
Steering Top-k Influencers in Dynamic Graphs via

Local Updates

Vijaya Krishna Yalavarthi∗ †, Arijit Khan∗

∗Nanyang Technological University, Singapore
†Information Systems and Machine Learning Lab, University of Hildesheim, Germany

Abstract—We propose a generalized framework for influence
maximization in large-scale, time evolving networks. Many real-
life influence graphs such as social networks, telephone networks,
and IP traffic data exhibit dynamic characteristics, e.g., the
underlying structure and communication patterns evolve with
time. Correspondingly, we develop a dynamic framework for
the influence maximization problem, where we perform effective
local updates to quickly adjust the top-k influencers, as the
structure and communication patterns in the network change.
We design a novel N-Family method (N=1, 2, 3, . . .) based on
the maximum influence arborescence (MIA) propagation model
with approximation guarantee of (1 − 1/e). We then develop
heuristic algorithms by extending the N-Family approach to other
information propagation models (e.g., independent cascade) and
influence maximization algorithms (e.g., CELF, reverse reachable
sketch). Based on a detailed empirical analysis over several
real-world, dynamic, and large-scale networks, we find that our
proposed solution, N-Family improves the updating time of the
top-k influencers by 1 ∼ 2 orders of magnitude, compared to
existing algorithms, while ensuring similar memory usage and
influence spreads.

I. INTRODUCTION

The problem of influence analysis [6] has been widely

studied in the context of social networks, because of the

tremendous number of applications of this problem in viral

marketing and recommendations. The assumption in bulk of

the literature on this problem is that a static network has

already been provided, and the objective is to identify the top-

k seed users in the network such that the expected number of

influenced users, starting from those seed users and following

an influence diffusion model, is maximized.

In recent years, however, people recognized the inherent

usefulness in studying the dynamic network setting [2], and

influence analysis is no exception to this general trend [10],

[9], because many real-world social networks evolve over time.

In an evolving graph, new edges (interactions) and nodes

(users) are continuously added, while old edges and nodes get

dormant, or deleted. In addition, the communication pattern

and frequency may also change.

From an influence analysis perspective, even modest

changes in the underlying network structure (e.g., addition/

deletion of nodes and edges) and communication patterns

(e.g., update in influence probabilities over time) may lead

to changes in the top-k influential nodes. As an example, let

us consider the influence graph in Figure 1 with 12 nodes, out

of which the top-2 seed nodes are A and I (marked in bold),

This work was done when the first author was employed at NTU

� �

�

��

�

I

�

�
0.8

0.3 0.6

0.08 0.8

0.8

0.1
F

	

0.7

0.8

Fig. 1: Running example: an influence graph

�

�

��

�

I

�

�

0.3 0.6

0.08 0.8

0.8

0.1

�

	

0.7

0.8

 F

Fig. 2: Influence graph after update operation: edge delete AC

following the Maximum Influence Arborescence (MIA) model

and θ = 0.07 [5]. The influence spread obtained from this seed

set, according to the MIA model, is: 2.58+ 2.6 = 5.18. Now,

assume an update operation in the form of an edge removal

AC (marked in red). The new influence spread obtained from

old seed nodes would be: 3.9, whereas if we recompute the

top-2 seed nodes, they are I and F , as shown in Figure 2. The

influence spread from these new seed nodes is: 5.1. Notice

that there is a significant difference in the influence spread

obtained with the old seeds vs. the new ones (even for such a

small example graph), which motivates us to efficiently update

the seed nodes when the influence graph evolves.

However, computing the seed set from ground, after every

update, is prohibitively expensive [10], [9] — this inspires us

to develop dynamic influence maximization algorithms. By

carefully observing, we realize that among the initial two

seed nodes, only one seed node, namely A is replaced by

F , whereas I still continues to be a seed node. It is because

A is in the affected region of the update operation, whereas

I is not affected by it. Therefore, if we can identify that A
can no longer continue as a seed node, then we can remove

it from the seed set; and next, the aim would be to find one

new seed node instead of two. Hence, we save almost 1/2 of

the computation in updating the seed set. To this end, the two

following questions are critical for identifying the top-k seed

nodes in a dynamic environment.

• What regions are affected when the graph evolves?

• How to efficiently update the seed nodes with respect to

such affected regions?

Affected region. The foremost query that we address is

identifying the affected region, i.e., the set of nodes potentially

affected due to the update. They could be: (1) the nodes

(including some old seed nodes) whose influence spreads are

significantly changed due to the update operation, and also (2)

those nodes whose marginal gains might change due to an

affected seed node, discovered in the previous step(s). Given

a seed set S, the marginal gain of a node v 6∈ S is computed as

the additional influence that v can introduce when it is added

to the seed set.

Given the influence graph and dynamic updates, we design

an iterative algorithm to quickly identify the nodes in the af-

fected region. We call our method N-Family, N = 1, 2, 3, . . . ,
(until a base condition is satisfied), which we shall discuss in

Section IV.

Updating the seed nodes. Once the affected region is

identified, updating the top-k seed set with respect to that

affected region is also challenging. We develop an approximate

algorithm under the MIA model of information diffusion, with

theoretical performance guarantee of 1− 1/e.

Moreover, it should be understood that our primary aim

is to maximize the influence spread as much as possible

with the new seed nodes, instead of searching for the exact

seed nodes (in fact, finding the exact seed nodes is NP-hard

[6]). Therefore, we also show how to design more efficient

heuristic algorithms, by carefully tuning the parameters (e.g.,

by limiting N = 2) of our N-Family approach.

Our proposed framework to update the top-k seed nodes

is a generic one, and we develop heuristics (presented in the

extended version [14]) by using it on top of other information

propagation models (e.g., independent cascade [6]) and several

influence maximization (IM) algorithms (e.g., Greedy [6],

CELF [7], RR-sketch [3]). In particular, we first find the

affected region, and then update the seed nodes only by adding

a few sub-routines to the existing static IM algorithms, so that

they can easily adapt to dynamic changes.

