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ABSTRACT

Blockchains are increasingly becoming popular due to the preva-
lence of cryptocurrencies and decentralized applications. Ethereum
is a distributed public blockchain network that focuses on running
code (smart contracts) for decentralized applications. More sim-
ply, it is a platform for sharing information in a global state that
cannot be manipulated or changed. Ethereum blockchain intro-
duces a novel ecosystem of human users and autonomous agents
(smart contracts). In this network, we are interested in all possible
interactions: user-to-user, user-to-contract, contract-to-user, and
contract-to-contract. This requires us to construct interaction net-
works from the entire Ethereum blockchain data, where vertices are
accounts (users, contracts) and arcs denote interactions. Our analy-
ses on the networks reveal new insights by combining information
from the four networks. We perform an in-depth study of these
networks based on several graph properties consisting of both local
and global properties, discuss their similarities and differences with
social networks and the Web, draw interesting conclusions, and
highlight important, future research directions.
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1 INTRODUCTION

Blockchain has taken the world by storm with its proliferation in an
astoundingly diverse array of applications over the last few years.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WWW 20, April 20-24, 2020, Taipei, Taiwan

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380103

Arijit Khan
Nanyang Technological University
arijit. khan@ntu.edu.sg

Sourav Sen Gupta
Nanyang Technological University
sg.sourav@ntu.edu.sg

Xuan Liu
Nanyang Technological University
xuan002@e.ntu.edu.sg

Numerous cryptocurrencies and a plethora of business use-cases
paved the way for inclusive decentralization and consensus-driven
automation through innovative incentives and smart contracts. It
has been more than ten years since Bitcoin [54] introduced the era of
decentralized community-controlled currency. Since then, several
variants have been introduced on the premise of a specific design
philosophy or targeted at a specific application. Ethereum [72]
paved a new way by introducing an automation layer on top of a
permissionless blockchain fabric, through the use of complex smart
contracts executed by a decentralized network. This led the devel-
opment of blockchain into its current avatar, where decentralized
applications are written on the framework of blockchain networks
like Hyperledger, Corda, Ripple, Stellar, and many more.

While Bitcoin-like cryptocurrency networks concern themselves
only with users (wallets) transacting over blockchain, Ethereum-
like blockchains present a decentralized computing environment.
Ethereum is a transaction-based state machine, where the state is
made up of accounts. Transfer of value and information between
accounts cause transitions in the global state of Ethereum, which
are recorded in the blockchain [75]. There are primarily two types of
accounts: (a) User accounts, controlled by external users with their
private keys, and (b) Contract accounts, controlled by contract codes
that behave like ‘autonomous agents’. Transactions in Ethereum
are data packets sent by the user accounts, signed with their private
keys, while Messages in Ethereum are virtual objects produced by
contract accounts, generally sent to other contracts.

In addition to the native unit of value ether, Ethereum blockchain
allows creation of Tokens, an abstraction of “digital assets”, with the
help of suitable data structures and methods implemented through
smart contracts. Similar to base transactions using ether, accounts
in Ethereum may transact in tokens of various kinds, fungible or
otherwise, through the appropriate smart contracts. This allows for
a rich ecosystem of tokens, including various ERC20 (fungible) and
ERC721 (non-fungible) tokens, to thrive on Ethereum blockchain.

Motivation: The genre of blockchain introduced by Ethereum
brings forth a fascinating ecosystem of humans and autonomous
agents (smart contracts), cohabiting the underlying blockchain fab-
ric. It is neither like conventional social networks, where the players
are human users, nor like the cryptocurrencies, where all interac-
tions are transfer of value or asset. In essence, a blockchain network
is closer to the Internet or Web, where users are allowed to interact
with one another, as well as with programs. However, different from
Web, there is also an interaction framework for smart contracts,
where they can call (or kill) each other to maintain and advance the
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global state of the blockchain. This motivates us to study a public
permissionless blockchain network as a complex system. We choose
Ethereum, the most prominent public permissionless blockchain,
to measure and draw insights from the network interactions.

Contributions: Our main contributions are as follows.

— To the best of our knowledge, we are the first to conduct a com-
prehensive study of the large-scale Ethereum blockchain network,
cohabited by both human users and autonomous agents (smart con-
tracts). We investigate their complex interactions by constructing
four networks from the entire Ethereum blockchain data, namely
TraceNet, ContractNet, TransactionNet, and TokenNet (§3).

— We study the four blockchain networks based on local and
global graph properties, e.g., network size, density, degree distri-
bution, in-to-outdegree correlation, vertex centrality, reciprocity,
assortativity, connected components, core decomposition, transitiv-
ity, clustering coefficient, higher-order motifs, articulation points,
adhesion, cohesion, and small-world characterization. Such struc-
tural information is useful to characterize interactions and evaluate
Ethereum-blockchain at scale, an effort that has not been attempted
before. We also identify their similarities and differences with social
networks and the Web, and draw interesting conclusions (§4,5).

— We further consider three prominent token subnetworks, Ban-
cor, Binance Coin, and Zilliqa, and investigate the amount of ac-
tivity in the token network over time, as well as the size of the
core community driving the token economy over time. We iden-
tify interesting correlation between the temporal evolution of the
number of cores in the token subgraphs against the corresponding
evolution of price of the token in the cryptocurrency market (§6).

— We open source our dataset (https://github.com/sgsourav/
blockchain-network-analysis) and highlight important research
directions such as analysis of mining pools, identifying motifs to
detect fraudulent activities, and temporal analysis of token subnet-
works to forecast the price of Ethereum backed tokens (§7).

2 RELATED WORK

In the last decade, several works explored Bitcoin, cryptocurrencies,
and other blockchain networks based on graph theory and network
analysis. This line of research gained momentum due to the trans-
parency offered by public permissionless blockchain, which allows
anyone to access transactional information on the networks.

Analysis of blockchain networks: Graph measurement and anal-
ysis of blockchain started with the motivation of de-anonymizing
the “pseudonymous” Bitcoin accounts, using heuristics for clus-
tering addresses based on transaction behavior [23, 48]. Similar
analysis have since been performed on seemingly “anonymous”
cryptocurrencies like Monero [53] and Zcash [39], as well as across
a diverse array of cryptocurrency ledgers [77]. While initiatives like
Bitlodine [69] and Elliptic [1] perform chain analysis on the Bitcoin
transaction network to extract intelligence, researchers have also
measured the network characteristics to predict the market-price
of Bitcoin [34, 41, 76], or to search for influential patterns [27].
Beyond specific applications, the large-scale network properties
of Bitcoin transaction graph has been studied in [37, 62], and the
abstraction of any blockchain as a transaction network for analysis
has been considered in [6]. Unlike our four interaction networks in
the Ethereum blockchain, these works are only about the bitcoin
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transaction graph, where all interactions are transfer of value. Fer-
retti and D’Angelo also studied only transactions in the Ethereum
blockchain [29] - not all types of network interactions. Last year,
Somin, Gordon and Altshuler investigated the entire address graph
spanned by ERC20 token trade in Ethereum blockchain [67], and
also studied the social signals in the Ethereum ERC20 token trading
network [68]. In their footsteps, Victor and Luders have recently
measured Ethereum-based ERC20 token networks [71].

