
Estimate and Reduce Uncertainty
in Uncertain Graphs

Naheed Anjum Arafat
Nanyang Technological University

Singapore
naheed anjum@u.nus.edu

Ehsan Bonabi Mobaraki
Aalborg University

Denmark
ebmo@cs.aau.dk

Arijit Khan
Aalborg University

Denmark
arijitk@cs.aau.dk

Yllka Velaj
University of Vienna

Austria
yllka.velaj@univie.ac.at

Francesco Bonchi
CENTAI, Italy
Eurecat, Spain

bonchi@centai.eu

Abstract—Computing basic network properties and machine
learning (ML) model outputs, e.g., reachability, shortest path
distance, triangle count, node classification, etc., are key to
understand large and complex graphs. We study two fundamental
problems: (1) Given a graph with uncertain edges and a real-
valued network property or an ML model, estimate the uncer-
tainty associated with evaluating the property or the ML model’s
output over the uncertain graph. (2) Given a limited budget on
the number of edges, find the k-best edges whose probability
update will reduce the aforementioned uncertainty maximally. We
formulate both problems using the information-theoretic notion
of entropy and then characterize the hardness of our problems.
We next devise approximate solutions with theoretical soundness
and greedy subgraph selection-based efficient algorithms. Our
empirical evaluation and case study with real-world and synthetic
datasets demonstrate that the proposed solutions are more
effective and efficient than baselines and are several orders of
magnitude faster than exact approaches.

Index Terms—Uncertain graphs, Information entropy, Graph
uncertainty estimation, Edge cleaning under budget

I. INTRODUCTION

An uncertain graph is an important data model for real-
world networks, where one assigns an independent probability
of existence on every edge [1], [2]. An uncertain graph G is
interpreted as a probability distribution over 2|E| deterministic
graphs (possible worlds), where |E| is the number of edges
in G. Uncertainty may arise due to, e.g., measurement errors,
data integration, prediction models, injecting uncertainty for
obfuscation, and lack of precise information needs. Uncertain
graphs have prompted a great deal of research because of their
expressiveness in a wide range of applications [3].

The classic approach of mining and machine learning (ML)
with deterministic networks starts from the exploration of
structural properties and ML model outputs over these graphs.
They can be global properties or ML models employed on a
graph, e.g., number of triangles, diameter, a graph’s class label,
etc. Others are local properties or ML models on individual
nodes and edges, such as reachability between a pair of nodes,
a node’s centrality and class label, etc.

We are interested in measuring both local and global prop-
erties and ML model outcomes on a network; in particular, a
property or an ML model P that can be denoted as a function

Arafat and Mobaraki are main contributors and co-first authors. Khan
and Mobaraki acknowledge support from the Novo Nordisk Foundation grant
NNF22OC0072415.

x

sy u

0.7

0.4

0.6 0.5

(a) G1

a

cb

d0.4

0.4

0.4

0.
26

1

(b) G2

0 1 2
0

0.2
0.4
0.6
0.8

#Triangles

Pr
ob

ab
ili

ty G1
G2

(c)

Fig. 1. (a-b) Uncertain graphs G1 and G2. An uncertain graph with |E|
edges can instantiate any one of 2|E| (deterministic) possible worlds. In such
possible worlds, G1 can have 0 or 1 triangle (∆xys), whereas G2 may contain
0, 1, or 2 triangles (∆abc, ∆bcd). This leads to uncertainty associated with
counting triangles in an uncertain graph. (c) Probability distribution of the
number of triangles in G1 and G2.

P : G → R, when computed on a deterministic graph G (or,
on some of its components, e.g., nodes or edges), produces a
deterministic, real value. Examples include reachability and
shortest path (SP) distance between a given pair of nodes,
number of triangles, nodes classification into labels, etc. Notice
that while an ML model typically associates a probability
with its prediction, we disregard such probability in this work.
For instance in node classification using a fixed, deterministic
graph neural network (GNN), one may consider the predicted
class label (i.e., an integer between 1 to c for total c output
classes) from the last softmax layer as a deterministic, real-
valued output. A fixed, deterministic GNN has (1) all factors
which determine the inference process, such as layers and
model parameters, among others, fixed; and (2) given the same
input, the GNN will always produce the same output. With
such deterministic, real-valued network functions, we aim at
measuring and reducing the uncertainty that arises due to the
uncertainty inherent in graph data.

An uncertain graph with |E| edges leads to 2|E| possible
worlds. Thus, computing a graph property or an ML model’s
output on an uncertain graph would involve deriving the
expectation over its exponential number of possible worlds,
which is often intractable [4]–[6]. For instance, the expected
number of triangles in the uncertain graph G1 in Figure 1(a)
is:

∑
Ω={0,1} Ω×Pr

(
∆(G1) = Ω

)
= 0.168. Pr

(
∆(G1) = Ω

)
denotes the aggregated probability of those possible worlds
in which the number of triangles is exactly Ω. Similarly,
one can also verify that the expected number of triangles
in the uncertain graph G2 in Figure 1(b) is:

∑
Ω={0,1,2} Ω ×

Pr
(
∆(G2) = Ω

)
= 0.168. Note that in a possible world, G1

TABLE I
Uncertainty, estimated via Entropy, for computing various network

functions is different even on the same uncertain graph G1. We define Sup,
Conf , and Entropy in §II.

network function Sup(P,G1) Conf(Ω, P,G1) entropy
H(Ω)

y-u reachability 0, 1 0.67, 0.33 0.91
Triangle count 0, 1 0.83, 0.17 0.65
y-u SP distance 2, 3,∞ 0.20, 0.13, 0.67 1.23

label(u) 0, 1 0.50, 0.50 1.00

can have 0 or 1 triangle, whereas G2 may contain 0, 1, or
2 triangles (Figure 1). Clearly, there is uncertainty associated
with counting triangles over an uncertain graph.

