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ABSTRACT
Explaining the behavior of graph neural networks (GNNs) has be-
come critical due to their “black-box” nature, especially in the con-
text of analytical tasks such as graph classification. Current ap-
proaches are limited to providing explanations for individual in-
stances or specific class labels and may return large explanation
structures that are hard to access, nor directly queryable. In this
paper, we present GVEX [1] (Graph Views for GNN EXplanation) –
our system developed to offer user-friendly, interactive, and config-
urable explanations for GNNs based on graph views.

GVEX provides a configuration component to enable users to
easily select a desired number of important nodes from different
classes, thereby generating explanations tailored to multiple classes
of interest. Furthermore, GVEX generates high-quality explanation
subgraphs by identifying important nodes exploiting factual and
counterfactual properties and by computing their aggregated influ-
ence on the remaining nodes following the GNN message passing
paradigm. Lastly, GVEX performs a summarize step on top of lower-
tier explanation structures to generate higher-tier graph patterns
that offer direct access for users with (domain-aware) queries. Our
demonstration will highlight (1) a novel two-tier explanation struc-
ture called explanation views, consisting of graph patterns and a set
of explanation subgraphs, which provide high-quality explanations
for GNNs; (2) the system’s intuitive GUI facilitates user interac-
tion to configure personalized settings, e.g., classes of interest and
explanation size, and compare with other explanation algorithms;
(3) GVEX generates queryable explanations, making it easy for hu-
man experts to access and inspect with domain knowledge. Our
demonstration video is at: https://youtu.be/q9d7ldulIuQ.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Information
systems → Graph-based database models.
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1 INTRODUCTION
Graph classification is essential in a variety of real-world applica-
tions including drug discovery, text classification, and recommender
systems. Graph neural networks (GNNs) have demonstrated remark-
able potential in graph classification in many real-world domains.
However, generating high-quality explanations for GNNs is still a
challenging task, which prevents users from comprehending the
GNN mechanism. Given a GNN classifier M and a graph dataset
G, one wants to discover a critical fraction of G that is responsible
for the occurrence of specific class labels of interest, assigned by
the GNN M over G. Such explanations should (1) capture both
important features and structural information; (2) be queryable, mak-
ing it easy for human experts to access and inspect with domain
knowledge; (3) be configurable to enable users freely obtaining ex-
planations tailored to classes of interest and of specific sizes. These
explanations foster a more intuitive grasp of the model’s functional-
ity and its connection to human expertise.

We demonstrate the benefits of our GNN explaining system,
GVEX [1], considering the classification of chemical compounds
into “Mutagens” vs. “Nonmutagens”. Mutagenicity signifies a chem-
ical compound’s capacity to induce mutations. A GNN classifies
four graphs in Figure 1 into two groups with class labels, mutagens
and nonmutagens, respectively. A chemical analyst aims to inves-
tigate the specific reasons “why” certain graphs are identified as
mutagens, “what” crucial substructures could contribute to these
findings; however, the large quantity of chemical graphs makes it
difficult to directly analyze the GNN outcomes. We illustrate our
two-tier explanation structures referred to as explanation views, con-
sisting of subgraphs and patterns, and are analogous to graph views
[2]. (1) Lower-tier subgraphs explain the GNN’s classification mech-
anism and the crucial molecular substructures contributing to the
outcomes. They serve as both factual (that preserves the result of
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Figure 1: Our two-tier explanations for GNN-based drug classi-
fication. Subgraphs represent "lower-tier" structures. Patterns
represent "higher-tier" queryable structures. The three configu-
ration scenarios at the bottom indicate whether the user prefers
only one class or is interested in the nature of both classes.