We follow the direction of [27, 29, 62, 67, 68, 71] to measure
and analyse the entire Ethereum blockchain network — above
and beyond the financially relevant token transfer layer. Our ap-
proach closely follows the norms of measuring and analyzing social
networks, Internet, and the Web, as the entirety of the Ethereum
blockchain network presents itself as an equally complex system.

Measurement of social networks, Internet, and the Web: Soci-
ologists studied various properties of social networks [73]. Milgram
showed that people in the United States are connected by short
path-lengths, often associated with the phrase “six degrees of sepa-
ration” [50]. The degree distribution was studied in the context of
movie actors network [11], followed by network of scientific collab-
orations [55] and Web of human sexual contacts [46]. Granovetter
argued that social networks can be partitioned into ‘strong’ and
‘weak’ ties, and strong ties are tightly clustered [33]. Adamic et al.
studied an early online social network at Stanford, and found that
the network exhibits small-world behavior and local clustering [4].
Traces from CyWorld, MySpace, and Orkut were profiled in [5],
Facebook in [74], instant-messaging networks in [45], as well as
Youtube, Flickr, and Yahoo! 360 were analyzed in [52]. Other stud-
ies focused on the evolution and growth of online social networks,
including Flickr, LiveJournal, and Yahoo! 360 [10, 42, 51]. Most of
these studies reveal that social networks have higher fraction of
symmetric links, and also exhibit higher level of local clustering due
to community structure. Moreover, past studies confirm that social
networks obey power-law scaling [11], and exhibit high clustering
coefficients, establishing them as small-world networks [8].

In the areas of Web and Internet, Faloutsos et al. showed that the
degree distribution of Internet follows power-law [28]. Siganos et
al. demonstrated that the high-level structure of the Internet resem-
bles a “jellyfish” [66]. A prominent study [18] found that the Web
consists of a single, large strongly connected component (SCC), and
other groups of vertices can either reach the SCC or can be reached
from the SCC. Kleinberg [40] demonstrated that high-degree pages
in the Web can be classified based on their functions as either hubs
or authorities. This phenomenon of the Web is different from so-
cial networks, where one observes a high degree of reciprocity in
directed user links, leading to a strong correlation between user
indegrees and outdegrees [52].

Measurement of blockchain networks: Ours is the first in-depth
measurement of the blockchain network across four different lay-
ers, consisting of both human users (e.g., regular users, miners) and
autonomous agents (e.g., smart contracts), as well as their complex
interaction patterns. We systematically identify and discuss its si-
miliarities and differences with various other networks, including
social networks and the Web, and draw insights on the unique
characteristics of the blockchain networks. We open source our
dataset [44] to facilitate further research in this direction.
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3 DATASETS AND EXPERIMENTAL SETUP

We are interested in all interactions between Ethereum accounts,
both in terms of standard ether transactions and token transfers.
This requires us to construct interaction network from the Ethereum
blockchain data, where vertices are accounts (users or contracts)
and arcs denote their interactions. There are four major types of
interaction between Ethereum addresses — (i) User-to-User (trans-
action or token transfer), (ii) User-to-Contract (call or kill), (iii)
Contract-to-User (transaction or token transfer), and (iv) Contract-
to-Contract (create, call, kill or hard fork), as illustrated in Figure 1.
In addition, there are some interactions to and from the Null ad-
dress, denoting creation of smart contracts and generation of ether
(mining rewards), respectively. We create four interaction networks.

B=d B

Transaction or Token Create/Call/Kill/Fork

Txor [ ] Call or Kill Create, Y Create Contract
Token (’ Pu— </i> call, kil P9 @

Transaction or Token or Fork Mining Reward

Figure 1: Interactions in the Ethereum Blockchain Network

Table 1: Ethereum Blockchain Data : Block #0 to #7185509

‘ Approximate Size of Dataset ‘ Row Count

blocks 8 GB 7185509
contracts 15.7 GB 12950995
transactions 190 GB 388018489
traces 500 GB 974766 498
logs 160 GB 289552838
tokens 11.4 MB 126 181
token transfers 58 GB | 173421940

3.1 Data Extraction and Creation of Networks

Google Cloud BigQuery curates the entire Ethereum blockchain
data in terms of blocks, contracts, transactions, traces, logs, tokens
and token transfers [2]. We extract all relevant data for Ethereum
from the ethereum_blockchain dataset under the Google Cloud
bigquery-public-data repository, till 2019-02-07 00:00:27 UTC,
which amounts to all blocks from genesis (#0) up to #7185508. The
extracted data consists of seven tables, as summarized in Table 1.
We note that the blocks and transactions tables are not complete
or granular enough for our purpose, as the first stores only block
headers, and the second does not consider interaction between
smart contracts. Instead, we choose to focus on the traces table to
extract the comprehensive interaction network for Ethereum ad-
dresses (each account has a unique 160-bit address). The traces table
stores executions of all recorded messages and transactions (success-
ful or not) in the Ethereum blockchain, which are directly mapped
to the transaction and block where they belong. The from_address
and to_address recorded in each trace helps us create individual
arcs in the interaction network of Ethereum accounts, and it is also
possible to group all traces triggered by a particular transaction.