Is there the same amount of uncertainty on counting the
number of triangles over G1 and G2? The answer is no, even
though the expected number of triangles is the same in both of
them. Intuitively, if most of the probability is concentrated on
a specific output value, there is less uncertainty in computing
a function P over the possible worlds of G. To this end, the
first novel problem that we investigate is as follows. Given
a network function P : G → R and an uncertain graph G,
estimate the uncertainty of computing P on G.

We propose a generic measure via entropy (defined in §II)
to estimate the uncertainty of computing a network property
or an ML model’s output on G. The higher the uncertainty,
the greater is the entropy [7].

Given an uncertain graph G, is there the same amount
of uncertainty on measuring two different network functions
P1 and P2? The answer is also negative, as depicted in the
example below.

Example 1. Consider the graph G1 in Figure 1(a) and four
real-valued, deterministic functions: reachability between y
and u, shortest path (SP) distance between y and u, triangle
count, and class label of u given a classifier C. For simplicity,
assume that (i) C assigns to an unlabelled node the majority
label of its neighbors (if at least one neighbor exists) in a
possible world, or 0 otherwise, and (ii) the labels for nodes
x, y, s are all known to be 1. We report the uncertainty of
measuring these functions in Table I. The uncertainty values
are different for different functions, even on the same uncertain
graph. For node labelling, label(u) would be the same as
label(s) = 1 in 1/2 of the possible worlds and 0 in the rest.
Hence, the entropy associated with predicting label(u) is 1.

This example illustrates two points: (1) The uncertainty
associated with different functions on the same uncertain graph
is different, and (2) due to the uncertainty associated with
edges in the uncertain graph, a node classifier’s output will
have uncertainty. Hence, it is critical to formally define and
estimate the uncertainty of measuring a network function over
an uncertain graph.

The second novel problem that we study is as follows.
Given a network function P : G → R, an uncertain graph

G, an edge probability update operation U
(
p(e)

)
: (0, 1) →

{0, 1}, and a small budget k > 0, find at most k uncertain
edges in G such that if one updates the probabilities of these

TABLE II
The same edge probability update brings different changes in uncertainty of

computing various network functions on G1.

network function H(Ω) updated updated
edge prob. H(Ω)

y-u reachability 0.91 p(s, u) = 1 0.93
Triangle count 0.65 p(s, u) = 1 0.65
label(u) 1.00 p(s, u) = 1 0.00

y-u reachability 0.91 p(s, x) = 0 0.72
Triangle count 0.65 p(s, x) = 0 0
label(u) 1.00 p(s, x) = 0 1.00

edges based on the update operation U , the uncertainty of
estimating P on G reduces maximally.

The same edge probability update could bring different
changes in uncertainty associated with measuring various
network functions. Therefore, it is critical to find the optimal
k-edge set for a specific problem instance, since this optimal
set might be different based on various network functions and
update operations, even on the same uncertain graph.

Example 2. Consider G1 in Figure 1(a), we show in Table II
that if we update the probability of edge (s, u) to 1, the
uncertainty of y-u reachability increases from 0.91 to 0.93,
the uncertainty of predicting label(u) reduces from 1 to 0,
while the uncertainty of triangle counting does not decrease.
In another example, if we set the probability of edge (x, s)
to 0, the uncertainty of triangle counting reduces largely, i.e.,
it decreases from 0.45 to 0, whereas that of y-u reachability
drops from 0.91 to only 0.72, and the uncertainty of predicting
label(u) does not change at all.

Real-world applications of the studied problems. Uncer-
tainty permeates graph data. In sensor networks, reachability
computation is key to packet broadcasting. However, the
connectivity between sensor nodes is estimated using noisy
measurements, leading to edges with a probability of existence
[8]. Analogously, interactions in protein networks are estab-
lished through noisy and error-prone experiments, repeated for
a limited number of times, resulting in edge probabilities [9].
Motifs counting and node classification are useful in such
networks for predicting co-complex memberships. In road
networks, where SP distance computation is critical to traffic
routing, uncertain graphs arise due to unexpected traffic jams
on road segments [5]. In crowdsourced entity resolution (ER),
crowd taskers are asked if two records belong to the same
entity or not, leading to an edge between records in a pair that
must be grouped together. Reachability computation over this
graph structure assists in inferring matching/ non-matching
relationship via transitivity and anti-transitivity, thus reducing
the cost of crowdsourced ER [10]. However, human workers
make mistakes, hence the same record pairs are crowdsourced
a limited number of times; and an edge probability between
two records is assigned denoting the ratio of crowd workers
who answered ‘YES’ on the question if the two records are
the same entity. When the graph structure itself is uncertain as
stated, quantifying the impact of uncertainty in the measure-
ment of network properties and ML model outputs naturally
becomes important [11]. Uncertainty estimation is key to

benchmark the performance of ML models in downstream
tasks, as well as to attest to the reliability and precision of
graph property measurement results.

Likewise, reducing the uncertainty associated with evaluat-
ing a network property or an ML model’s output is important
to obtain results with high precision. To this end, we consider
two kinds of edge probability updates. The first one increases
the probability of an existing uncertain edge to 1 (e.g., enhance
the reliability of a link in a sensor network by using a
high-quality cable). The second one updates the probability
of an existing uncertain edge to either 1 or 0, based on
crowdsourcing, additional experiments, and thereby deciding
whether that edge exists or not. Setting a small budget for
the number of edge updates is required due to cost-effective
planning and physical constraints. For instance, crowdsourcing
for an uncertain edge, or improving the reliability of a sensor
network link requires additional resources such as crowd
workers, time, and money.

Challenges and our contributions. There are several techni-
cal difficulties in our problems as follows.

