structure and labels (e.g., each edge
in the query pattern can be mapped to a path of maximum
length h in the target network). Therefore, the graph pattern

matching problem is to find all the matches for a given pattern
in a (usually large) data graph. The problem is typically
defined in terms of subgraph isomorphism (e.g., [45], [46],
[47], [48], [49]). This makes graph pattern matching NP-
complete, and hence, hinders its scalability in finding exact
matches. In addition, subgraph isomorphism may be restrictive
to identify patterns in emerging applications.

Another host of work focus on using regular expressions
to query graphs (e.g., UnQL [50] and Lorel [51]). There
has also been theoretical work on conjunctive regular path
queries (CRPQs) [52] and extended CRPQs (ECRPQs) [53].
The graph pattern matching problem is already NP-complete
for CRPQs, and is PSPACE-complete for ECRPQs [53].

Recent work in [12], [13], [14] aim to strike a balance
between expressive power of patterns and increased computa-
tional complexity incurred. The authors define graph pattern
matching in terms of graph simulation [54], to capture patterns
commonly found in practice in polynomial time. In [12], (1) a
richer class of graph pattern is defined, where an edge denotes
the connectivity in a data graph within a predefined number
of hops, and (2) the matching is defined based on a notion
of bounded simulation, an extension of graph simulation.
To capture the rich semantics of edge types in real life
graphs, [14] proposes a class of reachability queries and a
class of graph pattern queries, in which an edge is specified
with a regular expression of a certain form, expressing the
connectivity in a data graph via edges of various types.

A notion of weak similarity was addressed in [55], which
extends simulation by mapping an edge to an unbounded path.
Extensions of subgraph isomorphism were studied in [56],
[57], [58] for XML schema mapping and for Web site match-
ing, which also allow edge-to-path mappings, but are still
NP-complete. Bounded connectivity in graph patterns was
considered in [58]. Patterns of [58] impose the same bound on
all edges. To find matches, which remains NP-complete, [58]
explores joins and pruning techniques.

Incremental algorithms have proved useful in a variety of
areas [59]. However, few results are known about incremental
graph pattern matching, far less than their batch counterparts.
[14] investigates incremental algorithms for graph pattern
matching defined in terms of graph simulation [54], bounded
simulation [12] and subgraph isomorphism, with provable
performance guarantees.

Graph similarity search. Given an attributed network and a
small query graph, the graph similarity search problem is to
find the query graph in the target network. Unlike graph pattern
matching, graph similarity search (1) does not necessarily
identify all the matches, and (2) allows approximate matches
rather than exact matches, based on a specified similarity
measurement. The exact version of the problem is compu-
tationally hard due to the complexity of the inherent subgraph
isomorphism problem. One interesting approach follows the
framework of filtering-and-verification, which utilizes feature-
based indexes to filter out the negative results and generates a
candidate set containing some false positives. In the verifica-



tion phase, a precise computation is conducted to generate the
final results based on subgraph isomorphism testing. gIndex
[60] proposes a frequent subgraph based indexing technique.

Due to noise and the incomplete information (structure and
content) in many networks, there might not be any exact match
for a given query. Hence, it is more appealing to find the top-
k approximate matches. Tong et al. proposed G-Ray [48] that
tries to preserve the shape of the query graph by allowing some
approximation in the match. In [61], a neighborhood hash-
based linear time graph kernel has been designed for effective
similarity search. TALE [19] and SIGMA [62] algorithms
provide efficient indexing methods based on the number of
missing edges as the quantitative measure of approximate
matching. SAGA [18] identifies approximate subgraphs in a
graph database that are similar to the query, allowing for node
mismatches, node gaps, as well as graph structural differences.
In [20], the authors have introduced a novel graph similarity
measure by comparing the neighborhood of matched node
pairs. It supports both attribute and topology mismatches.

D. Selection Queries

Keyword search. Ranked keyword search queries [63], [26],
[27] in XML data identifies the top-k nodes that are close
to a given set of keywords. Keyword search on external
memory has been proposed in [64]. Kacholia et. al. proposed
bidirectional keyword search on graph datasets [65]. Li et
al. considers the problem of ranked keyword search over
probabilistic XML data [66]. We note that, in all these
state-of-the art keyword search problems, the keywords are
connected by only conjunctive operators. Therefore, a gener-
alization of the keyword search queries shall consider a series
of keywords connected by both conjunctive and disjunctive
operators. Besides, we might also consider negated keywords
in a query, e.g., find an actor who worked with one of the
directors, ‘Steven Spielberg’ or ‘James Cameron’, but was not
born in the ‘USA’. We shall introduce efficient techniques to
answer such queries.

Graph skyline. Given a set of multi-dimensional points, the
skyline query returns a set of points (referred to as the skyline
points), such that none of these points are dominated by any
other point in the dataset [67]. Skyline query over graph, first
proposed in [22], is still an emerging field of study. It may
have various interesting applications. For example, consider
the following query: find the top-k potential collaborators of
a query author from DBLP network. To answer this query,
we consider two orthometric criteria - distance from the the
query author and similarity with his/ her research interests.
Therefore, the problem can be formulated as a skyline query,
where the two dimensions are the distance from the query
author and the similarity with his/her research interests. We
introduce various algorithms to answer such graph skyline
queries efficiently.

III. GOALS OF THE TUTORIAL

A. Learning Outcome
Following are the learning outcomes from this tutorial:

• A brief overview of various kinds of graph queries
proposed in the past five years and the state-of-the-art
graph data management systems.

• Three types of emerging novel graph queries and their ap-
plications, which are significantly different from classical
graph algorithms and the relational algebra operators.

• Technical details about graph pattern mining and match-
ing, similarity search, keyword search and graph skyline
in the context of emerging graph queries.

• New challenges and future research directions in graph
query and graph database; e.g., to support these queries,
what will be the best graph storage system? Can we per-
form such queries in a distributed fashion with dynamic
load balancing? How to index a graph to answer these
queries faster? What are other interesting graph queries?

B. Target Audience

This tutorial is intended to benefit researchers and system
designers in the broad area of graph search, mining, storage
and processing that include but not limited to RDF query,
Web search, Ontology and Semantic Web, linked data, so-
cial/information networks, and NoSQL.
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