TraceNet. We first create TraceNet, with all possible user and smart
contract addresses found in the entire blockchain dataset as vertices,
and all successful traces with non-null from/to addresses as arcs.
We characterize the vertices by their type — regular users, miners /
mining pools, regular contracts, and miner / mining pool contracts.
This is the most comprehensive interaction network for Ethereum,
with various well-classified vertices and arcs, as in Table 2.
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Table 2: TraceNet: Complete Interaction Network

Type Count
Vertex | User Accounts (Regular Users) 62851964
User Accounts (Miners / Mining Pools) 4220
Smart Contracts (Regular Contracts) 12950 986
Smart Contracts (Miners / Mining Pools) 9
Total number of Vertices 75807 179
Arc Users to Users 198479972
Users to Smart Contracts 178170016
Smart Contracts to Users 74196 065
Smart Contracts to Smart Contracts 317 967 546
Total number of Arcs 768 813 599

Table 3: ContractNet: Interaction Network of Contracts

Type Count
Vertex | Smart Contracts (ERC20) 27548
Smart Contracts (ERC721) 891
Smart Contracts (others) 11304311
Total number of Vertices 11332750
Arc Create a Smart Contract 10 690 445
Suicide of a Smart Contract 3677233
Call a Smart Contract 303599 752

Daofork for a Hard Fork 116
Total number of Arcs 317 967 546

Table 4: TransactionNet: Network of Transactions

Type Count
Vertex | User Accounts (Regular Users) 43582,566
User Accounts (Miners / Mining Pools) 4222
Smart Contracts (Regular Contracts) 1940731
Smart Contracts (Miners / Mining Pools) 9
Null Address 1
Total number of Vertices 45527 529
Arc Users to Users 198480017
Users to Smart Contracts 187 245157
Users to Null 2293315

Total number of Arcs 388018 489

Table 5: TokenNet: Network of Token Transactions

Type Count
Vertex | User Accounts (Regular Users) 26930958
User Accounts (Miners / Mining Pools) 2125
Smart Contracts 3496 009
Smart Contracts (Miners / Mining Pools) 7
Total number of Vertices 30429099
Arc Users to Users 113127 126
Users to Smart Contracts 11598759
Smart Contracts to Users 40265766
Smart Contracts to Smart Contracts 8430289
Total number of Arcs 173 421 940
Are ERC20 Token Transfer 161656 811
ERC721 Token Transfer 5929971

ERC20 and ERC721 Token Transfer 1540
Neither ERC20 nor ERC721 5833618
Total number of Arcs 173421940

ContractNet. The second network, ContractNet, is a subgraph of
TraceNet, where we retain the arcs with both from_address and
to_address belonging to smart contracts (verified using the con-
tracts table). This provides us with a pure contract-to-contract inter-
action network on Ethereum, where arcs are direct messages and/or
transactions between smart contracts. We observe four arc types in
this category — (i) Create arcs that involves creation of new smart
contracts, (ii) Suicide arcs where the owner of the smart contract
decides to kill the smart contract, (iii) Call arcs that transfer ether
from one account to another or call another smart contract, and
(iv) Daofork arcs where a hard fork has occurred in the blockchain.
These arcs connect three major vertex types — (i) ERC20 token
contracts, (ii) ERC721 token contracts, and (iii) other contracts for
intermediary functions and token-related services, as in Table 3.
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Table 6: Network characteristics of Ethereum blockchain: vertices and arcs, self-loops, density

# Vertices MultiDigraph Simple, undirected graph
# Arcs # Self-loops (% of Arcs) Density # Arcs # Self-loops (% of Arcs) Density
TraceNet 75807179 | 768813599 3036915 (0.40%) 1.34Xx10™ 191901321 178 241 (0.09%) 0.67 X10™
ContractNet 11332750 | 317967 546 2521670 (0.79%) 24.8x1077 | 19608 452 63 234 (0.32%) 3.05 1077
TransactionNet | 45527529 | 388018489 515245 (0.13%) 1.87x1077 | 128368878 115007 (0.09%) 1.24x1077
TokenNet 30429099 | 173421940 326557 (0.19%) 1.87x1077 | 93844445 36950 (0.04%) 2.03x1077

TransactionNet. The third network, TransactionNet, is the network
of all Ethereum transactions recorded in the transactions table.
Transactions are made by users, either to other users or smart
contracts, or to a Null address in case of smart contract creation.
The vertices and arcs of this network is thus similar to that of the
TraceNet, with the exception of the Null address as an extra vertex
in the network, and the ‘User to Null’ arcs, as shown in Table 4.

TokenNet. Finally, we create TokenNet, pertaining only to the trans-
fer of tokens between Ethereum accounts. We use the token transfers
table to extract only token related transactions in the blockchain
(validated using the tokens table). The basic types of users and arcs
are somewhat similar to that in the TransactionNet, with an addi-
tional level of arc characterization based on the token in use, as
shown in Table 5. The arcs marked ‘Neither ERC20 nor ERC721’
denote intermediary processes that involve other smart contracts
to help facilitate the actual token transfers. Arcs with the same
transaction_hash belong to the same transaction, leaving us with
108 967 077 distinct transaction hashes in the TokenNet.

Importance of four blockchain networks: Each interaction net-
work provides us with a different perspective on Ethereum blockchain,
and our analyses on the networks reveal new insights by combining in-
formation from the four networks. While TraceNet presents a global
view of interactions between Ethereum accounts, ContractNet fo-
cusses only on the automated multi-agent network of contracts,
providing us with a functional view of the Ethereum state machine.
While TransactionNet helps us analyze the base ether transactions
in the blockchain, TokenNet focusses on the rich and diverse token
ecosystem built on top of the Ethereum blockchain.

Environment setup: The code is implemented in Python 3.7, and
NetworkX [36] is used for analyzing the graph. We perform experi-
ments on a single core of a 100GB, 2.40GHz Xeon server.

3.2 Network Characteristics: Vertices and Arcs,
Self-Loops and Density

The basic characteristics of our four networks (TraceNet, Con-
tractNet, TransactionNet, and TokenNet) are given in Table 6. We
consider two variations of each network. In MultiDiGraph, we re-
tain all directed arcs between a pair of vertices. Clearly, multiple
arcs between a pair of vertices indicate that there exist repeated in-
teractions or transfers between those addresses. In contrast, Simple,
undirected graph denotes a simplified version where we consider at
most one, undirected arc between every pair of vertices. Multiple
arcs between vertices are counted only once in the simple graph.
In Table 6, the counts for arcs include self-loops, that is, trans-
actions having the exact same from_address and to_address. An
interpretation would be that an address transacted with itself, which
happens in scenarios where users verify if it is possible to send
Ether to themselves, or due to a mistake in input of to_address.

In Table 6 we provide the self-loop counts and its percentage over
all arcs. With more arcs in MultiDiGraphs, it is expected that their
self-loop counts would also be higher compared to that in the sim-
ple, undirected graphs. We observe that the self-loop percentage
in ContractNet’s MultiDiGraph is significantly higher than that in
the three other networks. Moreover, the number of self-loops in
ContractNet’s MultiDiGraph is almost 40 times than that in its own
simple, undirected graph, indicating that a lot of smart contracts
make multiple calls to itself. Smart contracts are self-executing
programs which may contain multiple functions, and contracts can
call functions of other contracts or itself if processing a transaction
requires some other functionality within the same contract.

