
Online Updates of Knowledge Graph Embedding

Luo Fei1, Tianxing Wu2, and Arijit Khan1

1 Nanyang Technological University, Singapore
{fei.luo, arijit.khan}@ntu.edu.sg

2 Southeast University, China
tianxingwu@seu.edu.cn

Abstract. Complex networks can be modeled as knowledge graphs (KGs)
with nodes and edges denoting entities and relations among those enti-
ties, respectively. A knowledge graph embedding assigns to each node
and edge in a KG a low-dimensional semantic vector such that the orig-
inal structure and relations in the KG are approximately preserved in
these learned semantic vectors. KG embeddings support downstream ap-
plications such as KG completion, classification, entity resolution, link
prediction, question answering, and recommendation. In the real world,
KGs are dynamic and evolve over time. State-of-the-art KG embedding
models deal with static KGs. To support dynamic updates (even local),
they must be retrained on the whole KG from scratch, which is ineffi-
cient. To this end, we propose a new context-aware Online Updates of
Knowledge Graph Embedding (OUKE) method, which supports embed-
ding updates in an online manner. OUKE learns two different vectors for
each node and edge, i.e., knowledge embedding and context embedding.
This strategy effectively limits the impacts of a local update in a smaller
region, so that OUKE is able to efficiently update the KG embedding.
Experiments on the link prediction in dynamic KGs demonstrate both
effectiveness and efficiency of our solution.

Keywords: Knowledge graphs, embedding, dynamic updates.

1 Introduction

Knowledge graph is a data model for complex networks to manage large-scale
and real-world facts [14, 9]. Examples include DBpedia [18], YAGO [13], Freebase
[4], NELL [22], personalized health knowledge graphs [11], etc., where a node
represents an entity, and an edge denotes a relationship between two entities.
Knowledge graph embedding [32, 3] is increasingly becoming popular, which aims
to represent each relation and entity in a knowledge graph G as a d-dimensional
vector, such that the original structure and relations in G are approximately
preserved in this semantic space. KG embeddings are used in downstream ap-
plications, e.g., link prediction [27, 36, 31], entity classification [37], question an-
swering [14, 33], KG completion [6], and recommender systems [38].

In the real world, KGs are dynamic and evolve over time [26, 19]. DBpedia
extracts the update stream of Wikipedia each day to keep the KG up-to-date



2 Luo Fei et al.

e4

e3 e2

e1

e6 e5

e7

r1

r4

r3

r5 r2

r1

r2

r6

r7

r5

e8

e9

e11

e10

r8

r9

r3

r5 r10

r11

r12

r6

Fig. 1. Dynamic updates in a KG: dashed nodes and edges denote updates.

[12]. IMDB provides daily dumps of movies, TV series, actors, directors, among
others, as well as their relationships [1]. Amazon product KG is updated quite
frequently because there is a large number of new products everyday [9]. Re-
cently, IBM’s COVID-19 knowledge graph can ingest 100 000 PDF pages per
day [2]. However, existing models [24, 5, 34, 36, 30, 10, 7, 3] embed static KGs. To
support dynamic updates in a KG, these models must be retrained on the whole
KG from scratch, which is inefficient, and is also impracticable when the KG has
higher update frequency (e.g., once per day). To this end, we study the novel
problem of efficiently updating a KG embedding in an online manner.

Consider the KG in Figure 1, the updates are denoted by dashed nodes
and edges. Assume that we have embedded this KG using TransE [5], which
should hold the translation relation: h+ r ≈ t (vectors are represented as bold
characters) for each triple (h, r, t), where h is a head entity, r is a relation, and t

is a tail entity. For instance, the triple (Leonardo da Vinci, creator,Mona Lisa)
denotes that Leonardo da Vinci is the creator of the Mona Lisa. After adding
a new triple (e6, r5, e3), where e6, e3 are existing entities and r5 is an existing
relation in the earlier version of the KG, we now need to satisfy e6 + r5 ≈ e5.
No matter for which element in (e6, r5, e3) we decide to update its vector, it will
break the translation relations h+ r≈t for other triples containing our selected
element, thereby creating a cascade of updates on the embedding of the entire
KG. In summary, when a KG has local updates with addition and deletion of
triples, if we revise the vectors of some entities and relations due to such updates,
these revisions may cascade in the entire KG via connections among entities and
relations, which is expensive.