Our contributions.

• We propose an iterative technique, N-Family that sys-

tematically identifies affected nodes (including old seed

nodes) due to dynamic updates, and develop an incre-

mental method that replaces the affected seeds with new

ones, so to maximize the influence spread in the updated

graph. We derive theoretical performance guarantees of

our algorithm under MIA model.

• We show how to develop efficient heuristics by extend-

ing proposed algorithm to other information propagation

models and influence maximization algorithms for updat-

ing the seed nodes in an evolving network.

• We conduct a thorough experimental evaluation using

several real-world, dynamic, and large graph datasets. The

empirical results with our heuristics attest 1 ∼ 2 orders

of efficiency improvement, compared to state-of-the-art

approaches [10], [9].

II. RELATED WORK

Kempe et al. [6] addressed the problem of influence maxi-

mization in a social network as a discrete optimization prob-

lem, and proposed a hill climbing greedy algorithm, with an

accuracy guarantee of (1−1/e). They used the MC simulation

to compute the expected influence spread of a seed set. Since

the introduction of the influence maximization problem, many

algorithms [7], [5], [3] have been developed, both heuristic

and approximated, to improve the efficiency of the original

greedy method (see [4] for details).

In recent years, there has been interest in performing influ-

ence analysis in dynamic graphs [1], [10], [8], [13], [9], [12].

The work in [1] was the first to propose methods that maximize

the influence over a specific time interval; however, it was not

designed for online setting. The work in [13] probed a subset

of the nodes for detecting the underlying changes. Liu et al.

[8] considered an evolving network model (e.g., preferential

attachment) for influence maximization. Subbian et al. [11]

discussed the problem of finding influencers in social streams,

although they employed frequent pattern mining techniques

over the underlying social stream of content. This is a different

modeling assumption than the dynamic graph setting consid-

ered in this work. Recently, Wang et al. [12] considered a slid-

ing window model to find influencers based on the most recent

interactions. Once again, their framework is philosophically

different from the classical influence maximization setting [6],

as they do not consider any edge probabilities; and hence, not

directly comparable to ours.

In regards to problem formulation, recent works in [10],

[9], [15] are closest to ours. UBI+ [10] was designed for

MC-simulation based algorithms and IC model. It performs

greedy exchange for multiple times — every time an old

seed node is replaced with the best possible non-seed node. If

one continues such exchanges until there is no improvement,

the method guarantees 0.5 approximation. DIA [9] and [15]

work on top of RR-Sketches. These methods generate all RR-

sketches only once; and after every update, quickly modifies

those existing sketches. After that, DIA [9] identifies all seed

nodes from ground using modified sketches. This is the key

difference with our framework, since we generally need to

identify only a limited number of new seed nodes, based

on affected regions due to updates. On the contrary, [15]

reports the top-k nodes having maximum influence spreads

individually with the modified sketches. Thus, the objective of

[15] is different from that of classic influence maximization,

which we study in this work.

Note that it is non-trivial to adapt UBI+ [10] and DIA

[9] for other influence models and IM algorithms, than their

respective ones. A drawback of this is as follows. Sketch

based methods (e.g., DIA) consume higher memory for storing

multiple sketches. In contrast, MC-simulation based methods

(e.g., UBI+) are slower over large graphs. On the other hand,

our proposed N-Family approach can be employed over many

IM models and algorithms, and due to the local updating

principle, it significantly improves the efficiency under all

scenarios. Therefore, one can select the underlying IM models

and algorithms for the N-Family approach based on system

specifications and application requirements. This demonstrates

the generality of our solution.

III. PRELIMINARIES

An influence network can be modeled as an uncertain graph

G(V,E, P), where V and E ⊆ V × V denote the sets of

nodes (users) and directed edges (links between users) in the

network, respectively. P is a function P : E → (0, 1) that

assigns a probability to every edge uv ∈ E, such that Puv

is the strength at which an active user u ∈ V influences

her neighbor v ∈ V . The edge probabilities can be learnt

(from past propagation traces), or inferred (following various

models), as discussed in [4]. In this work, we shall assume

that G(V,E, P) is given as an input to our problem.

A. Influence Maximization in Static Graphs

Whenever a social network user (node) u buys a product,

or endorses an action (e.g., re-tweets a post), she is viewed as

being influenced or activated. When u is active, she automati-

cally becomes eligible to influence her neighbors who are not

active yet. All active users (nodes) at the end are considered

as the users (nodes) influenced by S.

In this work we consider two different models for the in-

fluence propagation: maximum influence arborescence (MIA)

[5] and independent cascade (IC) [6]. Due to space limitation,

details of the models are provided in our extended version [14].

The exact estimation of influence spread is a #P-hard problem

under the IC model [5]. However, influence spread can be

computed in polynomial time for the MIA model. Hence, we

consider MIA model to develop an approximate algorithm with

theoretical guarantee and IC model for efficient heuristics.

Influence maximization (IM) problem. Influence maximiza-

tion is the problem of identifying the seed set S∗ of cardinality

k that has the maximum expected influence spread (σ(S∗))
in the network. The influence maximization is an NP-hard

problem, under both MIA and IC models [5], [6].

In spite of the aforementioned computational challenges

of influence estimation and maximization, we can develop

a Greedy Algorithm (Algorithm 1) with approximation guar-

antee of (1 − 1
e
) [6]. The Greedy algorithm repeatedly se-

lects the node with the maximum marginal influence gain

(MG(S, u) = σ(S ∪ {u}) − σ(S)) (line 2), and adds it to

the current seed set (line 3) until k nodes are identified.

B. IM in Dynamic Graphs

Classical influence maximization techniques are developed

for static graphs. The real-time influence graphs are seldom

static and evolves over time as follows.