Let the total number of vertices and arcs in a network be |V]|
and |E|, respectively. There are several definitions of network den-
sity [32]: arc density (average degree), arc ratio, triangle density,
triangle ratio, etc. In Table 6, we report arc ratio, that is, the number
of arcs / the number of possible arcs. For an undirected network, this
is 2|E|/(|‘2/|); whereas for a directed network, it is |E|/(|‘z/|). Since
|V| remains the same over MultiDigraph and simple, undirected
graph, and the number of arcs in MultiDigraph is generally more
than twice the number of arcs in the simple, undirected graph, the
former should be denser than the later one. This is more prominent
in ContractNet — its MultiDigraph is about 8 times denser than
its simple, undirected graph, which indicates that there are a lot of
multiple arcs between vertices in the MultiDigraph of ContractNet. It
is explainable, as all arcs in ContractNet are between smart con-
tracts. Different smart contracts often make use of some common
contracts. Calls to a smart contract may also, in turn, evoke calls to
other smart contracts. As smart contracts can realize similar func-
tions, it is possible to have large volume of multiple calls in both
directions between smart contracts, resulting in a lot of multiple
arcs between vertices in MultiDigraph of ContractNet.

In TokenNet, on the other hand, the simple, undirected graph
is denser than its MultiDigraph. The number of arcs in this Multi-
Digraph is almost twice the number of arcs in the corresponding
simple, undirected graph. This means that there are small volumes
of bidirectional arcs between pairs of vertices in TokenNet. This is be-
cause in token transfers, the token contract will update the balance
of the two accounts internally, and there will not be an outgoing
arc from the token contract to the receiver of the tokens [3].

4 LOCAL NETWORK PROPERTIES:
MEASUREMENTS AND ANALYSES

Once the blockchain networks are constructed, we extract several
features from these networks. Some of these features represent
global properties of a network — also known as “summary features”.
Others represent local properties of individual vertices; we refer to
them as “local features”. The local properties are analyzed below.
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Figure 2: Degree distribution fit with power-law and four alternative distributions, MultiDiGraph versions

Table 7: Likelihood-ratio test results from comparing the best fit for four alternative distributions with the best fit power-law
distribution for vertex degrees of the MultiDiGraph versions of our networks. Refer to § 4.1 for technical details of the tests.

Power-law Exponential Log-normal Weibull Power-law w/ cut-off
2
o oAk %[W 5 Y

a  Kmin A R p-val p a R p-val a b R p-val | « A R p-val
TraceNet 15 1 1x107T  7x10° ~0 14 07 -4x10 ~0 0.7 04  -1x10 ~0 10 2x107%  -7x10° ~0
ContractNet 19 50196 | 3x107  8x10®%  =~0 29 41 -2x10° 02 15809 0.1  -8x107! 0.8 19 6x1078  4x10°  0.003
TokenNet 14 1 1x107!1  5x10° ~0 16 08 -3x107 ~0 0.5 04  -9x10° ~0 1.0 6x1072  -ax10° ~0
TransactionNet | 1.9 535 2x107%  3x10*  ~0 | -304 67 -9x10° 001 | 70466 0.1  1x10% ~0 1.9 4x1077  -2x10! ~0

4.1 Vertex Degree Distribution

We begin by considering vertex degree distribution. Past researches
have shown that many real-world networks are power-law net-
works, including Internet topologies [28], the Web [11, 43], social
networks [4], neural networks [16], and power grids [60], that is,
the fraction of vertices with degree k follows a power law, decaying
like k=%, for large k (i.e., k > Kmin) and a > 1. To test how well
the degree distributions are modeled by a power-law, we calculate
the best power-law fit using the maximum likelihood method [24].
Moreover, to determine whether a power-law distribution is better
than alternative heavy-tailed distributions [19], we compare the fit-
ted power-law to the (i) exponential, (ii) log-normal, (iii) power-law
with exponential cutoff, and (iv) stretched exponential or Weibull
distributions. All of these have been previously employed to model
vertex degree distributions [8, 20, 38]. Each alternative model is
also fitted via the maximum likelihood to the empirical degrees
k > Komin, with Kpnin is given by the power-law fit [24].

Following [19], we use difference in log-likelihoods between the
power-law and alternative models as test statistic: R = Lpr — L aj;»
where Lpy is the log-likelihood of the power-law model, and £ 4;;
is the log-likelihood of an alternative model. The sign of R implies
which of the two models is favored, power law (R > 0) or alternative
(R < 0). Since R is derived from data, it is itself a random variable,
and thus subject to statistical variations. As a result, the sign of
R is informative if we can determine that |R| is far enough from
0. The standard solution is another hypothesis test, in which we
calculate a p-value against a null model of R = 0. If p > 0.1, the sign
of R is not informative, and the data cannot tell us which model,
power-law or alternative, is a better fit. If p < 0.1, then the data
provide a clear conclusion in favor of one model or the other.

We show the degree distribution fitting of MultiDigraphs in
Figure 2, and report the corresponding best parameters in Table 7.
For power-law, we find that « = 1.4 ~ 1.9 in all our networks.
Moreover, for our larger networks, TraceNet and TransactionNet,
three alternative heavy-tailed distributions (i.e., Log-normal, Weibull,

and Power-law with cut-off) are better fit than power-law (due to
large, negative R, with p-value< 0.1 in Table 7). Notice that in
Figure 2 (a)(c), the number of vertices having degree less than 103
is quite large in number (higher PDF), for those vertices we find
that Log-normal, Weibull, and Power-law with cut-off are better fit.

4.2 Correlation of Indegree and Outdegree

We compare the indegree and outdegree of individual vertices in
the four networks, considering the MultiDiGraph versions. Vertices
with high indegrees might not have high outdegrees in blockchain
graphs, and vice versa. In Figure 3, we show the cumulative distri-
butions (CDF) of the outdegree-to-indegree ratio for vertices.
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Figure 3: CDF of vertices w/ various outdegree/indegree ratio

We find that most vertices (*50%) have similar outdegrees and
indegrees, while a smaller fraction (30%) of vertices have signifi-
cantly higher indegrees than outdegrees. Moreover, we also observe
that about (~20%) of vertices have significantly higher outdegrees
than indegrees. This characteristic is similar to the Web [40], con-
sisting of both hub (having higher outdegrees) and authority (with
higher indegrees) vertices, and is very unlikely in social networks.
Social networks usually have high correlation between indegrees
and outdegrees [52]. In contrast, in blockchain networks, mining
pools and mixers generally appear a lot in the from_address of
transactions and traces, as they provide various services and actions
to other users. On the other hand, ICO smart contracts appear a
lot in the to_address, as an ICO contract is called frequently to
facilitate disbursal of cryptocurrency tokens to investors.
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Figure 4: Centrality of vertices from the innermost core of the largest strongly connected component

4.3 Centrality Measures

Vertex centrality aims at scoring, ranking, and identification of
important vertices according to their power, influence, and rele-
vance [61]. Among numerous centrality definitions, we shall inves-
tigate four most critical ones, over simple, undirected graphs.