classification) and counterfactual explanations (which flips the result
if removed). Additionally, we exploit the influence maximization
principle following the GNN message passing paradigm to quantify
the effectiveness of subgraphs. Next, the higher-tier patterns sum-
marize the details of subgraphs through constrained pattern mining
on lower-tier subgraphs for efficient search and comparison of these
subgraphs. (2) Such patterns can be suggested to the analysts for
further inspection, or be conveniently issued as graph queries for
downstream analysis, e.g., “which patterns occur in mutagens the
most frequently?”, “which patterns occur in both mutagens and
nonmutagens?” (3) Users have the flexibility to configure different
scenarios based on their preference for a single class or interest in the
characteristics of both classes, e.g., they want to understand repre-
sentative substructures that are discriminative enough to distinguish
mutagens and nonmutagens. For the mutagens label, 𝑁𝑂2 is a real
toxicophore (i.e., a pattern that indicates an increased potential for
mutagenicity) as verified by domain experts [3]. In contrast, users
find 𝑁𝐻2 as a common pattern in the nomutagens label. When users
attempt to understand both classes, GVEX presents the salient pat-
terns of both classes, shedding light on important patterns that occur
in this molecular dataset.

Previous GNN explaining tools [6] do not explicitly support con-
figurable and queryable explanation structures and are not optimized
to generate explanations for user-specific class labels of interest,
nor of specific sizes. In this demonstration, we will showcase how
we address the challenges associated with generating high-quality
and user-friendly explanations for GNNs. We achieve this through
our end-to-end GVEX system, which offers users convenient inter-
action features. By incorporating graph datasets and a user-defined
configuration as inputs from the frontend’s interaction components,
GVEX automatically loads the data into the backend. It initially
presents the visualization of the graph datasets along with their sta-
tistical information. Subsequently, it generates explanation views
by invoking the core algorithm (§3). Additionally, GVEX provides
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Figure 2: The architecture of the GVEX system.

statistical information on the explanation view and presents it graph-
ically, facilitating the analysis of real-world scenarios. Moreover,
our platform incorporates state-of-the-art GNN explainers for users
to evaluate and compare explanation results. To the best of our
knowledge, this is the first demonstration proposal on generating
user-friendly, interactive, and configurable explanations for GNNs.

2 SYSTEM OVERVIEW
We provide a comprehensive overview of our GVEX system. Fig-
ure 2 presents the architecture of GVEX and the interaction between
its frontend and backend. The frontend facilitates user interaction
for configuration settings and provides visualization of the input
graph data, output explanation views with statistical information, as
well as generated explanations using state-of-the-art algorithms. The
backend is responsible for node importance scoring, the verify oper-
ator, subgraph extractor, and the pattern generator. We implement
the frontend using Vue.js (https://vuejs.org/), while the backend is
developed with Flask – a micro web framework written in Python.

Node Importance Scoring module receives input graphs from
the graph database and employs a random walk algorithm on the
graphs to compute two explainability scores, influence and neighbor-
hood diversity, following feature sensitivity and influence analysis in
GNNs [9]. The overall importance of a node is derived by aggregat-
ing these explainability scores [1]. This process serves as a one-time
precomputation for all explainability queries and configurations.

Verify module filters subgraphs constructed by important nodes
that do not satisfy counterfactual causality. An explanation subgraph

https://vuejs.org/
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𝐺𝑠 , which is a subgraph of𝐺 , satisfies counterfactual causality when
it clarifies “why” M(𝐺) = 𝑙 , that is, M(𝐺𝑠 ) = 𝑙 and M(𝐺 \𝐺𝑠 ) ≠ 𝑙 .

Subgraph Extractor module extracts lower-tier explanation sub-
graphs constructed by important nodes following the greedy in-
fluence maximization approach, which also satisfy verification by
invoking the Verify module.

Pattern Generator module exploits constrained graph pattern
mining to efficiently explore the higher-tier patterns. It extracts a
set of candidate patterns from the explanation subgraphs, and then
adopts a greedy strategy to dynamically select patterns that maximize
a gain while covering all nodes in explanation subgraphs.

Visualization Displayer is a user-friendly module, which facili-
tates interactive visualization. (1) It includes an interface that allows
users to easily configure explanations based on their preferences on
class labels of interest and explanation sizes. (2) It visualizes input
graph datasets, output explanation views, and statistical information.
(3) It displays explanations generated by state-of-the-art algorithms
to facilitate comparison.

