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I. EXTENDED ABSTRACT

Generating explanations for graph neural networks (GNNs)
is a crucial aspect to understand their decision-making pro-
cesses, especially for complex analytical tasks such as graph
classification [1]–[3]. Existing approaches [4]–[13] in this field
are limited to providing explanations for individual instances
or specific class labels. The main focus of these methods is
on defining explanations as crucial input features, often in the
shape of numerical encoding [14]. These methods often fall
short in providing targeted and configurable explanations for
multiple class labels of interest. Additionally, existing methods
may return large or an excessive number of explanation
structures, hence are not easily comprehensible. Moreover,
these explanation structures often lack direct accessibility and
cannot be queried easily, posing a challenge for expert users
who seek to inspect the specific reasoning behind a GNN’s
decision based on domain knowledge.

To address these limitations, there is a growing need for
more refined methodologies to explain the results of GNN-
based decisions. Such methodologies should aim at offering
“finer-grained” insights. Specifically, this would involve de-
veloping techniques that not only dissect the overall decision-
making process of the GNN, but also zoom in on how certain
features, nodes, or subgraphs contribute to specific classifica-
tions [14]. Moreover, enhancing the accessibility, configura-
bility, and queryability of these explanations is paramount.
Explanations should be presented in a user-friendly manner,
possibly through visualizations or interactive tools that allow
users to explore and interrogate the model’s decisions. Such
tools could enable other desirable capabilities such as high-
lighting critical substructures, providing interactive interfaces,
and allow tunable parameters for domain experts to “query”
the model about its decisions [15].

To this end, we propose GVEX [16], a novel framework that
generates Graph Views for GNN EXplanation. (1) We design
a two-tier explanation structure called explanation views. An
explanation view comprises a collection of graph patterns

along with a set of induced explanation subgraphs. Given a
database G of multiple graphs and a specific class label l
assigned by a GNN-based classifier M, lower-tier subgraphs
provide insights into the reasons behind the assignment of l
by M. They serve as both factual (that preserves the result of
classification) and counterfactual explanations (which flips the
result if removed). On the other hand, the higher-tier patterns
summarize the subgraphs using common substructures for
efficient search and exploration of these subgraphs. (2) We pro-
pose quality measures of an explanation view. Given multiple
class labels of interest along with user-specified configuration
parameters (e.g., specific sizes for each class label of interest),
we formulate an optimization problem to compute the optimal
explanation views for a GNN’s explanation. We show that the
problem is Σ2

P -hard. (3) We present two algorithms. The first
one adopts an explain-and-summarize approach, which begins
by creating high-quality explanation subgraphs that effectively
explain GNNs in terms of maximizing feature influence. Then
it proceeds with a constrained graph pattern mining step to
derive patterns [17], [18]. It is demonstrated that this approach
yields an approximation ratio of 1

2 . The second algorithm
works by processing an input node stream in batches in
a single pass to incrementally maintain explanation views,
ensuring an anytime quality guarantee with an approximation
ratio of 1

4 . Our algorithms exhibit good performance across
various graph types, including directed and undirected, sparse
and dense, with or without node features. They are effective
for both binary and multi-class classification tasks, in both
static and streaming settings.
Evaluation. Using real-world benchmark data from a variety
of domains and scales [19]–[22], we have experimentally val-
idated the effectiveness, efficiency, and scalability of GVEX.
GVEX-based methods outperform existing techniques in terms
of conciseness, explanability, and efficiency. GVEX is de-
signed to be “parallel-friendly” to manage graph instances at
million-scale, and graphs having millions of nodes and edges.
In particular, GVEX has the capability to handle both larger
individual graphs and a large number of graph instances in few



hours. Moreover, through detailed case studies in chemistry,
biology and social science domains, we demonstrate the po-
tential wide range of practical applications of GVEX. This is
particularly desirable for domain experts who seek for direct
and intuitive explanations.
Outlook and Future Potential. Explainability is a key factor
in the development of trustworthy artificial intelligence (AI)
systems, particularly in ensuring transparency and reliability
for interdisciplinary research [23]. To safely and trustfully
deploy deep neural models, it is critical to provide human-
intelligible explanations to end users and domain experts.
Transparent integration with human-in-the-loop and explain-
ability not only bolsters the reliability of AI applications,
but also facilitates greater acceptance and understanding
among users from diverse backgrounds. Our proposed GVEX
paradigm is an important step in this direction by supporting
user-friendly, interactive, and configurable explanations for
GNNs, thereby closing the gap between intricate AI models
and end users.
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