(i) Degree centrality, Cp(v), is the degree d(v) of each vertex
v, normalized by the total number of vertices |V| in the network.
Formally, Cp(v) = %UI) (ii) Closeness centrality is the average dis-
tance of each vertex to all others in a connected network. Formally,

Cc() = T V] . Here, dist(v, u) is the length of the

ZueV,u#v dist(v,u)

shortest path between u and v. (iii) Betweenness centrality. Consid-
ering that flows move via the shortest distances, the load in a vertex
v is given by the total number of shortest paths passing through v.
Formally, Cp(v) = ﬂ"l—l)zw 2, w) % Here, n(u, v, w)
is the number of shortest paths connecting vertices u and w that
pass through vertex v, and n(u, w) is the total number of shortest
paths between u and w. The sum is taken over all pairs (u, w) of
distinct vertices, and the term outside the sum is for normalization
in (0, 1). (iv) PageRank. The basic idea is to transform the network’s
adjacency matrix A such that its elements represent the probability
transition (via random walk) between a pair of vertices. The net-
work can represent a Markov chain in which each vertex is a state,
and the PageRank is calculated by the power method: 77 = 727G,
where G = €P + (1 — €)/|V|. Here, P is the transition probability
matrix, given by Py o = Ay, /2, Au,». The original version of the
algorithm [17] considers € = 0.85.

Since computing betweenness and closeness centralities are ex-
pensive over large networks, we estimate the most central vertices
from the densest region of the graphs. Specifically, by following [15],
we identify the most central vertices from the innermost core of the
largest strongly connected component in each network. In Figures 4,
we plot centrality values of these vertices for both ContractNet
and TokenNet. We observe that relative ranking of these vertices
according to different centrality measures remains about the same.
The Kendall’s tau coefficients between rankings according to (de-
gree, closeness), (degree, betweenness), and (degree, PageRank)
over ContractNet are 0.99, 0.85, and 0.93, respectively. Those values
for TokenNet are 0.41, 0.77, and 0.95, respectively. In summary,
high-degree vertices in blockchain networks are generally also most
central based on betweenness, closeness, and PageRank metrics.

5 GLOBAL NETWORK PROPERTIES:
MEASUREMENTS AND ANALYSES

We study the following summary features of the networks.

5.1 Reciprocity and Assortativity

In network science, reciprocity is a measure of the likelihood of
vertices in a directed network to be mutually linked. A classical
way to define the reciprocity r is using the ratio of the number of
arcs pointing in both directions to the total number of arcs.

(# arcs in simple, directed graph - # arcs in simple, undirected graph) x 2
r =

# arcs in simple, undirected graph

With this definition, r = 1 is for a purely bidirectional network,
while r = 0 is for a purely unidirectional one. Real networks have
intermediate reciprocity values between 0 and 1. Reciprocity has
been shown to be crucial to classify and model directed networks,
understand the effects of network structure on dynamical processes,
explain patterns of growth in out-of-equilibrium networks (in case
of the Wikipedia or the World Trade Web), and study the higher-
order structures such as correlations and triadic motifs [7, 14, 30,
31, 49, 78-80]. Reciprocity also provides a measure of the simplest
feedback process, e.g., the tendency of a vertex to respond to another
vertex stimulus in a communication network.

Table 8: Reciprocity, assortativity: simple, directed networks

Network (#vertices, #arcs) ‘ Reciprocity I Assortativity

TraceNet (76M, 198M) 0.06 -0.13
ContractNet (11M, 22M) 0.21 -0.64
TransactionNet (46M, 130M) 0.03 -0.12
TokenNet (30M, 95M) 0.03 -0.13

In Table 8, we report reciprocity of the four blockchain networks
using their simple, directed versions, that is, multiple arcs from a
source to a target vertex (having the same direction) are counted
only once. We find that the reciprocity value of ContractNet is sig-
nificantly higher than that of the three other networks: about 4 times
than that of TraceNet, and 10 times than that of both TransactionNet
and TokenNet. This confirms that smart contracts rely more on each
other in order to process a transaction or a trace, and thus resulting
in a lot of bidirectional arcs. In fact, smart contracts are similar to
functions, and it is normal for these vertices to return something
back to the smart contract that has evoked a call on it.

The concept of assortativity was introduced by Newman [56],
and is extensively studied in network science. Generally, the assor-
tativity of a network is determined for the degree of the vertices in
the simple, undirected network. Assortativity, p, lies in the range
—1 < p < 1. A network is said to be assortative (i.e., p tends to 1)
when high-degree vertices are, on average, linked to other vertices
with high degree, and low-degree vertices are, on average, linked
to other vertices with low degree. A network is said to be disassor-
tative (i.e., p tends to -1) when, on average, high-degree vertices
are linked to vertices with lower degree, and vice versa.
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Table 9: Connected components characterization of blockchain networks

Simple, directed networks # Strongly connected

Largest strongly connected

# Weakly connected Largest weakly connected

(#vertices, #arcs) components component (#vertices, #arcs) components component (#vertices, #arcs)
TraceNet (76M, 198M) 35215962 40M, 116M 7324 76M, 192M
ContractNet (11M, 22M) 9013 144 2M, 4M 12555 11M, 20M
TransactionNet (46M, 130M) 15560831 30M, 76M 8181 46M, 128M
TokenNet (30M, 95M) 16980001 13M, 56M 54271 30M, 94M
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Figure 5: Vertices count (a, b) and arcs count (c, d) distribution in connected components of blockchain networks

In Table 8, we present the assortativity values of our blockchain
networks, using their simple, undirected versions. Following [56],
we employ the following equation that computes the degree assor-
tativity p of an observed network.