Graph update categories. We recognize two update cat-

egories, additive updates: an edge or node is added, or

probability of an edge increases and reductive updates: an

edge or node is deleted, or probability of an edge decreases.

Hereafter, we use a general term update for any of the above

operations, and we denote an update operation with o.

Dynamic influence maximization problem.

Problem 1. Given an initial uncertain graph G(V,E, P), old

set S∗
old of top-k seed nodes, and a series of consecutive graph

updates {o1, o2, . . . , ot}, find the new set S∗
new of top-k seed

nodes for this updated graph.

The baseline method to solve the dynamic influence max-

imization problem will be to find the updated graph at every

time, and then execute an IM algorithm on the updated graph,

which returns the new top-k seed nodes. However, computing

all seed nodes from ground at every snapshot is prohibitively

expensive, even for moderate size graphs [10], [9]. Hence,

our work aims at incrementally updating the seed set, without

Algorithm 1 Greedy(G, S, k): for IM in static networks

Require: Graph G(V,E, P), seed set S (initially empty),

positive integer k
Ensure: Seed set S having the top-k seed nodes

1: while |S| <= k do

2: u∗ = argmaxu∈V \S{σ(S ∪ {u})− σ(S)}
3: S = S ∪ u∗

4: Output S

explicitly running the complete IM algorithm at every snapshot

of the evolving graph.

IV. PROPOSED SOLUTION

We propose a novel N-Family framework for dynamic

influence maximization, which can be adapted to many influ-

ence maximization algorithms and several influence diffusion

models. We first introduce our framework under the MIA

model that illustrates how an update affects the nodes in the

graph (Section IV-A), and how to re-adjust the top-k seed

nodes with a theoretical performance guarantee (Section IV-B).

Initially, we explain our technique for a single update, and

later we show how it can be extended to batch updates

(Section IV-C). In Section IV-D and in the extended version

[14], we show how to extend our algorithm to IC and LT

models, with efficient heuristics.

A. Finding Affected Regions

Given an update, the influence spread of several nodes in the

graph could be affected. However, the nearby nodes would be

impacted heavily, compared to a distant node. We, therefore,

design a threshold (θ)-based approach to find affected regions,

and this is consistent with the notion of the MIA model. Note

that in MIA model, the influence spread happens only via the

maximum influence paths (defined below), and an influence

threshold θ is used to eliminate maximum influence paths with

propagation probabilities less than θ. Clearly, θ is an input

parameter to trade off between efficiency and accuracy, and

its optimal value is decided empirically.

In MIA model, the affected nodes could be computed

exactly in polynomial time. We, however, consider a more

efficient upper bounding technique as discussed next.

1) Definitions: We start with a few definitions.

Definition 1 (Maximum influence paths). Maximum influence

path (MIP) is a path Pt from a source u to a destination node

v which has the highest probability compared to all other paths

between the same pair of nodes.

MIP (u, v) = argmax
Pt∈P(u,v)

{
∏

e∈Pt

Pe}

Definition 2 (Maximum Influence In (Out)-Arborescence).

Maximum Influence In (Out)-Arborescence [5] of a node

u ∈ V is the union of all the maximum influence paths

to (from) u, where every node in that path reaches (by) u
with a minimum propagation probability θ, and is denoted as

MIIA(u, θ) (MIOA(u, θ)).

MIIA(u, θ) = ∪
v∈V
{MIP (v, u) :

∏

e∈MIP (v,u)

Pe ≥ θ}

MIOA(u, θ) = ∪
w∈V
{MIP (u,w) :

∏

e∈MIP (u,w)

Pe ≥ θ}

Definition 3 (1-Family). For every node u ∈ V , 1-Family of

u, denoted as F1(u), is the set of nodes that influence u, or

get influenced by u with minimum probability θ through the

maximum influence paths, i.e.,

F1(u) = MIIA(u, θ) ∪MIOA(u, θ)

Definition 4 (2-Family). For every node u ∈ V , 2-Family of

u, denoted as F2(u), is the union of the set of nodes present

in 1-Family of every node in F1(u), i.e.,

F2(u) = ∪
w∈F1(u)

F1(w)

Note that 2-Family is a superset of 1-Family of a node.

Example 1. In Figure 1, let us consider θ = 0.07. Then,

pp({C}, C) = 1, pp({A}, C) = 0.8, and pp({L}, C) =
0.8 × 0.1 = 0.08. For any other node in the graph, its

influence on C is 0. Hence, MIIA(C, 0.07) = {C,A,L}.
Similarly, MIOA(C, 0.07) = {C,D,E}. F1(C) will

contain {C,A,L,D,E}. Analogously F2(C) will contain

{C,A,L,D,E,B}. Since the context is clear, for brevity we

omit θ from the notation of family.

We note that Dijkstra’s shortest path algorithm, with time

complexity O(|E| + |V | log |V |) [5], can be used to identify

the MIIA, MIOA, and 1-Family of a node. The time

complexity for computing 2-Family is O(|E|+ |V | log |V |)2.

For simplicity, we refer to 1-Family of a node as its family.

The 2-Family of a seed node satisfies an interesting

property (given in Lemma 1) in terms of marginal gains.

Lemma 1. Consider s ∈ S, then removing s from the seed

set S does not change the marginal gain of any node that is

not in F2(s). Formally, MG(S, u) = MG(S \ {s}, u), for all

u ∈ V \ F2(s), according to the MIA model.

Formal proofs of all our lemma and theorems are given in

the extended version [14]. Intuitively, Lemma 1 holds because

the marginal gain of a node u depends on the influence of seed

nodes over those nodes that u influences. For a node u that

is outside F2(s), there is no node that can be influenced by

both s and u. It follows from the fact that a node influences,

or gets influenced by the nodes that are present only in its

family, based on the MIA model.