Hardness. Uncertainty estimation and reduction of network
properties are hard since, in general, computing the underlying
properties (such as reliability, shortest path, triangle count,
etc.) over uncertain graphs themselves are #P-hard [1], [5],
[6]. Hence, approximate solutions with theoretical soundness
are desirable. On the other hand, the objective function for
uncertainty reduction is not monotonic, neither submodular,
nor supermodular (§II), and an exact approach for selecting
the k-best edges has exponential time complexity.

Generality and adaptability. Existing methods for uncer-
tainty reduction work in a limited setting, e.g., for reliability
query and crowdsourcing-based edge cleaning [12], [13].
They ignore other graph properties, ML model outputs, and
diverse kinds of edge probability updates. Heuristics designed
therein to work on Boolean-valued graph properties, such
as reachability, do not work with arbitrary real-valued graph
properties and ML models, e.g., shortest path distance, node
classification, and number of triangles (§VI). Moreover, we
have demonstrated that ranking and selecting individual edges,
followed by [12], [13], lead to sub-optimal solutions for
entropy reduction (§V). Finally, it is unclear how efficient
sampling and indexing for graph property estimation, e.g.,
ProbTree indexing [14], recursive stratified sampling (RSS)
[15], approximate triangle counting [16], can be employed
with those existing solutions.

Our key contributions are summarized below.
• We show that our problems are NP-hard, non-monotonic,

non-submodular, and non-supermodular under various net-
work functions (§III).

• Despite hardness, the uncertainty estimation algorithm pro-
posed in this paper is generic, i.e., works with any real-
valued network property and fixed, deterministic ML models,
and comes with an (ϵ, δ)-type guarantee (§IV).

• Our uncertainty reduction algorithm follows a greedy
paradigm. We design a practical greedy subgraph-selection

strategy to reduce the cold start problem of greedy, while also
improving efficiency. We adapt our uncertainty reduction
algorithm for two different edge probability update scenarios
(§V).

• Experiments show that our algorithms are of high-quality
and several orders of magnitude faster than exact methods,
while also being more effective and efficient than baselines.
Existing sampling (e.g., RSS) and indexing approaches (e.g.,
probTree) can be coupled with our algorithms to speed up
computation. Our case study demonstrates the usefulness of
uncertainty reduction in the strategic collaboration problem
via node classification over uncertain graphs (§VII).

II. PRELIMINARIES

A. Uncertain Graph

Let G = (V,E, p) be an uncertain graph, where V denotes
the set of nodes, E ⊆ V × V the set of edges, and p : E →
(0, 1] is a function that assigns a probability of existence to
each edge. For simplicity, we consider unweighted, undirected
graphs, and the nodes and edges do not have any attributes;
however, our solution is applicable to weighted, directed, and
attributed graphs. Following the bulk of the literature [1]–[3],
we adopt the well-established notion of possible worlds, and
assume that edge probabilities are independent of each other:
The uncertain graph G results in a probability distribution over
2|E| deterministic graphs (possible worlds). The probability of
observing the possible world G = (V,EG,W) ⊑ G is:

Pr(G) =
∏

e∈EG

p(e)
∏

e∈E\EG

(1− p(e)) (1)

We consider network properties and machine learning models
P that can be regarded as functions P : G → R, i.e., when
evaluated on a deterministic graph G (or, on some of its
components, e.g., nodes or edges), produces a deterministic,
real value. As run-through examples, we focus on one impor-
tant global property (triangle count) and two local properties
(reachability and the shortest path distance between a given
pair of nodes) [4]–[6]. As a concrete use case, we shall discuss
node classification in §VII, since a fixed, deterministic node
classifier is a function that acts on nodes and their neighbors
to generate deterministic, integer-valued labels.

B. Problem Formulation
Consider a network function P : G → R over possible

worlds of an uncertain graph G. We define the support set of
P on G as the finite set of real values P (G) for all possible
worlds G ⊑ G. Formally,

Sup(P,G) = {P (G) : G ⊑ G} (2)

For a specific support value Ω ∈ Sup(P,G), we define its
confidence as the sum of probabilities of those possible worlds
G ⊑ G in which P (G) = Ω, that is,

Conf(Ω, P,G) =
∑
G⊑G

[I(P (G) = Ω)× Pr(G)] (3)

I(P (G) = Ω) is an indicator function taking the value 1
if P (G) = Ω, and 0 otherwise. Generalizing Equation 3 to

an arbitrary subset S ⊆ Sup(P,G) and with slight abuse of
notation, we define:

Conf(S, P,G) =
∑
G⊑G

[I(P (G) ∈ S)× Pr(G)] (4)

I(P (G) ∈ S) is an indicator function taking the value
1 if P (G) ∈ S, and 0 if P (G) ̸∈ S. Notice that(
Sup(P,G), 2Sup(P,G), Conf(.)

)
is a probability space satis-

fying the Kolmogorov axioms [17]:
1) 0 ≤ Conf(Ω, P,G) ≤ 1,
2) Conf(Sup(P,G), P,G) = 1, and
3) for disjoint subsets {S1, S2, . . .} of the

support set Sup(P,G), Conf(∪∞
i=1Si, P,G) =∑∞

i=1 Conf(Si, P,G).
We define a random variable Ω: Different values of Ω come

from the finite set Sup(P,G). The probability Pr(Ω = Ω) of
observing a specific value Ω ∈ Sup(P,G) is Conf(Ω, P,G).
We use the following interchangeably: Pr(Ω) = Pr(Ω =
Ω) = Conf(Ω, P,G).

Intuitively, if most of the probability mass is concentrated on
a specific support value, there is less uncertainty in computing
function P over the possible worlds of G. In contrast, when the
probability mass is evenly distributed across several support
values, the uncertainty in computing P would be higher.

We are now ready to define our problems.