When local updates occur in a knowledge graph, in the context of KG em-
bedding, can we limit the impacts of such updates in certain regions, and not
in the entire KG? To this end, we design a novel, context-aware Online Updates
of Knowledge Graph Embedding (OUKE) approach, that answers this question
affirmatively. We assign two different vectors to each entity and relation. When
an entity (or a relation) denotes itself, we use a vector, called the knowledge

embedding. When it denotes a part of the context of other entities (or relations),
we use another vector, referred to as the contextual element embedding. In the
neighborhood of an entity (or a relation), contextual element embeddings are
aggregated to form the contextual subgraph embedding via a Relational Graph
Convolution Network (R-GCN) [25]. We construct the joint embedding of each
entity (h⋆ or t⋆) and relation (r⋆) by combining the knowledge embedding (i.e.,



Online Updates of KG Embedding 3

hk, tk, or rk) and the contextual subgraph embedding (i.e., sg(h), sg(t), or
sg(r)) via a gate strategy. Finally, we employ the joint embedding of each entity
or relation to hold the translation relation: h⋆+r⋆≈t⋆.

We next propose an online learning algorithm to incrementally update the
KG embedding. (1) Following the inductive learning, we keep all learnt pa-
rameters in R-GCNs and the gate strategy unaffected. (2) Contextual element
embeddings of existing entities and relations also remain the same. (3) After a
KG update, for many entities and relations, their contexts remain unchanged,
so their contextual subgraph embeddings would remain uninterrupted. Thus,
with existing knowledge embeddings of such entities and relations, correspond-
ing triples would satisfy: h⋆+r⋆≈t⋆. Hence, we also keep the knowledge em-
beddings of existing entities and relations unchanged so long as their contexts
are unchanged. (4) What shall we do with an existing entity or relation having
changed context? Notice that its contextual subgraph embedding, a combination
of context element embeddings of its neighboring entities or relations, computed
by the R-GCN, will change to reflect this update. We next relearn the knowl-
edge embeddings of existing entities and relations with changed contexts, and in
that process we adjust both their knowledge embeddings and joint embeddings,
with the aim that the joint embeddings, after such update, still approximately
satisfy the translations in the modified graph. (5) In addition, we also learn
knowledge embeddings and contextual element embeddings of emerging entities
and relations. In this way, our algorithm greatly reduces the number of triples
which need to be retrained while preserving h⋆+r⋆≈t⋆ on the whole KG. This
enables online learning with higher efficiency.

Example 1. In Figure 1, after adding triples (e7, r7, e6) and (e6, r5, e3) into KG
G, we have an emerging entity e7, an emerging relation r7, four existing relations
with changed contexts r1, r4, r5, r6, and two existing entities with changed con-
texts e3 and e6. Based on our online learning, we retrain only nine triples having
e3, e6, e7, r1, r4, r5, r6, and r7; i.e., (e3, r1, e4), (e3, r4, e2), (e1, r5, e3), (e1, r6, e6),
(e6, r5, e3), (e1, r1, e5), (e7, r7, e6), (e11, r5, e2), and (e11, r6, e5) and not all eigh-
teen triples in the updated version of G. This demonstrates the efficiency im-
provement due to our method even with such a small KG. In particular, we learn
knowledge embeddings, contextual element embeddings, and joint embeddings
of the emerging entity e7 and the emerging relation r7. For existing relations
with changed contexts (r1, r4, r5, r6) and existing entities with changed contexts
(e3 and e6), their contextual element embeddings remain the same, but the con-
textual subgraph embeddings are updated via R-GCN, due to changed contexts.
We also learn their updated knowledge embeddings and joint embeddings.

We empirically evaluate our method, OUKE (Online Updates of Knowledge
Graph Embedding) on link prediction over dynamic KGs. Compared to static KG
embedding models, OUKE has comparable effectiveness in different evaluation
metrics, and better efficiency in online learning since the static models must be
retrained on the entire KG.

Related Work. Static KG embedding can be translation-based (e.g., TransE
[5], TransH [34], and TransR [20]), via compositions of head-tail entity pairs with



4 Luo Fei et al.

Knowledge 

Embedding

Contextual 

Element 

Embedding
R-GCN

Contextual 

Subgraph 

Embedding

Joint 

Embedding

Gate 

Strategy

Fig. 2. Architecture of OUKE: Learning from Scratch.

their relations (e.g., RESCAL [24], DisMult [36], ComplEx [30]), as well as neural
network-based (e.g., R-GCN [25] and ConvE [7]). GAKE [10] simultaneously
models triples and structural contexts in embedding learning on static KGs.