Change in family after an update. During an additive update,

the size of the family of a node nearby the update may

increase. Analogously, during a reductive update, the size of

family of a node surrounding the update may decrease. Thus,

for soundness, in case of an additive update, we compute

MIIA, MIOA, and family on the updated graph. On the

contrary, for a reductive update, we compute them on the old

graph. Next, we show in Lemma 2 that MIIA(u, θ) provides

a safe bound on affected region for any update originating at

node u, according to the MIA model.

Lemma 2. In an influence graph G(V,E, P), adding a new

edge uv does not change the influence spread of any node

outside MIIA(u, θ) by more than θ, following MIA model.

Lemma 2 holds because a node u cannot be influenced

by any node that is not in MIIA(u, θ), according to the

MIA model. Hence, adding an edge uv does not change the

influence spread (at all) of any node outside MIIA(u, θ). This

phenomenon can be extended to edge deletion, edge probabil-

ity increase, and for edge probability decrease. Moreover, for

a node update (both addition and deletion) u, MIIA(u, θ)
gives a safe upper bound of the affected region. We omit the

proof due to brevity. Therefore, MIIA(u, θ) is an efficient

(computing time O(|E|+ |V | log |V |)) and a safe upper bound

for the affected region.

2) Infected Regions: Due to an update in the graph, we

find that a node may get affected in two ways: (1) the nodes

(including a few old seed nodes) whose influence spreads are

significantly affected due to the update operation, and also (2)

those nodes whose marginal gains might change due to an

affected seed node, discovered in the previous step(s). This

gives rise to a recursive definition, and multiple levels of

infected regions, as introduced next.

First infected region (1-IR). When an update o takes place,

the influence spread of the nodes surrounding it, will change.

Hence, we consider the first infected region as the set of nodes,

whose influence spreads change at least by θ.

Definition 5 (First infected region (1-IR)). In an influence

graph G(V,E, P), a given probability threshold θ, and an

update operation o, 1-IR(o) is the set of nodes whose influence

spread changes at least by θ. Formally,

1-IR(o) = {v ∈ V : |σG(v)− σG,o(v)| ≥ θ}

In the above equation, σG(v) denotes the expected influence

spread of v in G, whereas σG,o(v) is the expected influence

spread of v in the updated graph. Following our discussion,

we consider MIIA(u, θ) as a proxy for 1-IR(o), where u is

the starting node for the update operation o.

Second infected region (2-IR). We next demonstrate how

infection propagates from the first infected region to other

parts of the graph through the family of affected seed nodes.

First, consider a seed node s ∈ S, a non-seed node u 6∈ S,

and s ∈ F2(u). If the influence spread of u has increased due

to an update, then to ensure that s continues as a seed node,

we have to remove s from the seed set, and recompute the

marginal gain of every node in F2(s). The node, which has

the maximum gain, will be the new seed node. Second, if a

seed node s gets removed from the seed set in this process,

the marginal gains of all nodes present in F2(s) will change.

We are now ready to define the second infected region.

Definition 6 (Second infected region (2-IR)). For an additive

update (oa), the influence spread of every node present in 1-

IR(oa) increases which gives the possibility for any node in

1-IR to become a seed node. Hence, the union of 2-Family

of all the nodes present in 1-IR(oa) is called the second

infected region 2-IR(oa). On the contrary, in a reductive

update operation or, there is no increase in influence spread

of any node in 1-IR(or). Hence, the union of 2-Family of old

seed nodes present in 1-IR(or) is considered as the second

infected region 2-IR(or).

u ov

F2(v)
1-IR(o)=MIIA(u)

w

F2(w)
s1

F2(s1)

2-IR(o)

3-IR(o)

z
F2(z)

s2

F2(s2)

4-IR(o)

x
F2(x)No seed in

F2(x).

Terminate

Fig. 3: Iterative infection propagation: o is an additive update
operation originating at node u. s1 and s2 are two old seed nodes.
v, w, z, x are nodes, not necessarily old seed nodes.

2-IR(or) = {F2(s) : s ∈ 1-IR(or) ∩ S}

2-IR(oa) = {F2(u) : u ∈ 1-IR(oa)}

The time complexity to identify 2-IR is O(m(|E| +
|V | log |V |)2), where m is the number of nodes in 1-IR.

Example 2. In Figure 1, consider the removal of edge AC. As-

suming θ = 0.07, 1-IR(o)=MIIA(A, 0.07) = {A,L}. Now,

2-IR(o)=F2(A) because A is an old seed node present in 1-

IR(o) for this reductive update. Furthermore, because this is a

reductive update, the family of A needs to be computed before

the update. Therefore, 2-IR(o)=F2(A) = {A,B,C,D,L,E}.

Iterative infection propagation. Whenever there is an update,

the infection propagates through the 2-Family of the nodes

whose marginal gain changes as discussed above. For N ≥ 3,

the infection propagates from the (N − 1)th infected region

to the N th infected region through old seed nodes that are

present in the 2-Family of nodes in (N-1)-IR.

Definition 7 (N(≥ 3) infected region (N-IR)). The 2-Family

of seed nodes, that are in the 2-Family of infected nodes in

(N-1)-IR, constitute the N th infected region.

N-IR = {F2(s) : s ∈ F2(u) ∩ S, u ∈ (N-1)-IR}

We demonstrate the iterative computation of infected re-

gions, up to 4-IR for an additive update, in Figure 3. We

begin with node u which is the starting node of the update, and

MIIA(u, θ) is the 1-IR. The update being an additive one,

union of 2-Family of all the nodes v ∈ 1-IR is considered as

the 2-IR. For all nodes w ∈ 2-IR, we compute F2(w). Now,

union of 2-Family of all seed nodes s1 ∈ F2(w) is considered

as 3-IR. Similarly, 4-IR can be deduced, and as there is

no seed present in the 2-Family of all nodes x ∈ 4-IR, we

terminate the infection propagation.