3 CORE ALGORITHM
We next describe the key technique, Explain-and-Summarize in our
algorithm, which generates good-quality explanation views. For
details, we refer to our research paper [1]. Our explanation view
G𝑙
V= (P𝑙 ,G𝑙

𝑠 ) consists of "lower-tier" explanation subgraphs G𝑙
𝑠

and "higher-tier" explanation patterns P𝑙 for a class label 𝑙 .
Explain Step selects high-quality nodes to induce “lower-tier”

explanation subgraphs for GNN-classifer M that (1) pass the ver-
ification ensuring both factual and counterfactual properties; (2)
maximize the overall explainability score for the explanation view;
and (3) satisfy the node size constraints in the configuration pa-
rameters. Recall that the explainability score contains influence and
neighorhood diversity. The explainability of an explanation view
G𝑙
V= (P𝑙 ,G𝑙

𝑠 ) for M over G𝑙 is quantified as:

𝑓 (G𝑙
V ) =

∑︁
𝐺𝑠 ∈G𝑙

𝑠

𝐼 (𝑉𝑠 ) + 𝛾𝐷 (𝑉𝑠 )
|𝑉 | (1)

where (i) 𝑉𝑠 is the node set of an explanation subgraph 𝐺𝑠 of 𝐺
(𝐺𝑠 ∈ G𝑙

𝑠 , and 𝐺 ∈ G), and 𝑉 is the node set of 𝐺 (𝑉𝑠 ⊆ 𝑉 ); (ii)
𝐼 (𝑉𝑠 ) is a feature influence function that quantifies the influence of
features of the node set V𝑠 via feature propagation in the inference
process of M, and (iii) 𝐷 (𝑉𝑠 ) is a diversity measure to capture
influence maximization. Here, a weight 𝛾 ∈ [0, 1] is introduced to
balance between feature influence and diversity.

Summarize Step produces, as “higher-tier” structure, a set of
graph patterns P which cover the nodes of the explanation subgraphs
G𝑙
𝑠 . Meanwhile, it is desirable for P to cover the edge set of G𝑙

𝑠 as
much as possible. Given a pattern 𝑃 ∈ P and graphs G𝑙

𝑠 with node
set 𝑉𝑆 and edge set 𝐸𝑆 , we denote the nodes and edges in G𝑙

𝑠 it
covers as 𝑃𝑉𝑆 and 𝑃𝐸𝑆 , respectively. Let each 𝑃 be “penalized” by
a normalized weight (as the Jaccard distance) between 𝐸𝑆 and 𝑃𝐸𝑆 ,

i.e., 𝑤 (𝑃) = 1-
|𝑃𝐸𝑆 |
|𝐸𝑆 | (note 𝑃𝐸𝑆 ⊆ 𝐸𝑆 ). The above requirements are

formulated as an optimization problem:

• Input: explanation subgraphs G𝑙
𝑠 ;

• Output: a pattern set P𝑙 , such that (1)
⋃

𝑃∈P𝑙 (𝑃𝑉𝑆 ) = 𝑉𝑆 and
(2) P𝑙 = argmin

∑
𝑃∈P𝑙 𝑤 (𝑃).

The summarize step solves the above problem by conducting a
constrained pattern mining on 𝑉𝑆 and their corresponding induced
explanation subgraphs G𝑙

𝑠 . It first exploits the minimum description
length (MDL) principle to iteratively generate a set of pattern candi-
dates, and subsequently adopts a greedy strategy to select a pattern
𝑃∗ that maximizes a gain ascertained by covered nodes P∗

𝑉𝑆
in 𝑉𝑆

with the smallest weight. P𝑙 is enlarged with P∗ accordingly. It
can be implemented by invoking some scalable pattern mining algo-
rithms, e.g., gSpan [4]. Post the selection of the currently optimal
patterns, the matched nodes in𝑉𝑆 are reduced; and the weights of the
patterns are updated accordingly. This allows to gradually acquire
the final explanation view and reduce the edges “missed” by P𝑙 .

The above algorithm requires generating all explanation sub-
graphs to compute explanation views. We also design an anytime
method, StreamGVEX to incrementally maintain explanation views
by scanning over G as nodes stream and their parallel versions [1].