Temporal KG embedding has been considered in [28, 8, 21] over multiple given
snapshots of a KG, by incorporating time in the entity-relation space, to better
perform link prediction, time prediction, and future fact prediction. In other
words, they only conduct offline embedding learning with multiple given KG
snapshots, but when faced with KG updates, they also need to be retrained on
the whole KG, so unlike ours, they cannot embed dynamic KGs with high effi-
ciency. To the best of our knowledge, puTransE [27] is the only existing model
supporting online embedding learning for dynamic KGs. puTransE learns em-
beddings of entities and relations from local parts of a KG, so it avoids retraining
on the entire KG, but cannot preserve the global structural information of the
KG in the learnt embedding. When compared with puTransE [27], our proposed
method, OUKE generally outperforms it in both effectiveness and efficiency.

Several dynamic graph embedding methods are also developed, e.g., [29, 39].
They incrementally compute the embeddings of new nodes and update existing
node embeddings after a graph update. However, when we need to learn edge
(i.e., relation) embeddings and consider various semantic correlations among
nodes and edges in a dynamic KG embedding, these models cannot be applied.

2 Problem Formulation

We categorize the problem of learning KG embedding in a dynamic scenario as
two sub-problems: Learning from scratch and online learning. Let a KG GT =
{(h, r, t)} ⊆ E × R × E , where {(h, r, t)} denotes a set of triples, h is a head
entity, r is a relation, t is a tail entity, e.g., {BMW, product,Germany} is a triple
in a KG indicating that BMW is produced in Germany, E and R are the sets
of all entities and relations in G, respectively, and T is the current time step.
We assume that each entity e in a KG has at least one type [33, 23], denoted by
T (e), e.g., BMW is of type Automobiles and Germany is of type Country.

Problem 1. Learning from Scratch. KG GT is given as an input to our method
at time step T . The outputs are vector representations of entities and relations.
Each entity or relation has two vectors: knowledge embedding and context ele-
ment embedding.

At time step T + 1, GT becomes GT +1 with updates including addition and
deletion of triples, even having emerging entities and relations. We define online
learning as follows:



Online Updates of KG Embedding 5

Problem 2. Online Learning. The inputs are KG GT +1 at time step T +1, KG
GT at time step T , and earlier embedding at time step T . Our method OUKE
outputs updated and new vectors for entities and relations at time step T + 1.

3 Embedding Learning from Scratch

The architecture of learning from scratch in OUKE is presented in Figure 2. We
assign two different vectors to each entity or a relation: knowledge embedding

and contextual element embedding.
Learning from scratch involves two phases: (1) context encoding models

the context of each entity or relation as a (multi)graph, and then utilizes a
relational graph convolutional network (R-GCN) [25] to encode such contexts;
(2) embedding learning applies a gate strategy to aggregate knowledge and
context vectors, and then defines a loss function based on translation for training.

Context Encoding. We define the context of each entity as an undirected
subgraph consisting of its neighbor entities (connected via some relations) and
itself. For efficiency of OUKE, we only consider one-hop neighbor entities. In our
experiments, when we consider more distant neighbors besides one-hop ones, it
consumes much more time for model training, but OUKE’s accuracy in link pre-
diction does not significantly improve. This is because the further away entities
are from each other, the less relevance they have [15, 17, 16], and less relevant
neighbors may also introduce noise, in addition to useful information. Consid-
ering these trade-offs and based on our experimental results, we choose one-hop
neighbor entities to build the context of each entity.

Different from entities, each relation occurs many times in a KG. We define
the context of each relation as an undirected multi-graph consisting of all its
neighbor relations (connected via entities having different types) and itself.

Example 2. In Figure 3, we show the contexts of entity e4 and relation r2, re-
spectively, from the example KG in Figure 1. The context of e4 consists of itself,
and its neighboring entities, e3 and e2, connected via relations r1 and r3, re-
spectively. So, the context of an entity forms a subgraph of the input KG. The
context of r2 consists of itself and other neighboring relations: r1, r3, r4, r5, r6,
r8, and r9. They are connected via entities of specific types, T (e) denotes the
type of entity e. For example, in IMDB the entity types could be actors, movies,
directors, etc. Since each relation occurs many times in a KG, the same pair of
relations can be connected via multiple entity types. Therefore, the context of a
relation could be a multi-graph.

