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ABSTRACT
The popularity of blockchain has led to the development of many
web platforms with different functionalities. Ethereum, a decentral-
ized, open-source blockchain featuring smart contracts, introduces
an interesting ecosystem of human users and autonomous agents
(the contracts). It is the most actively used blockchain platform,
hosting ether, the second largest cryptocurrency by market capi-
talization, as its native store of value. The Ethereum blockchain
contains a vast amount of user-to-user, user-to-contract, contract-
to-user, and contract-to-contract interactions that can be modeled
as complex networks. To mine these interactions as graphs using
any analytics toolbox, an end-user has to extract, transform, and
load (ETL) the data into a desired network format. However, it is
costly and time-consuming to manage the ETL pipeline for the
massive and complex blockchain data. To support research in this
domain, we develop an end-to-end, automated tool — EtherNet,
which performs ETL tasks from a single source of truth (Google
BigQuery), and provides graph equivalent representations for visu-
alization and mining on the entire Ethereum blockchain network.

CCS CONCEPTS
•Mathematics of computing→Graph algorithms;Exploratory
data analysis; • Applied computing→ Digital cash.

KEYWORDS
Ethereum Blockchain Network, Extract-Transform-Load, Financial
Data Mining

ACM Reference Format:
Voon Hou Su, Sourav Sen Gupta, and Arijit Khan. 2022. Automating ETL
and Mining of Ethereum Blockchain Network. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining (WSDM ’22),
February 21–25, 2022, Tempe, AZ, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3488560.3502187

1 INTRODUCTION
Blockchain technology attracted extensive attention from the in-
dustry and from academia, giving rise to popular cryptocurrencies
and web platforms. This is well suited for Web 3.0 – a decentral-
ized, secure internet, where individuals engage with each other in
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economic interactions. Blockchain is a distributed ledger of transac-
tions or records, stored in a sequential order, ensuring provenance,
and can be critical in the trust economy of the future [10]. Bitcoin
was the first blockchain implemented over a decade ago [11]. In
2014–2015, Ethereum1 was introduced, allowing users to prove
ownership of assets, and also to execute code as smart contracts.
Ethereum is the most actively-used blockchain in the world, with
the second most prominent cryptocurrency ether as a store of value.
It is used in many applications, e.g., cryptocurrencies, decentralized
finance, smart city, Internet-of-Things, and gaming [6].

Blockchain introduces new directions in online financial data
mining and analysis. Ethereum blockchain contains a vast amount
of information documenting user-to-user, user-to-contract, contract-
to-user, and contract-to-contract interactions. Recent works [3, 5, 7–
9, 12–14, 16, 17] modeled transactions, tokens, and interactions in
Ethereum (and in other blockchains) as graphs to provide new
insights through network mining. Graph-based analyses are pow-
erful tools to characterize activities and time-varying patterns over
blockchains [8, 17], to address attack forensics and anomaly detec-
tion [3], to detect abnormal transactions (voting gangs and frauds
[18]), and to correlate price dynamics with graph features, identify-
ing financial risks for cryptocurrency users [1].

1.1 Challenges in Ethereum Network Analysis
Past research [2, 3, 5, 9, 13, 16, 19], with the exception of ours [8, 17],
extracted Ethereum data mainly by running an Ethereum node2, or
querying the blockchain using managed services.

One can join the Ethereum network of nodes through a “client”
to verify blocks, transactional data, and also to interact with the
blockchain. Geth is the most popular software client for running
a node on Ethereum. Once a Geth node completes a “Fast” sync,
it switches to full archive sync for which approximately 5TB of
storage space is required3. Due to massive volume, it takes more
than a week to fully synchronize entire data at a newly connected
node. This also requires users to set up a stable system with robust
hardware, huge storage space, and network bandwidth. Such an
approach is not feasible for users who only require ad-hoc access to
Ethereum data for analyses. Instead, users generally interact with
Ethereum nodes via the web3 library using managed services, e.g.,
Infura and Quicknode. The number of requests that one can make
per day depends on the subscription package, and thus, users are
faced with high costs if they want to extract large amounts of data.
Moreover, blockchain data is stored at clients in heterogeneous,
complex data structures, in binary or in encrypted format, which
cannot be directly used for exploration, mining, or visualization.