Termination of infection propagation. The infection prop-

agation stops when no further old seed node is identified in

the 2-Family of any node in the N th infected region. Due to

this, there shall be no infected node present in 2-Family of

any uninfected seed node. For a seed set of cardinality k, it

can be verified that the maximum value of N can be between

1 and (k+1) for reductive update and between 2 and (k+2)
for additive update.

Total infected region (TIR). The union of all infected regions

is referred to as the total infected region (TIR).

Algorithm 2 N-Family seeds updating on top of Greedy

Require: Graph G(V,E, P), total infected region TIR, old

seed set S, |S| = k, old priority queue Q
Ensure: Compute the new seed set Snew of size k

1: Srem ← S \ TIR
2: for all u ∈ TIR do

3: Q(u)← σ(u)

4: while TRUE do

5: Snew = Greedy(G, Srem, k) /* add Srem − k seeds

*/

6: Sorder ← Sorted nodes of Snew in Greedy inclusion

order

7: w ← Q[top]

8: if (Sk−1
order, s

k
o) < MG(Sorder, w) then

9: for all u ∈ F2(s
k
o) \ S

k−1
order do

10: Q(u)←MG(Sk−1
order, u)

11: Srem ← Sk−1
order

12: else

13: Output Sorder

TIR = 1-IR ∪ 2-IR ∪ 3-IR ∪ . . . until termination

Our recursive definition of TIR satisfies the following.

Lemma 3. The marginal gain of every node outside TIR does

not change, according to the MIA model. Formally, let S be

the old seed set, and we denote by Srem the remaining old

seed nodes outside TIR, i.e., Srem = S \ TIR. Then, the

following holds: MG(S, v) = MG(Srem, v), ∀v ∈ V \ TIR.

Lemma 3 holds because any node outside TIR does not

belong to 2-Family of any seed node present in TIR. Hence,

by Lemma 1, its marginal gain does not change.

Lemma 4. Any old seed node outside TIR has no influence

on the nodes inside TIR, following the MIA model. Formally,

pp(Srem, u) = 0, ∀u ∈ TIR.

Lemma 4 holds because any uninfected seed node is more

than 2-Family away from any node present in TIR (This is

how we terminate infection propagation). Hence, there is no

node present in TIR that belongs to the family of any seed

node outside TIR.

The old seed nodes inside TIR may no longer continue as

seeds, therefore we discard them from the seed set, and the

same number of new seed nodes are identified. We discuss the

updating procedure of seed nodes below.

B. Updating the Seed Nodes

1) Approximation Algorithm: We present our proposed

algorithm for updating the seed set in Algorithm 2. Consider

Greedy (Algorithm 1) over the MIA model on the initial graph,

and assume that we obtained the seed set S, having cardinality

k. Since Greedy works in an iterative manner, let us denote by

Si−1 the seed set formed at the end of the (i− 1)-th iteration,

whereas si ∈ S is the seed node added at the i-th iteration.

Clearly, 1 ≤ i ≤ k, |Si−1| = i − 1, and S = Sk = ∪ki=1si.
Additionally, we use a priority queue Q, where its top node

w has the maximum marginal gain MG(S,w) among all the

non-seed nodes.

After update o, we compute the total infected region TIR.

Consider Srem, of size |Srem| = k′, as the set of old seed

nodes outside TIR, i.e., Srem = S \ TIR. Then, we remove

(k − k′) old seed nodes inside TIR, and our objective is to

identify (k − k′) new seeds from the updated graph.

Note that inside Srem, seeds are still sorted in descending

order of their marginal gains, computed at the time of insertion

in the old seed set S following the Greedy algorithm.

After removing the old seed nodes present in TIR from the

seed set, we compute the influence spread σ(u) of every node

u ∈ TIR and, we update these nodes u in the priority queue

Q, based on their new marginal gains σ(u) (lines 1-4). It can

be verified that MG(Srem, u) = σ(u), for all u ∈ TIR, due

to Lemma 4.

Now, we proceed with greedy algorithm and find the new

(k − k′) seed nodes. Let us denote by Snew the new seed set

(of size k) found in this manner (line 6). Next, we sort the seed

nodes in Snew in their appropriate inclusion order according

to the Greedy algorithm over the updated graph (line 7). This

can be efficiently achieved by running Greedy only over the

seed nodes in Snew, while computing their influence spreads

and marginal gains in the updated graph. The sorted seed set

is denoted by Sorder. Let us denote by sko the last (i.e., k-th)

seed node in Sorder, whereas Sk−1
order represents the set of top-

(k − 1) seed nodes in Sorder. We denote by w the top-most

seed node in the priority queue Q. We terminate our updating

algorithm (line 15), if MG(Sk−1
order, s

k
o) ≥MG(Sorder, w).

Iterative seed replacement. On the other hand, if

MG(Sk−1
order, s

k
o)<MG(Sorder, w), we remove the last seed

node sko from Sorder. For every node u in the F2(s
k
o)\S

k−1
order,

we compute marginal gain MG(Sk−1
order, u) and update the

priority queue Q (lines 10-11). Next, we compute a new seed

node using Greedy and add it to Sk−1
order, thereby updating the

seed set Sorder. We also keep the nodes in Sorder sorted after

every update in it. Now, we again verify the condition: if

MG(Sk−1
order, s

k
o)<MG(Sorder, w), where w being the new

top-most node in the priority queue Q, then we repeat the

above steps, each time replacing the last seed node sko from

Sorder, with the top-most node from the updated priority

queue Q. This iterative seed replacement phase terminates

when MG(Sk−1
order, s

k
o) ≥MG(Sorder, w). Clearly, this seed

replacement can run for at most |Srem| = k′ rounds; because

in the worst scenario, all old seed nodes in Srem could get

replaced by new seed nodes from TIR. Finally, we report

Sorder as the new seed set.