Since contexts of entities and relations are (multi)graphs having edge re-
lations, the problem of context encoding is converted to relational subgraph
encoding via R-GCN as follows.

h
(l+1)
i = σ





∑

r∈R

∑

j∈Nr

i

1

|Nr
i |

W
(l)
r h

(l)
j +W

(l)
0 h

(l)
i



 (1)



6 Luo Fei et al.

e4

e3 e2

r1 r3

(a) Context of entity
e4

r5

r1

T(e2)

T(e
1)

T(e
5)

r4

r3

T(
e1)

T(
e 2
)

T(e2)

T(
e2)

r6

r8

r9

T(e
5)

T(e2
)
T(e2)

T(
e 2
)r2

(b) Context of relation r2

Fig. 3. Context of entity/ relation. T (e) denotes the type of entity e.

Here, h
(l)
i

is the hidden state of node vi (from the context graph) at the l-th
layer. N r

i
denotes the set of neighbor indices of node i under relation r ∈ R.

Equation 1 aggregates transformed feature vectors of neighboring nodes and
itself in a relation-specific manner and through a normalized sum, and then
passes through an element-wise activation function σ = ReLU. We employ two
R-GCNs, one for entities and another for relations. We consider one hidden
layer in both R-GCNs since one hidden layer achieves better results and a good
trade-off between accuracy and efficiency based on our experiments.

Joint Embedding. We aggregate the contextual subgraph embeddings of enti-
ties and relations with their knowledge embeddings via a gate strategy [35], and
form the joint embedding o⋆ of each object in the KG.

o
⋆ = g ⊙ o

k + (1− g)⊙ sg(o) (2)

where ⊙ means element-wise multiplication, o is an entity or a relation, ok is
its knowledge embedding, sg(o) is the vector representation of the context of o,
g = logistic(g̃) ensures that the value of each element in the gate vector g is in
[0, 1], and g̃ ∈ R

d is a parameter vector. Note that all entities share a g denoted
as ge, and all relations share another g denoted as gr .

Embedding Learning. Given a triple (h, r, t), we define a score function based
on a translation operation as follows:

f(h, r, t) = ‖h⋆ + r
⋆ − t

⋆‖22 (3)

where h⋆, r⋆ and t⋆ are computed by Equation 2.
For training, we define a margin-based loss function:

L =
∑

(h,r,t)∈S

∑

(h′,r,t′)∈S′

max(0, f(h, r, t) + γ − f(h′
, r, t

′)) (4)

where γ is the margin, S is the set of correct triples, and S′ is the set of incorrect
triples. Since a KG only contains correct triples, we corrupt them by replacing
head entities or tail entities to build S′. The replacement process follows the
Bernoulli sampling method [34]. During training, the knowledge embeddings
and context embeddings of all entities and relations are initialized following the



Online Updates of KG Embedding 7

uniform distribution U(− 6√
k
, 6√

k
) [5], where k is the number of dimensions for

embeddings. All parameters including embeddings are updated using the Adam
optimizer in each minibatch.

4 Online Embedding Updates

KGs are updated over time with addition and deletion of triples [26, 19, 12, 9].
KG embeddings should also be updated accordingly in an online manner. Fol-
lowing the inductive learning, we keep all the learnt parameters in R-GCNs and
the gate strategy unchanged. Contextual element embeddings of existing entities
and relations also remain the same. After a KG update, for many entities and
relations, their contexts remain unaffected, so their contextual subgraph embed-
dings would remain uninterrupted. Thus, with existing knowledge embeddings
of such entities and relations, corresponding triples would satisfy: h⋆+r⋆≈t⋆.
Hence, we also keep the knowledge embeddings of existing entities and relations
unchanged so long as their contexts are unchanged.