Problem 1 (Measuring uncertainty). Given an uncertain
graph G and a network function P : G → R, we define
the uncertainty of estimating P on G as the entropy of the
probability distribution of the random variable Ω. Formally,

H(Ω) = −
∑

Ω∈Sup(P,G)

Conf(Ω, P,G) logConf(Ω, P,G) (5)

We use logarithm base 2 (Shannon entropy) in the above.
Why we resort to entropy. It is a classic measure of uncer-
tainty of a random variable [7]: The higher the uncertainty, the
greater the entropy. In particular, it satisfies the three axioms,
developed by Shannon, which we also require for uncertainty
estimation. (1) For a random variable with uniform proba-
bilities, the entropy is a monotonically increasing function
of the number of outcomes for the random variable. More
choices (i.e., support values) imply greater uncertainty. (2) If
one splits an outcome category into subcategories, then the
new entropy of the extended system should be the sum of the
old system’s entropy plus the new entropy of the split category
weighted by its probability. The creation of more choices (i.e.,
support values) increases uncertainty weighted according to
the likelihood of the increased choice being relevant. (3) The
entropy is a continuous function of Conf(Ω, P,G).

We next introduce our second problem: Maximally reduce
the uncertainty by updating the probabilities of a small number
of edges in G. For update U1

(
p(e)

)
: (0, 1) → 1, the

resulting edge probability is known apriori; whereas for update
U2

(
p(e)

)
: (0, 1) → {0, 1}, it could be revealed only after the

update (e.g., based on crowdsourcing results). We denote by G′

an updated graph of G after probability updates on the selected

edges, and Ω′ the random variable on G′ in accordance with
all Ω ∈ Sup(P,G′) and their Conf(Ω, P,G′) values.

Problem 2 (Reducing uncertainty). Given an uncertain graph
G = (V,E, p), a network function P : G → R, an update
operation U

(
p(e)

)
: (0, 1) → {0, 1}, and a budget k on the

number of edges, select at most k uncertain edges in G so that
on applying the update operation U on these selected edges,
the uncertainty of estimating P on G reduces maximally, i.e.,

argmax
E1⊆E,|E1|≤k

{
∆H(E1) = H(Ω)−H(Ω′)

}
(6)

Remark. The input uncertain graph G and the updated uncer-
tain graph G′ have same set of edges, but different probabilities
(including some edge probabilities in G′ can be 0 due to update
U2). Thus, for every possible world G ⊑ G, we can find a
possible world G′ ⊑ G′ so that G and G′ are structurally
same, and vice versa. However, Pr(G) and Pr(G′) may be
different due to different edge probabilities in G and G′. As
a consequence, given a function P , the set of support values
remains the same over G and G′; however, the confidence of
a specific support value Ω, i.e., Pr(Ω) can be different in G
and G′ (including Pr(Ω) may be 0 in one of them).

III. RESULTS ON PROBLEMS CHARACTERIZATION

Given an uncertain graph G and a network function P :
G → R, computing the entropy H(Ω) requires finding every
Ω ∈ Sup(P,G) and its probability Conf(Ω, P,G). However,
computing the probability that P (G) takes a specific value
is often #P-hard. For instance, the probability that the s-t
reachability is 1, is the same as computing the s-t reliability,
which is #P-hard [1]. The probability that the shortest path
distance from s to t is ∞ is the same as computing (1 - s-t
reliability), which is also #P-hard. Similarly, the probability
that the number of triangles takes a specific value is #P-
hard by [6, Theorem 1]. For node classification, consider a
classifier that assigns to an unlabelled node u the label that
is reachable the maximum number of times from u in its 2-
hop, making the computation of node classification entropy
#P-hard. Thus, computing the entropy in Problem 1 and
reducing the entropy in Problem 2 are difficult. As further
evidence of the complexity of Problem 2, we show that its
objective function is not monotonic, neither submodular nor
supermodular w.r.t. probability updates of more edges.

Lemma 1. The objective function in Problem 2 is not mono-
tonic with respect to probability updates of more edges.

We demonstrate non-monotonicity with the examples in
Table III. We find that the entropy of computing a network
function is not monotonic with respect to both updates U1 and
U2. Under updates of the same type, entropy may increase or
decrease depending on the edges selected for such updates.

Lemma 2. The objective function in Problem 2 is neither
submodular, nor supermodular with respect to probability
updates of more edges.

TABLE III
Non-monotonicity of Problem 2 (uncertainty reduction) w.r.t. probability

updates of more edges

network function H(Ω) updated edge prob. updated
H(Ω)

G1: y-u reachability 0.911

U1 : p(s, u) = 1 0.93 ↑
U1 : p(s, u) = 1, p(s, y) = 1 0 ↓
U2 : p(s, x) = 0 0.72 ↓
U2 : p(s, x) = 0, p(s, y) = 1 1 ↑

G1: y-u SP distance 1.225

U1 : p(s, u) = 1 1.56 ↑
U1 : p(s, u) = 1, p(s, y) = 1 0 ↓
U2 : p(s, x) = 0 0.72 ↓
U2 : p(s, x) = 0, p(s, y) = 1 1.0 ↑

G2: Triangle count 0.689

U1 : p(c, d) = 1 1.22 ↑
U1 : p(c, d) = 1, p(b, c) = 1 0.63 ↓
U2 : p(c, d) = 0 0.34 ↓
U2 : p(c, d) = 0, p(b, c) = 1 0.63 ↑

We show non-submodularity with the uncertain graph G1

(Figure 1(a)), triangle count function, update operation U1,
X : {p(x, s) = 1}, Y : {p(x, s) = 1, p(x, y) = 1}, b :
p(s, y) = 1. The entropy of triangle counting after applying
updates X and X∪{b} are 0.795 and 0.971, respectively. Thus,
the marginal gain (based on reduction in entropy) is: 0.795-
0.971=-0.176. Similarly, the entropy of triangle counting after
applying updates Y and Y ∪{b} are 0.971 and 0.0, respectively,
thus the marginal gain is: 0.971-0=0.971. This example shows
that the objective function in Problem 2 is not submodular
w.r.t. probability updates of more edges.