BT Sk - [IEIT S,
7B S+ k) - (B 5, AP

Jji» ki are the degrees of the vertices at the ends of the i-th arc, with
i € [1,|E[], |E| is total number of arcs. All four networks have assorta-
tivity values < 0 (Table 8). Moreover, ContractNet’s assortativity is the
most negative, while the other three networks have similar measures.
Having negative assortativity values implies that there are relatively
more scenarios of addresses with different degrees transacting with
each other. For example, consider those addresses associated with
mining pools, exchanges, and mixers. They tend to have higher
degrees as they provide various services and actions to other users
in the network. For ContractNet, disassortativity is more prevalent —
this means that there exist some generic smart contracts that are used
by many other smart contracts. As an example, “decentralized ex-
changes” (which are smart contracts) do cryptocurrency exchanges
in a decentralized manner, and tend to have many other smart con-
tracts using their services. Thus, the disparity in the degree of such
smart contracts and the other smart contracts transacting with it
results in higher disassortativity of ContractNet.

Our empirical results confirm previous findings that non-social
networks tend to be disassortative [56]. Social networks are typically
more assortative than non-social networks (i.e., possessing positive
vertex degree correlations): Well-connected individuals associate
with other well-connected individuals, and poorly-connected in-
dividuals associate with each other [58]. Unlike social networks, as
shown earlier, all our blockchain networks are disassortative.

5.2 Strong and Weakly Connected Components

An undirected graph is “connected” if every pair of vertices in the
graph is connected. A connected component is a maximal connected
subgraph of G. In a directed graph, a component or a subgraph

is called weakly connected if replacing all of its directed arcs with
undirected arcs produces a connected (undirected) subgraph. A
component is strongly connected if it contains both-way directed
paths between every pair of vertices. The strongly connected compo-
nents are the maximal strongly connected subgraphs in a directed
graph. Analogously, the weakly connected components are the maxi-
mal weakly connected subgraphs in a directed graph. Finding con-
nected components is a well-known problem in network clustering,
community detection, compression, and entity resolution.

We characterize connected components from simple, directed
version of four networks in Table 9. We observe the following
trends — (1) The counts for the weakly connected components are
significantly lesser than respective counts for the strongly connected
components. This is primarily because there are less bidirectional arcs
between majority of vertex pairs. (2) The largest weakly connected
component has comparable size to that of the original network.
This indicates that the largest weakly connected component spans a
significant portion (about 98-99% of vertices and arcs) of the entire
network. (3) ContractNet’s strongly connected components count is
the least among that for all other networks, indicating relatively
stronger connectivity within smart contracts, and also the presence of
bidirectional arcs between many pairs of smart contracts.

We next analyze the distribution of counts for vertices and arcs
in all our connected components — (1) Figure 5 show that both
these distributions follow power-law: few large components followed
by a long-tail of remaining small components. There is only one
weakly connected component having around 107 ~ 108 vertices
and arcs, respectively (the largest one), whereas we find about
107 singleton components, each with one vertex only. (2) We find
certain similarities with the structure of Web and social networks
as follows. Prominent studies [18, 52] have shown that the Web
and social networks consist of a single, large strongly connected
component (SCC), and other groups of vertices can either reach
the SCC or can be reached from the SCC. Analogously, blockchain
graphs also have a single, large SCC, and about 98% of the remaining
vertices can either reach this SCC, or can be reached from the SCC.
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5.3 Core Decomposition

The k-core of a (simple, undirected) graph is a maximal subgraph in
which every vertex is connected to at least k other vertices within
that subgraph. The set of all k-cores of a graph, for each k, forms its
core decomposition [64]. The core index of a vertex v is the maximal
k for which v belongs to the k-core. Core decomposition can be
computed by iteratively removing the smallest-degree vertex and
setting its core number as its degree at the time of removal. The
concept of core decomposition is particularly appealing because (1)
it can be computed in linear time [12, 22, 47], and (2) it is related to
many of the various definitions of a dense subgraph, and it can be
used to speed-up or approximate their computation [9, 21, 26].
Core decomposition for each weakly connected component can
be performed independently of each other. In Table 10, we present
the results corresponding to the largest weakly connected compo-
nent of each network. We find that both ContractNet and TokenNet
have larger core indices for vertices in the innermost cores, indicating
higher density of their innermost cores. Furthermore, ContractNet’s
innermost core has the maximum size, implying that a lot more
vertices participate in denser substructures in this network.

Table 10: Core decomposition (simple, undirected graphs)

Largest Weakly Connected Component # Cores | Innermost core
(#vertices, #arcs) (#vertices, #arcs)
TraceNet (76M, 192M) 98 (221, 12058)
ContractNet (11M, 20M) 264 (1071, 143 352)
TransactionNet (46M, 128M) 105 (682, 55 926)
TokenNet (30M, 94M) 218 (475, 57 124)

Table 11: # triangles, transitivity (T), global cluster coeff. (C)

Largest strongly connected comp.
(Simple, undirected)

Largest weakly connected comp.
(Simple, undirected)

# Triangles T C # Triangles T C
TraceNet 4008794 10.0X10~ 0099 | 5813165 1.2x10~ 0.077
ContractNet 405 265 38.0x1077 | 0.212 871359 6.7x1077 | 0.078
TransactionNet | 1908138 83x1077 | 0.064 | 4550517 | 12.4x1077 | 0.100
TokenNet 2803894 8.6x1077 | 0209 | 5296640 55%x1077 | 0.175

5.4 Triangles, Transitivity, Clustering Coeff.

Triangle counting is a community detection algorithm that is used to
determine the number of triangles passing through each vertex in a
(simple, undirected) network G. The number of triangles of vertex
v is defined as A(v) = [{{u,w} € E : {v,u} € EN {v,w} € E}|.
Here, E denotes the set of arcs in the network G. A tripley at a
vertex v is a path of length two for which v is the center vertex. The
number of triples of vertex v, having degree d(v), is then defined
asy(v) = (d(Zv)). The local clustering coefficient of a vertex is the
likelihood that its neighbours are also linked. The computation of
this score involves triangle counting. The global clustering coefficient
C(G) is the normalized sum of those local clustering coefficients.

(v)

Formally, C(G) = Y, ev %. Here, V denotes the set of vertices in

G. The transitivity T(G) of a network G is three times the number
of triangles divided by the number of triples in the graph, that

is, T(G) = %. Triangle count, clustering coefficient, and
transitivity are used as features for classifying a website as spam/
non-spam; to find community structure of a social network [25, 70].

Triangle counting is, however, quite expensive over large-scale

networks. A simple approach is to traverse over all vertices and

Lee and Khan, et al.

check for existing arcs between any pair of neighbors. This algo-
rithm, known as vertex-iterator, has running time O(},, ¢y (d(zv))).
In our implementation, we, therefore, consider an approximation
algorithm [63] that can estimate A(v) in O(1) time. Informally speak-
ing, this approximation algorithm samples triples with appropriate
probability. It then checks whether an arc between the non-center
vertices of the triple is present. We omit more details on this ap-
proximation algorithm due to interest of space.