For existing entities and relations with changed contexts, we do the following.
Recall that the joint embedding of each entity or relation must approximately
satisfy the translation relations in our model. This joint embedding depends on
both the knowledge embedding and the contextual subgraph embedding. Con-
sider an entity t that has changed context, so the vector representation of t’s
context (i.e., sg(t), a combination of context element embeddings of its neighbor
entities, computed by the R-GCN) would change to reflect this update. We next
adjust the knowledge embedding of t (i.e., tk) to update its joint embedding t⋆,
so that this updated t⋆ approximately satisfies the translations in the modified
graph. In practise, we find that the modifications happened in the joint embed-
dings are generally small due to local updates in a KG, which explains why our
method is effective in approximately preserving the translations in the modified
KG. In future, it would be interesting to analyze the errors due to approximately
maintaining the translations in our online updates.

Finally, we also learn knowledge embeddings and contextual element embed-
dings of emerging entities and relations. In summary, we only need to compute
the knowledge embeddings and contextual element embeddings of emerging en-
tities and relations, as well as the knowledge embeddings of existing entities and
relations with changed contexts, so that the joint embeddings of existing entities
and relations with changed contexts also approximately satisfy the translations
in the modified graph. With above strategies, the impacts of a KG update will be
limited to a certain region, especially it will not affect the triples where the con-
texts of entities and relations are unchanged, which greatly improves efficiency.
This also shows the benefit of having two separate vectors for every entity or
relation in OUKE: knowledge embedding and context embedding.

Space Complexity. Let us denote by e, et, and r the total number of entities,
entity types, and relations in the input KG. Assume each minibatch, on average,
consists of eb entities and rb relations. We define the size of the adjacency matrix
in the R-GCN for entities as eb×eb and that in the R-GCN for relations as rb×rb
(as training happens in minibatches).



8 Luo Fei et al.

Table 1. Characteristics of datasets.
Datasets #Entities #Edges #Relations #Add Triples #Del Triples #Train #Valid #Test

(Avg.) (Avg.) (Avg.) (Avg.) (Avg.) (Avg.)
YAGO-3SP 27 009 130 757 37 950 150 124 757 3 000 3 000
IMDB-3SP 169 146 524 296 14 9 181 521 518 296 3 000 3 000

Suppose the dimension of the embedding space is k, the R-GCNs for entities
and relations have le and lr hidden layers, respectively, thus we have O((le ·
r + lr · et)k × k) weight matrices. In the gate strategy, all entities, relations,
and weights also correspond to k-dimensional parameter vectors. In addition,
each entity and each relation has two vector representations, so we totally have
(2e + 2r)k-dimensional vectors to represent entities and relations. In summary,
the space complexity of OUKE is O(e2

b
+ r2

b
+(le · r+ lr · et)k

2+(e+ r)k). As we
discussed in §3, the number of hidden layers le = lr = 1 in our implementation.

Time Complexity. For learning from scratch and online learning, we ana-
lyze their time complexities of updating parameters when given a triple pair
{(h, r, t), (h′, r, t′)} in a minibatch.

Since we adopt the negative sampling strategy proposed in [34], in the given
triple pair, if h 6= h′, then t = t′; if h = h′, then t 6= t′. When given a triple pair in
a minibatch, updating knowledge embeddings and context subgraph embeddings
of three entities and a relation requires O(8k), where k is the dimension of
the embedding space. Besides, updating the parameters in two R-GCNs and
the gate strategy requires O((le · r + lr · eb)k

2) and O(2k), respectively. Since
learning from scratch needs to update all of the above parameters, the total time
complexity of updating parameters for given a triple pair {(h, r, t), (h′, r, t′)} is
O(10k + (le · r + lr · eb)k

2).
In online learning, all parameters in two R-GCNs and the gate strategy are

unchanged, and we only update the knowledge embeddings and context sub-
graph embeddings of emerging entities and relations, as well as the knowledge
embeddings of existing entities and relations with changed contexts. Thus, the
total time complexity is O(µk) (1 ≤ µ ≤ 8), which reflects the efficiency of on-
line learning. Besides, online learning also has much fewer triples to train when
comparing with learning from scratch (as we demonstrated in Example 1), which
is another reason for efficiency improvement.

5 Experimental Results

We conduct experiments to demonstrate the effectiveness and efficiency of OUKE
in link prediction over evolving KGs. We employ PyTorch v1.1 deep learning li-
brary to implement OUKE and competitors. We perform experiments on a single
machine with 256GB, 2.2GHz Intel(R) Xeon(R) CPU E5-2698 v4 processor. Our
GPU platform is Tesla V100 (16GB VRAM) with CUDA 9.0.