We show non-supermodularity with an uncertain graph
G3 having same structure as G1 (Figure 1(a)), but different
edge probabilities: p(x, y)= 0.3, p(s, x)=0.9, p(s, y)=0.05,
p(s, u)=0.7. Consider triangle count function, update operation
U1, X : {p(s, u) = 1}, Y : {p(x, y) = 1, p(s, u) = 1},
b : p(x, s) = 1. The entropy of triangle counting after applying
updates X and X ∪ {b} are 0.1032 and 0.1124, respectively.
Thus, the marginal gain (based on reduction in entropy) is:
0.1032-0.1124 = -0.0092. Analogously, the entropy of triangle
counting after applying updates Y and Y ∪{b} are 0.265 and
0.286, respectively; thus the marginal gain is: 0.265-0.286 = -
0.021. This example shows that Problem 2’s objective function
is not supermodular w.r.t. probability updates of more edges.

Similarly, one can show non-submodularity and non-
supermodularity for other network functions and update op-
eration U2. We omit them due to interest of space.

IV. ALGORITHMS FOR UNCERTAINTY ESTIMATION

Given an uncertain graph G = (V,E, p) and a function
P : G → R, Equation 5 defines the uncertainty of computing
P on G. An exact computation of H(Ω) requires enumerating
all possible worlds of G and computing Pr(Ω = Ω) for
every Ω ∈ Sup(P,G). This exact method is exponential in the
number of edges |E|, having time complexity: O

(
2|E| ·C(P)+

|Sup(P,G)|
)
, where C(P) is the maximum time required by

the employed algorithm to evaluate P (G) on a possible world
G ⊑ G. It is not feasible to run the exact approach even
for a medium-size graph because of combinatorial complexity.
Thus, we resort to sampling based efficient estimation of H[Ω]
(§IV-A), together with an accuracy guarantee (§IV-B).

Algorithm 1 Estimating Pr(Ω = Ω) and Sup(P,G)
Require: positive integer T , function P : G → R, uncertain graph
G = (V,E, p)

1: initialize P̂ r(.)← 0, ˆSup(P,G)← ϕ
2: for all i = 1, 2, . . . , T do
3: sample a world Gi ⊑ G via independent sampling of edges

based on their probabilities
4: compute observed function value: Ω = P (Gi)
5: P̂ r(Ω)← P̂ r(Ω) + 1

T

6: ˆSup(P,G)← ˆSup(P,G) ∪ {Ω}
7: return P̂ r, ˆSup(P,G)

Algorithm 2 Estimating H(Ω)

Require: positive integers N , T , function P : G → R, uncertain
graph G = (V,E, p)

1: for all i = 1, 2, . . . , N do
2: compute sample distribution:

P̂ ri, ˆSupi(P,G)← Algorithm 1(T, P,G)
3: compute sample distribution’s entropy:

Ĥi ← −
∑

Ω∈ ˆSupi(P,G) P̂ ri(Ω) log P̂ ri(Ω)

4: return 1
N

∑N
i=1 Ĥi

A. Approximate Estimation of Uncertainty

Estimating Pr(Ω = Ω). We approximate the probability
Pr(Ω = Ω) via MC-sampling (Algorithm 1).

P̂ r(Ω = Ω) =

∑T
i=1 I(P (Gi) = Ω)

T
(7)

where {G1, G2, . . . , GT } are T possible worlds sampled via
independent sampling of edges as per their probabilities.

Theorem 1. P̂ r(.) is an unbiased estimator of Pr(.).

Proof.

E[P̂ r(Ω = Ω)] =

∑T
i=1 E

[
I
(
P (Gi) = Ω

)]
T

=

∑T
i=1

∑
G⊑G

[
I
(
P (G) = Ω

)
× Pr(G)

]
T

=

∑T
i=1 Pr(Ω = Ω)

T
= Pr(Ω = Ω)

The last equality follows because Pr(Ω = Ω) =
Conf(Ω, P,G) is constant for given P and G, irrespective
of the possible world under consideration.

Estimating H[Ω]. As an estimate for H(Ω), we use the
entropy of the sample distribution computed in Algorithm 1.

Ĥ = −
∑

Ω∈ ˆSup(P,G)

P̂ r(Ω = Ω) log P̂ r(Ω = Ω) (8)

Given a user-specified integer N > 0, Algorithm 2 runs
Algorithm 1 N times to compute N independent entropy
estimates Ĥ1, Ĥ2, . . . , ĤN , and returns the average of those
N estimates. Computing the average of those N entropy
estimates will later help us derive a guarantee on the deviation
of the output of Algorithm 2 from the true value H(Ω).
Time complexity. The time complexity of our entropy estima-
tion method (Algorithm 2) is O

(
N · T · C(P)

)
, where C(P)

is the maximum time required by the employed algorithm to
evaluate P (G) on a possible world G ⊑ G.

B. Accuracy Guarantee

Algorithm 2 has entropy estimation error∣∣∣ 1
N

∑
Ĥi −H(Ω)

∣∣∣ with a probabilistic bound (Theorem 2).

Theorem 2. For all N,T > 0 (input to Algorithm 2) and
ϵ > 0,

Pr

(∣∣∣∣∣
∑

Ĥi

N
−H(Ω)

∣∣∣∣∣ ≥ |Sup(P,G)| − 1

2T
+ ϵ

)
≤ 2e

−2Nϵ2

log2|Sup(P,G)|

(9)

The proof is given in Appendix IX.