4 DEMONSTRATION SCENARIO
We describe our demonstration scenarios using Figure 3, which
is a snapshot of the GVEX frontend. Our web app, available at
https://github.com/TiyCHEN/GVEX-DEMO, accompanies sev-
eral real-world datasets from various domains [1] and popular GNN
models. To illustrate the functionality, we present a workflow with
the widely-used Mutagenicity (MUT) dataset [3]. MUT is a molec-
ular dataset for binary classification tasks. Each graph within this
dataset represents a chemical compound with nodes denoting atoms
and undirected edges symbolizing bonds, and the one-hot node
feature denotes the atom type. An example workflow to support
effective analyses on MUT is as follows.

Step 1. Initial Selection: The users first select an existing dataset
or upload their own via buttons found in the “Graph Dataset” panel.
The users can click the “Show” button to visualize the chosen graph
dataset (e.g., MUT in Figure 3). Once clicked, molecular graphs
are presented in the “Input Graphs” panel, with distinct colors as-
signed to different node types (i.e., C, H, O, N, etc.). The dataset’s
information (Name, Nodes, Edges, Classes, Domain) is conveniently
displayed in the right-side bar of this panel. Furthermore, the users
have the flexibility to navigate and zoom on the graphs , allowing a
closer inspection of the specific structures within the selected dataset.
Also, the users can choose whether to use a static (ApproxGVEX) or
stream (StreamGVEX) algorithm.

Step 2. Interactive Configuration: GVEX offers a configuration
component that allows users to tailor algorithm settings to their
preferences. This configuration interface, located in the bottom left
corner of Figure 3, allows the users to fine-tune various parameters.
(1) The "budget" parameter determines the desired size in the expla-
nation views; (2) the "classes" parameter permits the user-specific
class labels of interest and determines the explanation ratios between
different labels; (3) the "influence" and "diversity" parameters con-
trol the threshold for feature influence and the scope of neighborhood
diversity; (4) the "trade-off" parameter gauges the importance as-
signed to neighborhood diversity; (5) the self-regulating progress bar
is designed for StreamGVEX to investigate and ad-hocly query for
specific explanation structures. Specifically, users can incrementally
maintain explanation views by setting a value between 0% to 100%
of input graphs with the the self-regulating progress bar.

https://github.com/TiyCHEN/GVEX-DEMO
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Figure 3: GVEX frontend: left part – configuration panel, upper-center part – dataset displayer, lower-center part – explanation views
and statistics, upper-right part – explanation details, and lower-right part – baseline explanation results.

Step 3. Visualize Explanation Views and Statistics: When a
user clicks the "Generate" button, GVEX executes the selected ex-
planation algorithm in the backend. Once the process is complete,
GVEX adds the results to the “Explanation Views” and “Explana-
tion Details” panels. Recall that explanation views consist of graph
patterns and a set of explanation subgraphs. The “lower-tier” expla-
nation subgraphs explain the GNN w.r.t. the labels of interest, sat-
isfying both factual and counterfactual properties. The “higher-tier”
patterns serve as a concise summary to allow easy access, query, and
inspection of the classification and explanation results. The details
for explanation subgraphs are displayed in the “Explanation Details”
panel. Furthermore, statistical information related to explanation
views can be suggested to analysts for further inspection, or conve-
niently be utilized as graph queries for downstream analysis, e.g.,
“which patterns occur only in mutagens, but not in nonmutagens?”.

Step 4. Visualize State-of-the-art Explanations: The GVEX
system also supports recent GNN explanation algorithms, includ-
ing SubgraphX [7], GNNExplainer [5], and GstarX [8], accessible
through the “Baseline Explanations” panel. We randomly sample a
graph from the graph dataset and after clicking a designated button,
the corresponding algorithm is invoked to generate an explanation
for it. This feature allows users to compare explanation subgraphs
identified for each mutagen compound by different explainers. We
also provide quantitative statistics of these baseline explanations.

5 CONCLUSION
We developed the GVEX system – a novel, user-friendly, interactive,
and graph view-based two-tier structure to explain graph classifi-
cation with GNNs. Our demonstration offers a visualization and
configuration platform for human experts to access and inspect ex-
planations for class labels of interest. The GVEX system assists to

configure algorithm settings, and to compare with state-of-the-art
explainers, making it flexible and usable to the audiences.
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