5.1 Experimental Setup

Datasets. We use two datasets from real-world KGs, having three snapshots.
We split each snapshot into a training set, a validation set, and a test set. The



Online Updates of KG Embedding 9

Table 2. Accuracy results on link prediction. Lower values of MR and higher values
of Hits@K (defined in §5.1) indicate better accuracy.

YAGO-3SP IMDB-3SP
MR Hits@10 MR Hits@10

Snapshot1

GAKE 2984 0.237 5798 0.213
R-GCN 416 0.225 2646 0.112
TransE 710 0.311 2408 0.352

puTransE 938 0.262 3518 0.188
OUKE-LFS 511 0.296 2987 0.349

Snapshot2

GAKE 3012 0.218 5542 0.218
R-GCN 391 0.237 2482 0.123
TransE 745 0.314 2314 0.340

puTransE 897 0.259 3506 0.182
OUKE-LFS 554 0.304 3018 0.364

OUKE-OL 604 0.292 3133 0.329

Snapshot3

GAKE 2873 0.220 5623 0.219
R-GCN 397 0.270 2871 0.052
TransE 703 0.325 2575 0.351

puTransE 1082 0.247 3522 0.187
OUKE-LFS 537 0.305 3091 0.361

OUKE-OL 599 0.281 3299 0.334

three snapshots share the same validation set and test set, in which triples are
unchanged in these snapshots.

(1) YAGO-3SP. YAGO (http://yago-knowledge.org/) is a large-scale en-
cyclopedic KG constructed from Wikipedia, WordNet, and GeoNames. Differ-
ent versions of YAGO were published at various times. We extract subsets of
YAGO2.5, YAGO3, and YAGO3.1 as three snapshots of our dataset YAGO-3SP.

(2) IMDB-3SP. The Internet Movie Database (IMDB) is a KG consisting
of movies, TV series, actors, directors, etc., and their relations. IMDB provides
daily dumps (https://datasets.imdbws.com/), and we download them from Jan-
uary 22 to January 24 in 2019 as three snapshots.

In Table 1, for each dataset we recorded: 1) the average numbers of entities
(#Entities (Avg.)), edges (#Edges (Avg.)), and relations (#Relations (Avg.)) in
different snapshots, respectively; 2) the average numbers of added triples (#Add
Triples (Avg.)) and deleted triples (#Del Triples (Avg.)) between snapshots,
respectively; 3) the average number of triples in the training sets (#Train (Avg.))
of different snapshots, the number of triples in the validation set (#Validate),
and the number of triples in the test set (#Test).

Competitors. (1) puTransE [27] is the only existing model supporting online
embedding learning for dynamic KGs. puTransE learns embeddings of entities
and relations from local parts of a KG, so it avoids retraining on the entire KG,
but cannot preserve the global structural information of the KG in the learnt
embedding. (2) TransE [5] is a static KG embedding method using translation
operations on entities and relations. (3) GAKE [10] simultaneously models
triples and structural contexts in embedding learning on static KGs. (4) R-



10 Luo Fei et al.

102

103

104

105

snapshot1 snapshot2 snapshot3
T

ra
in

in
g 

tim
e 

(S
ec

)

GAKE
RGCN

TransE

puTransE
OUKE−LFS
OUKE−OL

(a) YAGO-3SP

102

103

104

105

106

snapshot1 snapshot2 snapshot3

T
ra

in
in

g 
tim

e 
(S

ec
)

GAKE
RGCN

TransE

puTransE
OUKE−LFS
OUKE−OL

(b) IMDB-3SP

Fig. 4. Efficiency results on link prediction.

GCN [25] learns embedding considering multiple relations between entities in a
static KG. Methods (2)-(4) learn embeddings only from scratch over static KGs.

Accuracy metrics for link prediction. For each triple (h, r, t) in the test set,
we replace the head entity h (or tail entity t) with each entity e in the snapshot
to construct a triple (e, r, t) (or (h, r, e)), and rank all e based on the score
calculated by the scoring function. If a constructed triple occurs in the training
set, then the corresponding entity e will not participate in the ranking process,
because training data cannot be used in testing. Based on such ranking results,
we can get the rank of the original correct entity in each test triple, and we use
the following evaluation metrics: (1) Mean Rank (MR): the average rank of
all head entities and tail entities in test triples. (2) Hits@K: the proportion of
the ranks not larger than K for all head entities and tail entities in test triples.
Lower values of MR and higher values of Hits@K indicate better accuracy.