In Table 11, we report the estimated count of triangles, transitiv-
ity, and global clustering coefficients for both the largest strongly
and weakly connected components of our blockchain networks. In
particular, we notice that the transitivity is quite low, for example, in
the order of 1077, against an expected value of 107! ~ 1072, if con-
nections were made at random (2m/n(n—1)for a random graph with
n vertices and m arcs). This suggests that in blockchain networks,
there are forces at work that shy away from the creation of trian-
gles. Our empirical findings are consistent with past observations:
non-social networks have lower transitivity coefficients [58]. This is
in sharp contrast with social networks, where transitivity is much
higher than what we expect by chance. In [57], this phenomenon is
attributed to community structure, that is, social networks possess
community structure, and other types of networks do not (or they
possess it to a lesser degree). We, therefore, suspect that the lack of
community structure creates lower transitivity in blockchain net-
works. Indeed, we find that high-degree vertices are often “loner-star”
[65], that is, connected to mostly low-degree vertices. This results in
lack of community structure in blockchain graphs.

In largest strongly connected component, ContractNet has the
highest global clustering coefficient; whereas in largest weakly
connected component, TokenNet possesses the highest clustering
coefficient. It can be explained by their higher densities (Table 6).

5.5 Higher-Order Motifs Counting

Many networks exhibit rich, higher-order connectivity patterns at
the level of small subgraphs, also known as motifs [13]. To this end,
we count the occurrences of various motifs up to having five vertices
inside dense substructures of blockchain networks. In particular, we
show motif counts in the innermost core obtained from the largest
strongly connected components in Table 12. Notice that the most
frequent motifs observed in blockchain graphs are primarily chain
and star-shaped. In contrast, the counts for more complex patterns,
e.g., cliques and cycles, are quite less. We further report the density
of a motif, which is defined as the ratio of its count to its count in a
complete graph having same number of vertices as the innermost
core. As expected, the densities for more complex patterns are less,
indicating lack of community structure in blockchain networks.

Table 12: Motif counts in ContractNet’s innermost core (sim-
ple, undirected). Motif density is the ratio of its count to its
count in a complete graph having same number of vertices.
Motif density

(Q} 2214 2x1072
i:I 60297 9x1073
g 2578 4x1074

# Motif density | #

0—0—0 13669 1x107!
=00 17081 3%1073

><Z 387816

12x1073
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Table 13: # Articulation points, Adhesion, Cohesion, Average path lengths, Radius, Diameter (simple, undirected)

# Articulation points | Largest strongly conn. comp. | Largest weakly conn. comp. Largest weakly connected component
(% of all vertices) Adhesion Cohesion Adhesion Cohesion Avg. path length | Radius | Diameter
TraceNet 1214137 (1.6%) 1 1 1 1 5.25 5002 8267
ContractNet 28309 (0.2%) 1 1 1 1 5.94 14 27
TransactionNet 1337527 (2.9%) 1 1 1 1 5.33 5002 8267
TokenNet 75513 (2.5%) 1 1 1 1 3.87 82 164

5.6 Articulation Points, Adhesion, Cohesion

A vertex in an undirected, connected graph is an articulation point
if and only if removing it disconnects the graph. In a disconnected,
undirected graph, removing an articulation point increases the num-
ber of connected components. They represent vulnerabilities in a
network — single point failures that would split the network into
more disconnected components. As shown in Table 13 over simple,
undirected versions of our networks, having more vertices does
not necessarily imply that the number of articulation points in the
network would also be higher. While TraceNet has approximately
30M more vertices than TransactionNet, it has fewer articulation
points than the later. This could be because direct arcs between smart
contracts are not included in TransactionNet. ContractNet has signifi-
cantly less articulation points than the other networks. This indicates
that ContractNet is tightly connected as compared to the other three
graphs. Smart contracts may rely on other common smart contracts
to process a transaction. The direct arcs between smart contracts
in ContractNet result in the least number of articulation points.
Cohesion and adhesion refer to the minimum number of ver-
tices and arcs, respectively, that must be removed to disconnect
a network. Clearly, they are defined over undirected, connected
networks. Hence, instead of finding adhesion and cohesion of the
entire blockchain graphs (disconnected), the largest weakly and the
largest strongly connected components of each blockchain graph
is considered in our analysis. We treat each largest weakly and ev-
ery largest strongly connected component as a simple, undirected
graph, and compute its cohesion and adhesion (Table 13). We ob-
serve that our largest connected components are not at all structurally
cohesive. Deletion of only one vertex or, only one arc, disconnects these
components. In case of cohesion, this is the highest-degree vertex
in the respective component, such as Binance, a highly popular
cryptocurrency exchange that provides a platform for trading.

5.7 Path Lengths and Diameter

Finally, we estimate the properties related to shortest paths between
pairs of vertices, e.g., average path lengths, radii, and diameters.
For these measurements, we consider simple, undirected version
of our largest strongly and weakly connected components. Note
that the eccentricity of a vertex v is the maximal shortest path
distance between v and any other vertex. The radius of a network
is defined as the minimum eccentricity across all vertices, and
the diameter is the maximum eccentricity across all vertices. Due
to high computational complexity associated with evaluating the
actual radius and diameter, the numbers presented in Table 13 are
from determining the eccentricity of 10000 random vertices in
each component [52]. Interestingly, analogous to social networks,
blockchain graphs are also small-world: The average shortest path
length is only 4~6. However, in both our larger networks, TraceNet
and TransactionNet, there are vertices which are far apart, making
the radius, diameter as 5002 and 8 267, respectively.

6 STUDYING INDIVIDUAL TOKEN NETS

In our analysis thus far, TokenNet comprises of all tokens ‘hosted’
on Ethereum. However, each of the prominent tokens on Ethereum
drives a significantly large groups of miners, exchanges, users, and
contracts, indulging in the use, transfer, exchange, and creation of
that particular token. In addition to the overall Ethereum network,
these token subnetworks are quite interesting by themselves.