1V. Buterin. https://ethereum.org/en/whitepaper/
2https://ethereum.org/en/developers/docs/nodes-and-clients/
3https://decrypt.co/24779/ethereum-archive-nodes-now-take-up-4-terabytes-of-space
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Alternative efforts are made to provide users with an easy and
economically viable access to a single source of truth of the Ethereum
blockchain data via public datasets, e.g., Google BigQuery [4] and
XBlock-ETH [19]. Ethereum blockchain data, available on Google
BigQuery, is updated daily and is accessible through an SQL inter-
face. The data is stored in eight tables, as listed in Table 1. In recent
works [8, 17], we extracted relevant data from Google BigQuery.

Table 1: Ethereum Data on Google BigQuery (till 25 May 2021)
Table Row Count (Million) Approximate Size of Dataset (GB)
balances 153.56 8.58
blocks 11.72 12.07
contracts 37.39 31.77
logs 1 043.24 502.84
token transfers 595.69 171.89
tokens 0.19 0.03
traces 2775.28 1626.74
transactions 985.76 455.64

SELECT table_id,
TRUNC(row_count/1000000, 2) AS row_millions,
TRUNC(size_bytes/1073741824, 2) AS size_gb,
FROM `bigquery-public-data.crypto_ethereum._TABLES_`

While this method appears to be straightforward, there still exist
many ETL issues and Google Cloud Platform (GCP) related charges.

— First, due to lack of automated ETL, users need to identify
required range of data, write custom tools to curate data from
Ethereum blockchain to obtain raw data, build one-off tools to
ETL raw data into desired graph representations, e.g., Neo4J or
NetworkX formats.

— Second, no solutions exist to catalogue the data being down-
loaded. Manual ETL workflow gets messy resulting in users down-
loading duplicate data that were downloaded in previous workflows.

— Third, GCP restricts how much data can be downloaded di-
rectly from the SQL query results page. If output > 1GB, one may
use Google Cloud Storage (GCS) Bucket before the dataset can be
downloaded. Users are charged for data storage and network usage,
on top of BigQuery related costs of querying and storing.

1.2 Our Solution and Contributions
We build and open-source an automated tool, EtherNet [15], to
simplify the ETL pipeline from Ethereum data into relevant graph
representations. This will benefit researchers, practitioners, devel-
opers, data scientists, and financial analysts dealing with Ethereum
blockchain data. EtherNet provides a Python SDK aiming at (1) a
scalable, efficient storage system for Ethereum data, (2) a consis-
tent access layer to data and ETL workflows, and (3) an efficient
discovery of graphs and running queries. The Python SDK (Client)
initiates ETL requests, while the Java (JDK 11) backend processes
the requests. EtherNet’s core is defined as protobufs — a language-
neutral, open-source, cross-platform library to serialize structured
data. Our employed dependencies support horizontal scaling.

We conceptualize four interaction networks [8, 17]: TraceNet,
consisting of all recorded messages and successful transactions be-
tween all accounts (both users and smart contracts); TransactionNet,
formed by all transactions from user accounts to other addresses;
ContractNet, by considering transactions between smart contracts;
and TokenNet, containing token-based transactions. Our system
architecture is given in § 2. We discuss demonstration plan, with
one visual query form and another analytical query form, as well

as EtherNet’s performance in § 3. The entire EtherNet codebase is
open-sourced [15] and a video demonstration of its usage is available
at the YouTube direct link — https://youtu.be/DFzIya3sDfM.

2 SYSTEM OVERVIEW
Solution architecture. The high-level architecture of EtherNet is
illustrated in Figure 1. Python SDK (Client) allows the user to initi-
ate an ETL flow by sending an UpdateRequest to a gRPC endpoint,
while the Core (Service Layer) maps it to the concrete implementa-
tion of GenericService to handle the gRPC call. If all data required
to serve the request are available in Hive, the structured (tabular)
data are fetched, they are transformed into the desired graph for-
mat [8, 17], and are loaded into the Neo4j database. If a part of the
required data is not available in Hive, the tool automatically fetches
the incremental data from Google BigQuery to enrich the curated
data source before creating the graph. The pertinent Neo4j graph is
returned to the Python SDK (Client) for mining and visualization.