5.2 Accuracy and Efficiency Results

Our empirical results in Table 2 indicate that our learning from scratch approach
(OUKE-LFS) produces the best or second-best MR and Hits@10 scores over our
datasets. Our online learning method (OUKE-OL) is quite competitive as well,
however its accuracy is lower than OUKE-LFS because OUKE-OL retrains on a
limited number of triples during online learning. On the other hand, OUKE-OL
is faster. For instance, over IMDB-3SP, OUKE-OL is 2-3 orders of magnitude
faster than static embedding methods, and up to an order of magnitude faster
than puTransE (Figure 4). Considering accuracy and efficiency trade-offs, we find
OUKE-OL to be the most suitable for online updates of dynamic KG embedding.

6 Conclusions

We presented a context-aware dynamic knowledge graph (KG) embedding method
OUKE, which not only learns embeddings from scratch, but also supports online
embedding updates. Compared with state-of-the-art static and dynamic KG em-
bedding techniques on dynamic datasets, OUKE has comparable effectiveness
and much better efficiency in online learning. In future, it would be interesting
to boost the accuracy of OUKE by improving its context embedding phase, ana-
lyzing its robustness with respect to repeated and batch updates, and deploying
OUKE in more downstream applications such as KG-based question answering.



Online Updates of KG Embedding 11

Acknowledgement

Arijit Khan is supported by MOE Tier1 and Tier2 grants RG117/19, MOE2019-
T2-2-042, and a Delta Corporate Lab Grant SLE-RP8.

References

1. Source for IMDB dataset. https://www.imdb.com/interfaces/.
2. Use Deep Search to Explore the COVID-19 Corpus. https://www.research.ibm.com/

covid19/deep-search/.
3. M. Ali, M. Berrendorf, C. T. Hoyt, L. Vermue, M. Galkin, S. Sharifzadeh, A. Fis-

cher, V. Tresp, and J. Lehmann. 2020. Bringing Light Into the Dark: A Large-scale
Evaluation of Knowledge Graph Embedding Models Under a Unified Framework.
CoRR abs/2006.13365 (2020).

4. K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. 2008. Freebase:
A Collaboratively Created Graph Database for Structuring Human Knowledge. In
SIGMOD.

5. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. 2013. Trans-
lating Embeddings for Modeling Multi-Relational Data. In NIPS.

6. X. Chen, M. Chen, C. Fan, A. Uppunda, Y. Sun, and C. Zaniolo. 2020. Multilin-
gual Knowledge Graph Completion via Ensemble Knowledge Transfer. In EMNLP
(Findings).

7. T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. 2018. Convolutional 2D
Knowledge Graph Embeddings. In AAAI.

8. S. S. Dasgupta, S. N. Ray, and P. Talukdar. 2018. HyTE: Hyperplane-based Tem-
porally aware Knowledge Graph Embedding. In EMNLP.

9. X. L. Dong. 2018. Challenges and Innovations in Building a Product Knowledge
Graph. In KDD.

10. J. Feng, M. Huang, Y. Yang, and X. Zhu. 2016. GAKE: Graph Aware Knowledge
Embedding. In COLING.

11. A. Gyrard, M. Gaur, K. Thirunarayan, A. P. Sheth, and S. Shekarpour. 2018.
Personalized Health Knowledge Graph. In CKGSemStats@ISWC.

12. S. Hellmann, C. Stadler, J. Lehmann, and S. Auer. 2009. DBpedia Live Extraction.
In OTM Conferences.

13. J. Hoffart, F. M Suchanek, K. Berberich, and G. Weikum. 2013. YAGO2: A Spa-
tially and Temporally Enhanced Knowledge Base from Wikipedia. Artificial Intel-
ligence 194 (2013), 28–61.

14. X. Huang, J. Zhang, D. Li, and P. Li. 2019. Knowledge Graph Embedding Based
Question Answering. In WSDM.

15. J. Jin, J. Luo, S. Khemmarat, and L. Gao. 2017. Querying Web-Scale Knowl-
edge Graphs Through Effective Pruning of Search Space. IEEE Trans. Parallel Dis-
tributed Syst. 28(8): 2342-2356 (2017).