Practical effectiveness of our bounds. Our uncertainty esti-
mation method is simple – it only requires a network function
computation over N · T possible worlds, yet this comes with
an accuracy guarantee, and is generic for any network function
P : G → R. In Theorem 2, we refer to |Sup(P,G)|−1

2T + ϵ as the
margin of error. We observe that larger T decreases the margin
of error. In contrast, N has little impact on the margin of
error; however, the probability that our error estimate crosses
that margin increases as we reduce N . When the support
size |Sup(P,G)| increases, both the margin of error and the
probability that our error estimate crosses that margin increase.
Therefore, a combination of P and G that results in lower
support size |Sup(P,G)| is preferred.

V. ALGORITHMS FOR UNCERTAINTY REDUCTION

Given a small budget k > 0 on the number of edges, we
investigate the problem of selecting up to k uncertain edges,
on updating whose probabilities via an operation U

(
p(e)

)
,

the entropy H[Ω] is maximally reduced. Our objective func-
tion is not monotonic with respect to probability updates of
more edges (Lemma 1). Hence, we may not exhaust the full
budget k to achieve the maximum reduction in entropy. For
simplicity, we consider the ‘known’ update outcome with
U1 : (0, 1) → 1 in §V-A-V-B. The ‘unknown’ update outcome
for U2 : (0, 1) → {0, 1} is discussed in §V-C.

A. Naı̈ve Approach

A naı̈ve but exact approach is to enumerate all
(|E|

i

)
i-

size subsets, 0 ≤ i ≤ k, Si ⊂ E; create a new uncertain
graph G′ associated to every choice Si, such that edges in
E \ Si retain their original probability, and edges in Si have
updated probabilities in G′ via the update operation U1. Finally,
we compute the updated entropy and select the subset whose
update reduces the initial entropy maximally.

The entropy must be recomputed for every choice of Si and
computing entropy exactly over an uncertain graph with |E|
edges costs O

(
2|E|C(P)

)
. Thus, the time complexity of the

naı̈ve approach is: O
(∑k

i=0

(|E|
i

)
· 2|E| · C(P)

)
. Here, C(P)

denotes the maximum time required to evaluate function P (G)
on a possible world G ⊑ G. For a large-scale graph, such an
exact approach is impractical.

Algorithm 3 Greedy Edge Selection with Sampling
Require: uncertain graph G = (V,E, p), function P, budget k on #

edge updates
1: E∗

0 ← ∅
2: for i = 1 to k do
3: e∗ ← argmaxe∈E\E∗

i−1

{
∆Ĥ(E∗

i−1 ∪ {e})
}

4: E∗
i ← E∗

i−1 ∪ {e∗}
5: p(e∗)← U1

(
p(e∗)

)
= 1

6: return argmaxE∗
i ,0≤i≤k

{
∆Ĥ(E∗

i)
}

x

sy u

0.7
0.40.6 0.3

(a) G4
H0 = 0.71

H1 = 0.81

H2 = 0.88H2 = 0.88

[sy] [sx]

H1 = 0.78

H2 = 0.88H2 = 0.8

[su] [sy]

H1 = 0.88

H2 = 0

[su]

H1 = 0.93

H2 = 0.68

[xy]

[su] [sy] [sx] [xy]

(b)

Fig. 2. Reducing entropy of y-u reachability on uncertain graph G4: The
edges that should be chosen for cleaning as per U1 to reach global optima
are colored red ([sy], [su]). The edges chosen by Greedy are colored blue.
Greedy selects the edge [sx] at round 1 because it is locally best at round 1.
However, this leads to a globally sub-optimal selection ([sx], [su]).

B. Greedy Algorithm with Sampling

We improve the efficiency of the naı̈ve approach in two
ways: (1) We eliminate the exponential number of sub-
set choices by exploiting linear-time, greedy edge-selection,
which reduces the time complexity term from

∑k
i=0

(|E|
i

)
to O(k|E|). (2) We employ MC-sampling to approximate
entropy values (§IV-A). It reduces the exponential term 2|E|

to a much smaller term N · T at the cost of a predefined
margin of error. Our greedy heuristic with sampling is given
in Algorithm 3. At every iteration i (Lines 2-5), we greed-
ily find the optimal edge set E∗

i that reduces the entropy
maximally, compared to any other edge set having the same
cardinality. Among these E∗

i ’s, 0 ≤ i ≤ k, we return the
one resulting in the maximum decrease in entropy (Line
6). Furthermore, instead of computing entropy exactly, we
leverage Algorithm 2 (§IV-A) to estimate it via MC-sampling
(Line 3), resulting in overall time complexity of Algorithm 3 to
be O(k ·|E|·N ·T ·C(P)). Recall that the underlying objective
function is non-submodular (Lemma 2). Hence, the greedy
algorithm does not provide any approximation guarantee.

Drawbacks. The greedy edge selection with sampling ap-
proach (Algorithm 3) suffers from both efficiency and effec-
tiveness issues. (1) Efficiency-wise at each iteration, Greedy
computes the goodness of every remaining edge via MC-
sampling (Line 3). However, many edges are less relevant
w.r.t. a certain downstream task. For instance, edges that
are far away from a specific source-target pair would gen-
erally have lower impacts on the reachability or shortest
path distance functions between that source-target pair. Thus,

verifying all remaining edges at every iteration is redundant.
(2) Effectiveness-wise, Greedy suffers from the so-called cold
start problem, where there are very few local choices that lead
to global optima. At earlier rounds, there could be several
edges, updating of whose probabilities will lead to quite small
(or, even negative) entropy reduction. A locally-best solution
at earlier rounds may lead to a globally sub-optimal solution,
which is illustrated via an example in Figure 2.
C. Greedy Subgraphs Selection

Since the greedy algorithm cannot know the global out-
comes of its local choices at initial rounds, ranking and se-
lecting individual edges based on entropy leads to sub-optimal
solutions. Instead, it is desirable to consider all relevant edges
holistically (w.r.t. the network function), for selecting up to
the best k-edges. We propose a more practical algorithm
Greedy+subgraph. It ranks “subgraphs” of interest based on
the network function, update operation, and the entropy of
subgraphs. Then, it selects the best subgraph and cleans all its
edges together following the update operation. The algorithm
continues with the next best subgraph until the budget on the
number of edges is exhausted. We first illustrate the key idea
for reachability and SP distance functions, with update U1.