2) Theoretical Performance Guarantee: We show in our

extended version [14] that the top-k seed nodes reported

by our N-Family method are the same as the top-k seed

nodes obtained by running the Greedy on the updated graph

under MIA model. Since, the Greedy algorithm provides the

approximation guarantee of 1− 1
e

under the MIA model [5],

N-Family also provides the same approximation guarantee.

C. Extending to Batch Updates

We consider the difference of nodes and edges present in

two snapshots at different time intervals of the evolving net-

work as a set of batch updates. One straightforward approach

TABLE I: Properties of datasets
Dataset #Nodes #Edges Timestamps

From To

Digg 30 398 85 247 10-05-2002 11-23-2015

Slashdot 51,083 130 370 11-30-2005 08-15-2006

Epinions 131 828 840 799 01-09-2001 08-11-2003

Flickr 2 302 925 33 140 017 11-01-2006 05-07-2007

would be to apply our algorithm for every update sequentially.

However, we develop a more efficient technique as follows.

For a batch update consisting of m individual updates, every

update oi has its own TIR(oi), i = 1, 2, 3, . . . ,m. The TIR

of the batch update is the union of TIR(oi), for all i ∈ (1,m).

TIR = ∪mi=1 TIR(oi)

Once the TIR is computed corresponding to a batch update,

we update the seed set using Algorithm 2. Processing all the

updates in one batch is more efficient than the sequential

updates. For example, if a seed node is affected multiple times

within a batch, during sequential updates we have to check if

it remains the seed node every time. Whereas in batch update,

we need to verify it only once.

D. Heuristic Solution in IC model

Here we will show how we can develop efficient heuristics

by extending the proposed N-Family approach to the IC

model. Extension to LT model is given in our extended

version [14].

Computing TIR. In the IC model, finding the nodes whose

influence spread changes by at least θ (due to an update) is

a #P-hard problem. Hence, computing TIR under IC model

is hard as well, and one can no longer ensure a theoretical

performance guarantee of (1 − 1
e
) as earlier. Instead, we

estimate TIR analogous to MIA model (discussed in Sec-

tion IV-A2), which generates high-quality results as verified

in our experiments. This is because the maximum influence

paths considered by MIA model play a crucial role in influence

cascade over real-world networks [5].

We also propose a more efficient heuristic method, based

on our experimental results with several evolving networks,

by carefully tuning the parameters (e.g., by limiting N = 1, 2
in TIR computation) of our N-Family algorithm. Indeed, the

major difference in influence spreads between the new seed set

and the old one comes from those seed nodes in the first two

infected regions (i.e., 1-IR and 2-IR) (We refer to sensitivity

analysis experiments in our extended version [14]).

Updating Seed set. Our method In IC model follows the same

outline as given in Algorithm 2 for updating the seed set with

two major differences. In lines 3 and 11 of Algorithm 2, we

compute the marginal gains and update the priority queue, but

now we employ more efficient techniques based on the IM

algorithm used for the purpose. Moreover, in the extended ver-

sion [14], we derive two efficient heuristic algorithms, namely,

Family-CELF (or, F-CELF) and Family-RRS (or F-RRS) by

employing our N-Family approach on top of two efficient IM

algorithms CELF [7] and RR sketch [3], respectively.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

• Datasets. We download four real-world graphs (Table I)

from the Koblenz Network Collection (http://konect. uni-

10
4

10
5

10
6

40 60 80 100
00ru

n
 t

im
e

 (
s
e

c
s
)

% of total edges added

F-CELF
UBI+

F-RRS
DIA

(a) Edge add., Digg (DWA)

10
4

10
5

10
6

100 80 60 40
0

ru
n

 t
im

e
 (

s
e

c
s
)

% of total edges deleted

F-CELF
UBI+

F-RRS
DIA

(b) Edge del., Slashdot (TV)

10
5

10
7

10
9

40 60 80 100
00

ru
n

 t
im

e
 (

s
e

c
s
)

% of total nodes added

F-CELF
UBI+

F-RRS
DIA

(c) Node add., Epinions (TV)

1.0*10
8

2.0*10
8

4.0*10
8

100 95 90 85 80
0

ru
n

 t
im

e
 (

s
e

c
s
)

% of total nodes deleted

F-RRS
DIA

(d) Node del., Flickr (DWA)

Fig. 4: Run time to adjust seed set, IC model, seed sets adjusted after each update

10
3

10
4

10
5

10
6

40 60 80 100
00

ru
n

 t
im

e
 (

s
e

c
s
)

% of total nodes added

F-CELF CELF

(a) Node add., Slashdot (DWA)

10
4

10
5

10
6

10
7

100 80 60 40
0

ru
n

 t
im

e
 (

s
e

c
s
)

% of total nodes deleted

F-CELF CELF

(b) Node del., Epinions (DWA)

Fig. 5: Run time to adjust seed set, MIA model, seed sets adjusted
after each update

5.0*10
2

1.0*10
3

1.5*10
3

2.0*10
3

40 60 80 100

in
fl
u

e
n

c
e

 s
p

re
a

d

% of total edges added

F-CELF
UBI+

F-RRS
DIA

INITIAL

(a) Inf. spread, edge add.,

Digg (DWA) in IC model

2.0*10
3

4.0*10
3

6.0*10
3

8.0*10
3

1.0*10
4

100 80 60 40

in
fl
u

e
n

c
e

 s
p

re
a

d

% of total nodes deleted

F-CELF
CELF

INITIAL

(b) Inf. spread, node del.,

Epinions (DWA) in MIA model

Fig. 6: Influence spread, seed sets adjusted after each update

koblenz.de/ networks/). All these graphs have directed edges,

together with time-stamps; and hence, we consider them as

evolving networks. If an edge appears for multiple times, we

only consider the first appearance of that edge as its insertion

time in the graph. The edge counts in Table I are given

considering distinct edges only.