16. T. N. Kipf and M. Welling. 2017. Semi-Supervised Classification with Graph Con-
volutional Networks. In ICLR.

17. A. Khan, Y. Wu, C. C Aggarwal, and X. Yan. 2013. NeMa: Fast Graph Search
with Label Similarity. PVLDB 6, 3 (2013), 181–192.

18. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S.
Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. 2015. DBpedia - A Large-
Scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web 6, 2
(2015), 167–195.



12 Luo Fei et al.

19. X. Lin, H. Li, H. Xin, Z. Li, and L. Chen. 2020. KBPearl: A Knowledge Base
Population System Supported by Joint Entity and Relation Linking. PVLDB 13, 7
(2020), 1035–1049.

20. Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. 2015. Learning Entity and Relation
Embeddings for Knowledge Graph Completion, in AAAI.

21. S. Liao, S. Liang, Z. Meng, and Q. Zhang. 2021. Learning Dynamic Embeddings
for Temporal Knowledge Graphs. In WSDM.

22. T. M. Mitchell, W. W. Cohen, E. R. Hruschka Jr., P. P. Talukdar, B. Yang, J.
Betteridge, A. Carlson, B. D. Mishra, M. Gardner, B. Kisiel, J. Krishnamurthy,
N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. A. Platanios, A. Ritter, M.
Samadi, B. Settles, R. C. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M.
Greaves, and J. Welling. 2018. Never-Ending Learning. Commun. ACM 61, 5 (2018),
103–115.

23. N. Nakashole, T. Tylenda, and G. Weikum. 2013. Fine-grained Semantic Typing
of Emerging Entities. In ACL.

24. M. Nickel, V. Tresp, and H.-P. Kriegel. 2011. A Three-Way Model for Collective
Learning on Multi-Relational Data. In ICML.

25. M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M.Welling.
2018. Modeling Relational Data with Graph Convolutional Networks. In ESWC.

26. J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and C. Ré. 2015. Incremental
Knowledge Base Construction Using DeepDive. PVLDB 8, 11 (2015), 1310– 1321.

27. Y. Tay, A. T. Luu, and S. C. Hui. 2017. Non-Parametric Estimation of Multiple
Embeddings for Link Prediction on Dynamic Knowledge Graphs. In AAAI.

28. R. Trivedi, H. Dai, Y. Wang, and L. Song. 2017. Know-Evolve: Deep Temporal
Reasoning for Dynamic Knowledge Graphs. In ICML.

29. R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha. 2019. DyRep: Learning Repre-
sentations over Dynamic Graphs. In ICLR.

30. T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. 2016. Complex
Embeddings for Simple Link Prediction. In ICML.

31. M. Wang, L. Qiu, and X. Wang. 2021. A Survey on Knowledge Graph Embeddings
for Link Prediction. Symmetry 13, 3 (2021), 485.

32. Q.Wang, Z.Mao, B.Wang, and L. Guo. 2017. Knowledge Graph Embedding: A
Survey of Approaches and Applications. IEEE Transactions on Knowledge and Data
Engineering 29, 12 (2017), 2724–2743.

33. Y. Wang, A. Khan, T. Wu, J. Jin, and H. Yan. 2020. Semantic Guided and Re-
sponse Times Bounded Top-k Similarity Search over Knowledge Graphs. In ICDE.

34. Z. Wang, J. Zhang, J. Feng, and Z. Chen. 2014. Knowledge Graph Embedding by
Translating on Hyperplanes. In AAAI.

35. J. Xu, X. Qiu, K. Chen, and X. Huang. 2017. Knowledge Graph Representation
with Jointly Structural and Textual Encoding. In IJCAI.

36. B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng. 2015. Embedding Entities and
Relations for Learning and Inference in Knowledge Bases. In ICLR.

37. Y. Zhao, A. Zhang, R. Xie, K. Liu, and X. Wang. 2020. Connecting Embeddings
for Knowledge Graph Entity Typing. In ACL.

38. F. Zhang, N. Jing Yuan, D. Lian, X. Xie, and W.-Y. Ma. 2016. Collaborative
Knowledge Base Embedding for Recommender Systems. In KDD.

39. D. Zhu, P. Cui, Z. Zhang, J. Pei, and W. Zhu. 2018. High-Order Proximity Pre-
served Embedding for Dynamic Networks. IEEE Transactions on Knowledge and
Data Engineering 30, 11 (2018), 2134–2144.