Greedy+subgraph algorithm for reachability and shortest
path (SP) distance functions, with update U1. Here, the
“subgraph” of interest is the shortest path between the given
s-t pair. In particular, we compute the shortest path between
the s-t pair, without considering edge probabilities in G. When
there are multiple shortest paths between the s-t pair, we pick
any one of them. If the path has no more edges than the
budget constraint, all edges on this path are updated to have
probability 1 due to U1. This reduces the entropy to 0, resulting
in the maximum possible reduction in entropy. Otherwise, if
the path has more edges than the budget constraint k, we
select k edges on this path with the highest individual entropy
and update their probabilities to 1 in order. Let E∗

i denote
the selected edge set at round i, 0 ≤ i ≤ k. Among these
E∗

i ’s, we return the one resulting in the maximum decrease
in entropy. The time complexity is dominated by the shortest
path computation, which is O(|V |+ |E| log |V |) via Dijkstra.

Example 3. Consider budget k = 2. To reduce the entropy
of y-u reachability on the uncertain graph G4 in Figure 2,
we compute the shortest path from y to u in G4 (without
considering probability on edges): y − s − u. We increase
the probability of both edges (ys and su) on this path to 1
via the update operation U1. This reduces the entropy of y-u
reachability on G4 to 0. Hence, the entropy reduces maximally,
and we avoid the cold start problem due to Greedy.

Generalizing “subgraphs” of interest for other network
functions. Intuitively, a subgraph of interest constitutes a set of
edges so that collectively knowing their existence significantly
impacts the outcome of the network function. In this work,
we exploit technical knowledge about the network function to
select its subgraphs of interest, e.g., the shortest path between
the s-t pair for reachability and SP distance functions. For

Algorithm 4 Greedy+subgraph Algorithm
Require: uncertain graph G = (V,E, p), function P , budget k,

hyper-parameter r
1: compute the top-r subgraphs S
2: sort subgraphs S ∈ S based on entropy
3: E∗

0 ← ∅, i← 0
4: while S is not empty ∧ |E∗

i | < k do
5: S∗ ← pop(S)
6: i← i+ 1
7: E∗

i ← E∗
i−1 ∪ Edges(S∗)

8: clean all edges in S∗ via update operation
9: update entropy of remaining subgraphs having common edge

with S∗; and re-sort S based on updated entropy
10: r′ ← argmaxi |E∗

i | ≤ k

11: return argmaxE∗
i ,0≤i≤r′

{
∆Ĥ(E∗

i)
}

triangle count, we use the triangles in G as subgraphs of
interest. For node classification, we consider the explanation
subgraphs [18] in a node’s neighborhood that can explain the
prediction of a graph neural network. We keep it an open prob-
lem to automatically derive the characteristics of interesting
subgraphs independent of different network functions.

Greedy+subgraph for other network functions, with up-
date U1 or U2. For a given network function, we select
the top-r subgraphs of interest. Here, r is a hyper-parameter
that could be as small as 1 for certain network functions
and update operation (e.g., as stated, for reachability and SP
distance functions, together with update U1), but can also
be larger otherwise (e.g., for update U2), and is decided
empirically. Generally, the total number of edges in these
r subgraphs should be ≥ k, the budget constraint. These
provisions for checking up to the budget constraint. Next,
we consider the subgraphs one at a time in descending
order of entropy, where the entropy of a subgraph S is:
H(S) = −Pr(S) logPr(S) − (1 − Pr(S)) log(1 − Pr(S)),
with Pr(S) = Πe∈Sp(e). For each subgraph, we clean all
its edges via the update operation, until the budget on the
number of edges is exhausted. After cleaning a subgraph,
we recompute the entropy of those subgraphs that share an
edge with the cleaned subgraph and update the sorted order
of remaining subgraphs based on their new entropy. Due to
the budget constraint, assume that we can clean r′ ≤ r
subgraphs. Let E∗

i denote the selected edge set at round i,
0 ≤ i ≤ r′. Among these E∗

i ’s, we return the one resulting in
the maximum decrease in entropy. The complete procedure is
given in Algorithm 4.

Remark. For reachability and SP distance functions, the top-r
shortest paths in G are found using the well-known Eppstein’s
algorithm (without considering probability on edges). For
triangle count, we aim at selecting the top-r triangles with the
highest entropy. We first sort the edges in descending order
of their individual entropy, iterate over the sorted edges, and
check if the endpoints create a triangle. We sample r triangles
in this manner. For node classification, the selection of the
top-r explanation subgraphs via [18] is discussed in §VII.

VI. RELATED WORK

Edge cleaning to reduce uncertainty. Lin et al. [12] studied
crowdsourcing based edge cleaning (i.e., only update operation
U2) to improve the quality of distance-constrained s-t reacha-
bility queries over uncertain graphs. The quality is measured
via entropy, and the objective is to select the k-best edges
that result in the maximum expected quality improvement for
a given set of distance-constrained s-t reachability queries.
Wu et al. [13] additionally included crowd noise in the above
problem. While the essence of these problems is similar to
that of ours, albeit [12], [13] focused only on Boolean-valued
graph properties, such as distance-constrained reachability.
Specifically, the heuristic techniques designed therein (e.g., all
length-d paths enumeration from s to t, recursive computation,
edge pruning optimizations, etc.) to work on Boolean-valued
graph properties do not generalize with arbitrary real-valued
graph functions, such as SP distance, triangle count, and node
classification that we consider in this work. Additionally, we
have shown that ranking and selection of individual edges
lead to sub-optimal solutions for entropy reduction (§V, §VII).
Besides, it is unclear how efficient sampling and indexing for
network property estimation, e.g., ProbTree indexing [14], re-
cursive stratified sampling [15], approximate triangle counting
[16], can be employed with those existing solutions (§VII).
Uncertainty in graph ML. In graph neural networks, uncer-
tainty typically arises from two sources: (1) data or statistical
uncertainty (aleatoric uncertainty), due to data containing
noise and error, or lacking sufficient information, including
edge uncertainty, and (2) systemic or model uncertainty (epis-
temic uncertainty), due to not knowing the distribution of true
labels, choice of model structures, and selection of parameters.
For surveys, we refer to [11], [19]. We focus on the first type of
uncertainty – reduction of which received little attention in the
past. Node classification in uncertain graphs has been studied
in [20], [21] by following Bayesian and embedding methods,
respectively. To the best of our knowledge, ours is the first
work that employs the widely studied possible world semantics
to estimate and reduce the uncertainty associated with fixed,
deterministic node classifiers over uncertain graphs.