• Influence strength models. We adopt two popular edge

probability models for our experiments. Those are exactly

the same models used by our competitors: UBI+ [10] and

DIA [9]. (1) Degree Weighted Activation (DWA) Model.

In this model [6], [9], [10] (also known as weighted cascade

model), the influence strength of the edge (uv) is equal to

1/din(v), where din(v) is the in-degree of the target node v.

(2) Trivalency (TV) Model. In this model [6], [9], each edge

is assigned with a probability, chosen uniformly at random,

from (0.1, 0.01, 0.001).
• Competing Algorithms. (1) FAMILY-CELF (F-CELF).

[14] This is an implementation of our proposed N-FAMILY

framework, on top of the CELF influence maximization al-

gorithm. (2) FAMILY-RR-Sketch (F-RRS). [14] This is an

implementation of our proposed N-FAMILY framework, on top

of the RR-Sketch influence maximization algorithm. (3) DIA.

The DIA algorithm was proposed in [9], on top of the RR-

Sketch. The method generates all RR-sketches only once; and

after every update, quickly modifies those existing sketches.

After that, all seed nodes are identified from ground using

the modified sketches. This is the key difference with our

algorithm F-RRS, since we generally need to identify only

a limited number of new seed nodes, based on the affected

region due to the update. (4) UBI+. UBI+ [10] performs

greedy exchange for multiple times — every time an old seed

node is replaced with the best possible non-seed node. Due to

efficiency, [10] limits the number of exchanges to k, where k
is the cardinality of the seed set. An upper bounding method is

used to find such best possible non-seed nodes at every round.

10
-3

10
-2

10
-1

10
0

10
1

1 30 60 120

ru
n

 t
im

e
 (

s
e

c
s
)

length of slide (secs)

F-CELF
UBI+

DIA

(a) Run time to adjust seed set,

varying L, W = 1 hour

10
-3

10
-2

10
-1

10
0

10
1

30 60 180 360

ru
n

 t
im

e
 (

s
e

c
s
)

length of window (mins)

F-CELF
UBI+

DIA

(b) Run time to adjust seed set,

varying W , L = 60 secs

Fig. 7: Impacts of varying batch sizes, sliding window model,
Twitter, IC influence prop., seed sets are adjusted after every slide

• Parameters Setup. (1) #Seed nodes. We vary seed

set size from 5∼100 (default 30 seed nodes). (2) #RR-

Sketches. Our total number of sketches are bounded by

β(|V | + |E|) log |V |, and we vary β from 2∼512 (default

β = 25 = 32 [9]). (3) Size of family. The family size |F1(u)|
of a node u is decided by the parameter θ, and we vary θ
from 1∼0.01 (default θ=0.1). (4) #IR to compute TIR. We

consider upto 3-IR to compute TIR (default upto 2-IR). (5)

Influence diffusion models. We employ IC [6] and MIA [5]

models for influence cascade. Bulk of our empirical results are

provided with IC, since this is widely-used in the literature.

(6) #MC samples. We use 10 000 MC samples to compute

the influence spread in IC [6].

Due to lack of space, sensitivity analysis results with respect

to above parameters are given in the extended version [14].

The code is implemented in Python, and the experiments are

performed on a single core of a 256GB, 2.40GHz Xeon server.

All results are averaged over 10 runs.

B. Single Update Results

First, we show results for single update queries related to

edge addition, edge deletion, node addition, and node deletion.

We note that adding an edge uv can also be considered as

an increase in the edge probability from 0 to Pe(uv). Analo-

gously, deleting an edge can be regarded as a decrease in edge

probability. Moreover, for the DWA edge influence model,

when an edge is added or deleted, the probabilities of multiple

adjacent edges are updated (since, inversely proportional to

node degree). (1) Edge addition. We start with initial 40% of

the edges in the graph data, and then add all the remaining

edges as dynamic updates. (2) Edge deletion. We delete the

last 60% of edges from the graph as update operations. (3)

Node addition. We start with the first 40% of nodes and

all their edges in the dataset. We next added the remaining

nodes sequentially, along with their associated edges. (4) Node

deletion. We delete the last 20% of nodes, with all their edges

from the graph.

Here, we adjust the seed set after every update, since one

does not know apriori when the seed set actually changes, and

hence, it can be learnt only after updating them.

Efficiency. In Figure 4, we present the running time to dy-

namically adjust the top-k seed nodes, under the IC influence

cascade model. We find that F-CELF and F-RRS are always

faster than UBI+ and DIA, respectively, by 1∼2 orders of

magnitude. As an example, for node addition over Epinions

in Figure 4(c), the time taken by F-CELF is only 2× 106 sec

for about 80K node additions (i.e., 24.58 sec/node add). In

comparison, UBI+ takes around 8×107 sec (i.e., 1111.21 sec/

node add). Our F-RRS algorithm requires about 4× 105 secs

(i.e., 5.31 sec/ node add), and DIA takes 10 × 106 sec (i.e.,

134.68 sec/node add). These results clearly demonstrate the

efficiency improvements by our methods.

Sketch-based methods are relatively slower (i.e., F-RRS vs.

F-CELF, and DIA vs. UBI+) in smaller graphs (e.g., Digg and

Slashdot). This is due to the overhead of updating sketches

after graph updates. On the contrary, in our larger datasets,

Epinions and Flickr, the benefit of sketches is more evident

as opposed to MC-simulation based techniques. In fact, both

F-CELF and UBI+ are very slow for our largest Flickr dataset;

hence, we only show F-RRS and DIA for Flickr in Figure 4(d).