Figure 1: High level architecture diagram of EtherNet

Application topology. The high-level application topology of Eth-
erNet and all its components is illustrated in Figure 2. EtherNet
Core and EtherNet Serving components are meant to be deployed
on the same host, while the Python SDK client may be deployed
on separate (individual) hosts. The data store is maintained inde-
pendently in a Hive warehouse hosted on a Hadoop cluster. The
EtherNet Core backend is written in Java (JDK 11) using the Spring
Boot framework, split into distinct layers, each with their own
responsibilities.

Configuration layer ensures that EtherNet Core backend is set up
correctly during runtime. Controller layer serves incoming client re-
quests received via REST API endpoints. Exception layer allows the
EtherNet Core backend to dictate how certain exceptions should
be handled. Model layer defines the entities used throughout the
EtherNet Core backend. The entities are defined as Java classes
with one-to-one mapping to the Hive warehouse tables that are re-
sponsible for storing them. EtherNet Core’s model layer is defined
as protobufs and is generated using a protobuf compiler. Repository
layer helps the service layer to persist and retrieve data from Hive.
It abstracts persistence operations through multiple classes imple-
mented to fetch entities like blocks, contracts, transfers, etc. Service

https://youtu.be/DFzIya3sDfM


Figure 2: High level application topology of EtherNet

layer encapsulates business logic implementation and centralizes
data access. It defines what functionalities are provided and how to
access them. Utility layer provides static methods for niche tasks
that do not need to be executed within the Spring context.
Software components. The EtherNet Serving component is used
to help manage and serve Neo4j resources, while the Python SDK
is used to interact with EtherNet Core and EtherNet Serving to
submit ETL jobs and manage Neo4j graphs respectively. Table 2
shows the components within EtherNet Serving and Python SDK.

Table 2: Components of EtherNet Serving and Python SDK

Classes in EtherNet Serving Description
run_neo4j_import.py Helper script to invoke neo4j-admin tool to

perform batch imports of CSV to create Neo4j
graphs.

switch_db.py Helper script to switch Neo4j databases, exe-
cuted by running through a request to the RPyC
server.

rpyc_classic.py Script provided when users install the python
RPyCmodule; used to start a classic RPyC server.

Classes in Python SDK Description
get_neo4j_config Fetches Neo4j connection configuration. Users

are able to connect to the Neo4j graph directly
and interact with it using Neo4j’s Python driver.

get_serving_config Gets serving connection configuration for the
user. Used mainly for debugging purposes.

get_databases Lists the Neo4j databases that have been created
in previous ETL jobs, with data persisted in Hive.

switch_database Switches to a specific Neo4j database of interest.
create_token_transfers_graph Creates a token transfers graph from the

Ethereum blockchain data in a user-specified
block range.

create_traces_graph Creates a traces graph from the Ethereum
blockchain data in a user-specified block range.

create_transactions_graph Creates a transactions graph from the Ethereum
blockchain data in a user-specified block range.

3 DEMONSTRATION PLAN
Objective. EtherNet aims to support languages and environments
most users are comfortable with, e.g., Python Notebooks. EtherNet
uses protobufs to define the entities and gRPC services. Proto-
bufs allows for new features to be added while ensuring backward
compatibility, as well as easy language interoperability since it is
implemented in a variety of languages. EtherNet uses Hive as a data
warehouse. This allows EtherNet to store large amounts of data
in the Hadoop Distributed File System (HDFS), making it a much
more scalable solution as compared to traditional RDBMS. The use
of Hive affords EtherNet the ability to scale horizontally depending
on workloads if configured properly. Fluctuating workloads can be
accommodated by spinning datanodes up or down.
Requirements. The requirements from EtherNet were targeted at
efficiency and scalability — (i) EtherNet fetches block timestamps
from block numbers to control the costs incurred in using BigQuery
as a source of truth as well as to reduce eventual query execution
time; (ii) EtherNet identifies incremental data required for each
query and keeps a copy of the data downloaded for previous ETL
jobs to reduce the monetary cost incurred for BigQuery; (iii) Eth-
erNet is capable of persisting Ethereum blockchain data in a Hive
database, as well as retrieving the data upon request; (iv) EtherNet
allows users to create and store graph representations of the tab-
ular Ethereum blockchain data retrieved from BigQuery in Neo4j
format, parsing through the “token_transfers”, “traces” and “trans-
actions” tables; (v) The Python SDK allows users to list the Neo4j
graph database(s) that have been created in previous ETL jobs and
to switch between existing Neo4j graph databases quickly.