We consider three prominent, yet behaviourally distinct, tokens:
Bancor (BNT), Binance Coin (BNB), and Zilliga (ZIL) for indepen-
dent network analysis. Bancor is a token underlying a decentralized
exchange network, featuring a large number of smart contracts;
Binance Coin is the utility token for Binance, one of the largest
cryptocurrency exchanges in the world; and Zilliga is a young coin
backed by the Zilliga cryptocurrency network, which rose to promi-
nence within a short span of time. The network for each token is
extracted from the original Ethereum TokenNet, filtered by their
respective token marker. The basic characteristics of each token
network is presented in Table 14. It is interesting to note that even
though Bancor has way less number of users (vertices) in the subnet-
work compared to Binance Coin, the number of interactions (arcs)
is considerably higher. Zilliqa is a new token, but has evidently
accumulated significant number of users and interactions.

Table 14: Characteristics of individual token networks

Token # Vertices # Arcs  # Self Loops Density
Bancor 65605 1489059 7275 7% 107°%
Binance Coin 357986 526010 146 8x107¢
Zilliga 91250 334480 111 8x107°

Table 15: Core decomposition of individual token networks

Token Network # Cores  Innermost Core
(#vertices, #arcs) (#vertices, #arcs)
Bancor (65605, 1489059) 14 (39, 339)
Binance Coin (357986, 526010) 7 (11, 41)
Zilliqa (91250, 334480) 13 (43, 391)

6.1 Core Decomposition

Two major points of interest in the evolution of the individual token
subnetworks motivate our analysis: the amount of activity in the
token network over time, and the size of the core community driving
the token economy over time. To observe these features empirically,
we study the k-core decomposition of each token sub-network, over
time, and note — (i) the number of cores, (ii) the number of vertices
in the innermost core, (iii) the number of arcs within the innermost
core, and (iv) the number of arcs from vertices in the innermost
core, in each token network. This temporal progression of coreness
give us a measure for token activity, hence popularity, over time.
We show the overall k-core decomposition statistics for each
token in Table 15, before proceeding with temporal analysis. Notice
that both Bancor and Zilliga have large core indices and their inner-
most cores are large, implying that more users participate in dense
substructures in these networks, compared with Binance Coin.
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6.2 Temporal Progress of Core Decomposition

In the case of each of the aforementioned three tokens, BNT, BNB
and ZIL, we adopt a sliding window technique for the k-core decom-
position, with a window size of 3 weeks, and a slide stride of 1 week.
This allows us to extract enough data from the token networks to
create a meaningful token subgraph in each case. This results in a
2 week overlap between temporally consecutive token subgraphs,
allowing us to see the long-term evolution of the network while
minimizing the effect of sudden fluctuations in coreness. Still, we ob-
serve interesting rise and fall in the number of cores and number of
vertices in the innermost core for the individual tokens, exhibiting
a significant relation with the token market price in USD.

In the first three subfigures of Figure 6, we present the temporal
evolution of the number of cores in the token subgraphs against the
corresponding evolution of price of the token in the cryptocurrency
market. We notice that for Bancor, the price change seems to drive
the activity in the network, for Binance Coin the activity and price
move simultaneously, while for Zilliqa, the activity in the network
seems to precede the price fluctuations. In the last subfigure of Fig-
ure 6, we present the temporal evolution of the number of vertices
in the innermost core of the Bancor token subgraph against the
corresponding evolution of price of the token (other two cases not
depicted due to space constraint). Here, on the other hand, we ob-
serve the peaks of activity in the core token community preceding
the hike in price of the token. Detailed analysis in this line will be
of interest in terms of forecasting the price of Ethereum backed
tokens. Certain shifted correlations for the time series are as high
as 0.6 for Bancor, 0.63 for Binance, and 0.72 for Zilliqa.

7 DISCUSSION AND CONCLUSIONS

In this work we investigated several local and global graph proper-
ties over four Ethereum blockchain networks (TraceNet, Contract-
Net, TransactionNet, and TokenNet), as well as in three prominent
token subnetworks (Bancor, Binance Coin, and Zilliga), and con-
ducted a thorough experimental evaluation.

We find that these blockchain networks are very different from
social networks. In case of both TraceNet and TransactionNet, Log-
normal, Weibull, and Power-law with cut-off are better fit than the
traditional power-law degree distribution. In all four blockchain
networks, we have higher outdegree vertices (e.g., mining pools
and mixers), as well as higher indegree vertices (e.g., ICO smart
contracts). This characteristic is similar to the Web, consisting of
both hub (having higher outdegrees) and authority (with higher

indegrees) vertices, and is unlikely in social networks, which usually
have high correlation between indegrees and outdegrees. As a result,
blockchain networks are disassortative, having very low transitivity.
Moreover, most frequent motifs observed in blockchain graphs are
chain and star-shaped. Complex patterns, such as triangles, cycles,
and cliques occur less, indicating lack of community structure in
blockchain networks. Removal of only the highest-degree vertex
(e.g., Binance, a global cryptocurrency exchange) can disconnect
the entire largest weakly connected components in these graphs.

In spite of the aforementioned differences, blockchain networks
are surprisingly small-world and well-connected. Analogous to
social networks, blockchain graphs have average shortest path
lengths only 4~6. Similar to both social networks and the Web,
blockchain networks contain a single, large strongly connected
component (SCC), and about 98% of the remaining vertices can
either reach this SCC, or can be reached from the SCC. In terms
of the four different networks, we observe that ContractNet has
more self-loops and bidirectional arcs (hence, higher reciprocity),
while TokenNet has fewer of them. As a result, the MultiDigraph
of ContractNet is denser, while the simple, undirected version of
TokenNet is more dense. Both of them yield larger core indices
for vertices in the innermost cores, indicating higher density of
their innermost cores. Moreover, both ContractNet and TokenNet
have smaller radius and diameter compared to our larger networks,
TraceNet and TransactionNet.

Future work. Following our characterization of Ethereum into
four different blockchain networks, there is ample opportunity
for future work. Study of individual mining pools as complex self-
contained evolving networks would be interesting, as would be an
investigation on the interplay between mining pools to identify
instances of selfish mining and mining strategies [35, 59]. Further
analysis of the individual Token networks in terms of activity sig-
natures and temporal evolution (like change in coreness) may lead
to more accurate forecasting of trading behavior and token prices
in the cryptocurrency market [67, 68, 71]. Identification of influ-
ential vertices and complex motifs (like cliques and cycles) in the
blockchain networks may also lead to detection of fraudulent ac-
tivities in the transaction and token networks of Ethereum. To
facilitate such research directions, we open source our datasets:
https://github.com/sgsourav/blockchain-network-analysis. Quite
naturally, a similar line of measurements and analyses can be ap-
plied to other public blockchain platforms to unearth interesting
phenomena within and across the Web of blockchain networks.


https://github.com/sgsourav/blockchain-network-analysis
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