Additionally, in Figure 5, we show the efficiency of our

method under the MIA model of influence spread. Since it

is non-trivial to adapt UBI+ and DIA for the MIA model, we

compare our algorithm F-CELF with CELF [7] in these experi-

ments. For demonstration, we consider Slashdot and Epinions,

together with node addition and deletion, respectively. It can

be observed from Figure 5 that F-CELF is about 2 orders

of magnitude faster than CELF. These results illustrate the

generality and effectiveness of our approach under difference

influence cascading models.

Influence spread. We show influence spread with updated

seed set for IC (Figure 6(a)) and MIA (Figure 6(b)). Note

that the competing algorithms, i.e., F-CELF, F-RRS, UBI+,

and DIA achieve similar influence spreads with their updated

seed nodes. We also show by INITIAL the influence spread

obtained by the old seed set in the modified graph. We find that

INITIAL achieves significantly less influence spread, espe-

cially with more graph updates. These results demonstrate the

usefulness of dynamic IM approaches, and also effectiveness

of our algorithm for influence coverage.
C. Batch Update Results

We demonstrate batch updates with a sliding window model

as used in [10]. Initially we consider the edges present in

between 0 to W units of time (length of window) and compute

the seed set. Next, we slide the window to L units of time.

The edges present in between L and W +L are considered as

the updated data, and our goal is to adjust the seed set based

on the updated data. We delete the edges from 0 to L and add

the edges from W to W +L. We continue sliding the window

until we complete the whole data.

We conducted this experiment using the Twitter dataset

downloaded from https://snap.stanford.edu/data/ (tweets

posted between 01-JUL-2012 to 07-JUL-2012, during

announcement of the Higgs-Boson particle), containing

304 199 nodes and 555 481 edges. Probability of an edge is

given by: 1 − e
−f
k , where f is the total number of edges

appeared in the window, and k is the constant. We vary W
from 30 mins to 6 hrs and L from 1 sec to 2 mins. We set

the value of k as 5. On an average, 1.8 updates appear per

second. Since the number of edges in a window is small, we

avoid showing results with F-RRS. This is because F-CELF

performs better on smaller datasets. From the experimental

results in Figure 7, we find that F-CELF is faster than both

UBI+ and DIA upto three orders of magnitude.
VI. CONCLUSIONS

We developed a generalized, local updating framework

for efficiently adjusting the top-k influencers in an evolving

network. Our method iteratively identifies only the affected

seed nodes due to dynamic updates in the influence graph,

and then replaces them with more suitable ones. Our solution

can be applied to a variety of information propagation models

and influence maximization techniques. Our algorithm, N-

Family ensures (1− 1
e
) approximation guarantee with the MIA

model, and works well for localized batch updates. Based

on a detailed empirical analysis over several real-world and

dynamic networks, N-Family improves the updating time of

the top-k influencers by 1∼2 orders of magnitude, compared to

existing algorithms, while ensuring similar influence spreads.
VII. ACKNOWLEDGEMENTS

The research is supported by MOE Tier-1 RG83/16 and

NTU M4081678. First author would like to thank Informa-

tion Systems and Machine Learning Lab at University of

Hildesheim, Germany for partial funding of travel expenses.

REFERENCES

[1] C. Aggarwal, S. Lin, and P. S. Yu. On Influential Node Discovery in
Dynamic Social Networks. In SDM, 2012.

[2] C. Aggarwal and K. Subbian. Evolutionary Network Analysis: A Survey.
ACM Comput. Surv., 47(1):10:1–10:36, 2014.

[3] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing Social
Influence in Nearly Optimal Time. In SODA, 2014.

[4] W. Chen, L. V. S. Lakshmanan, and C. Castillo. Information and
Influence Propagation in Social Networks. In Synthesis Lec. on Data

Management (Morgan & Claypool Publishers), 2013.
[5] W. Chen, C. Wang, and Y. Wang. Scalable Influence Maximization for

Prevalent Viral Marketing in Large-Scale Social Networks. In KDD,
2010.

[6] D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the Spread of
Influence through a Social Network. In KDD, 2003.

[7] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance. Cost-effective Outbreak Detection in Networks. In KDD,
2007.

[8] X. Liu, X. Liao, S. Li, J. Zhang, L. Shao, C. Huang, and L. Xiao. On the
Shoulders of Giants: Incremental Influence Maximization in Evolving
Social Networks. In Complexity, 2017.

[9] N. Ohsaka, T. Akiba, Y. Yoshida, and K.-I. Kawarabayashi. Dynamic
Influence Analysis in Evolving Networks. In PVLDB, 9(12):1077–1088,
2016.

[10] G. Song, Y. Li, X. Chen, X. He, and J. Tang. Influential Node Tracking
on Dynamic Social Network: An Interchange Greedy Approach. IEEE

Trans. Knowl. Data Eng., 29(2):359–372, 2017.
[11] K. Subbian, C. Aggarwal, and J. Srivastava. Mining Influencers Using

Information Flows in Social Streams. ACM Trans. Knowl. Discov. Data,
10(3):26:1–26:28, 2016.

[12] Y. Wang, Q. Fan, Y. Li, and K.-L. Tan. Real-Time Influence Maximiza-
tion on Dynamic Social Streams. In PVLDB, 10(7):805–816, 2017.

[13] H. Zhuang, Y. Sun, J. Tang, J. Zhang, and X. Sun. Influence Maximiza-
tion in Dynamic Social Networks. In ICDM, 2013.

[14] V. K. Yalavarthi and A. Khan. Steering Top-k Influencers in
Dynamic Graphs via Local Updates (Extended Version). In
http://arxiv.org/abs/1802.00574, 2018.

[15] Y. Yang, Z. Wang, J. Pei, and E. Chen. Tracking Influential Nodes in
Dynamic Networks. IEEE Trans. Knowl. Data Eng., 29(11):2615–2628,
2017.