3.1 Demonstration using Python Notebook
Visualization. EtherNet provides APIs to support various ETL
workflows, creating a preferred type of graph within a specified
block range. Once the graph is created, it can be visualized via
the Neo4j interface. The respective code is shown in the following
snippets, while the output visualization is presented in Figure 3.
# Connect to EtherNet Core
from ethernet.client import Client
ec = Client(core_host="192.168.1.99",

core_grpc_port=9090, core_http_port=8080)

# Create a token_transfers graph given a block range
response = ec.create_token_transfers_graph(2000000, 2000500)

# Switch to the Neo4j graph that has just been created
dbs = ec.get_databases()
ec.switch_database(dbs[0])

Figure 3: Output visualization for the constructed graph in Neo4J



(a) Time taken to load data into an ORC file

(b) Time taken to insert data into a Hive table
Figure 4: Data ingestion efficiency of EtherNet

Mining. Constructed graphs can be decomposed into smaller sub-
graphs based on edge features like token_address, block_number,
block_timestamp, or node features like connected_component, de-
gree, etc. One may also use Cypher query strings from the Python
Notebook for further graph mining in Neo4j. The following Cypher
query finds the number of strongly connected components (SCC)
and their statistics in our constructed graph. The query computes
that out of all addresses (nodes) which are involved in token trans-
fers between blocks 2,000,000 and 2,000,500, there are 67 SCCs; the
largest with 4 nodes and the smallest with 1 node.
query_string = """CALL gds.alpha.scc.write({nodeProjection:'Address',

relationshipProjection:'TOKEN_TRANSFER', writeProperty:'componentId'})
YIELD setCount AS set_count,

maxSetSize AS max_set_size, minSetSize AS min_set_size;"""
dtf_data = pd.DataFrame([dict(_) for _ in conn.query(query_string, db=db)])

3.2 System Performance
We test system performance characteristics of EtherNet under a
controlled environment and workload, on a server having Intel(R)
Xeon(R) CPU X5690 @ 3.47GHz with two cores, 8GB RAM, 100GB
disk storage, supported by a Hadoop cluster with 1 namenode and
1 datanode with map-reduce execution mode for Hive.
Ingestion efficiency. The ingestion of data into Hive tables is a
multistep process in EtherNet, where (i) the data of interest is down-
loaded from BigQuery, (ii) the BigQuery data types are mapped to
ORC data types, (iii) the transformed data types are written into an
ORC file in the HDFS, (iv) a temporary Hive table is created with
the ORC location pointing to the ORC file in the HDFS, (v) the data
from the temporary Hive table is inserted into the destination Hive
table, where it is automatically chunked into smaller ORC files.

To get an idea of the ingestion performance, time taken to load
data into an ORC file and time taken to insert data into a Hive table
were measured over 196 ingestion cycles, with the number of rows

to be ingested varying between 4,000 and 8,000,000. Figures 4(a)
and 4(b) indicate that the time required to ingest data grows linearly
with rows required to be ingested across all the tables.
Storage efficiency. The storage space required for both Hive and
BigQuery is shown in Table 3 for the three main blockchain tables.
Although BigQuery stores data in a compressed format (Capaci-
tor), the amount of bytes to be read when performing a query is
measured by the raw-uncompressed number of bytes required to
hold the data in the BigQuery table, as presented in Table 3. Hive
is configured to use ORC for storing the Ethereum blockchain data
in case of EtherNet, and we find that the storage space needed is
significantly lesser with Hive as compared to other options like
PostgreSQL or MySQL that do not have compression enabled out of
the box. As shown in Table 3, EtherNet compressed the data down
to around 8.4% of its original size for traces, 18.1% its original size
for token transfers, and 26.9% of its original size for transactions.

Table 3: Storage efficiency of EtherNet (Hive) vs BigQuery
Table Blocks Number of Rows Hive BigQuery
token transfers 0 – 6,825,750 152,587,661 8.00 GB 44.2 GB
traces 0 – 2,463,500 267,789,485 9.72 GB 115.1 GB
transactions 0 – 4,745,000 103,189,720 11.93 GB 44.3 GB
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