VII. EXPERIMENTAL RESULTS

Experimental setup. We experiment using the single core of
a server with 128 AMD EPYC processor and 256GB RAM.
Our codebase is at https://github.com/toggled/uncertainty.

We conduct experiments with five real-world and one
synthetic datasets (Table IV): (1) ER is a synthetic graph
according to the Erdős-Rényi’s random graph model. Edge
probabilities are generated by sampling from a Gaussian
distribution with mean 0.27 and standard deviation 0.21, so
that the edge probability distribution closely follows that of
the real-world dataset Biomine. (2) Biomine graph [22] is
built by integrating cross-references from various biological
databases. Nodes denote biological entities and edges represent
real-world phenomena between two nodes. Edge probabilities
are derived in [22] based on three criteria: relevance, infor-
mativeness, and confidence in the existence of a relationship.

TABLE IV
Statistics of datasets. Reach: reachability, SP: shortest path distance, #Tri:

triangle counting, NC: node classification

graph type queries
shown #nodes #edges edge prob.

ER synthetic reach,
SP, #Tri 15 22 0.27 ± 0.21

Biomine biological reach, SP 1 008 201 13 485 878 0.27 ± 0.21
Flickr social #Tri 78 322 10 171 509 0.09 ± 0.06
Products crowdsourced reach 2 173 37 641 0.17 ± 0.09
Papers crowdsourced #Tri 995 152 731 0.26 ± 0.23
DBLP collaboration NC 632 870 3 301 970 0.46 ± 0.14

TABLE V
Entropy estimate: comparison with Exact method (ER)

algorithm avg.
running time (sec) avg. error

Reach SP #Tri Reach SP #Tri
Exact 177.4 190.9 815.8 0 0 0
MC 0.039 0.096 0.368 0.088 0.086 0.058

(3) Flickr is an online social network, where users share
photos and join common interest groups. We obtain a subset
of the network from [2], where the probability of the edge
between any two users is computed as the Jaccard coefficient
of the interest groups that the two users belong to. (4)
Products is a popular crowdsourcing-based entity resolution
dataset [10], with entities (i.e., nodes) being products. (5)
Papers is also an entity resolution dataset [10], where research
papers are entities. About 1.5% and 30% of randomly selected
entity pairs (i.e., edges) from these datasets, respectively, are
crowdsourced by Amazon’s Mechanical Turk platform. Five
workers per task are engaged. Each task asks if the entities
in a pair (i.e., end-nodes of an edge) are the same or not.
The edge probability is assigned as the number of workers
who voted ‘yes’, divided by the total number of workers being
asked for that pair. (6) DBLP is a collaboration network widely
used in the literature [23], [24]. We downloaded it on Sep.
1, 2023. Each node is an author and edges denote co-author
relations. For every edge (u, v), we compute the number of
collaborations c between u and v, and we assign probability
p((u, v)) = 1− e−c/µ, µ = 2 [4].

We vary parameters N and T that control the number of
MC-samples (§IV). The details are deferred to Appendix X.
We observe that irrespective of network functions, the entropy
estimate initially fluctuates as we increase T ; and after a
certain T (say T = T ∗), it gets stable indicating that T ∗

is sufficient to approximate entropy. We determine T ∗ based
on the entropy rate: ∆H

∆T = HT+δ−HT

δ . Here, δ > 0 is the
increment in T . We set a threshold ϵT = 0.03 for all network
functions and datasets, and determine T ∗ as the point after
which |∆H

∆T | ≤ ϵT . We select optimal N , denoted as N∗,
similarly by setting a threshold ϵN = 0.001 and computing N∗

as the point after which |∆H
∆N | ≤ ϵN . Typically, we find that

N∗ ≈ 50-500 and T ∗ ≈ 5-50 for different network functions.

A. Uncertainty Estimation Results

For reachability (Reach) and shortest path distance (SP),
we construct query sets Q2, Q4, Q6: Each set containing
uniformly at random selected 100 s-t pairs from the input
graph that are 2-hops, 4-hops, and 6-hops away, respectively.

Since ER is a small graph, its query sets include only Q2

and Q4, each set containing 5 s-t pairs. The results are
reported as an average over all queries in these query sets.
For triangle counting (#Tri), we count the number of triangles
in deterministic possible worlds. The number of support values
for #Tri queries is extremely large, thus we use uniform
bucketing to group nearby support values and estimate entropy.

For uncertainty estimation, our proposed Algorithm 2, re-
ferred to as MC, leads to several variants based on the
downstream network functions (e.g., reachability, SP dis-
tance, triangle counting), indexing technique (e.g., ProbTree
[14]), and advanced sampling strategy (e.g., RSS [15]). For
instance, MC+BFS evaluates reachability by running prob-
abilistic BFS [4], MC+Dijkstra evaluates SP distance by
running probabilistic Dijkstra [5], and MC+ApproxTriangle
evaluates triangle count via MC-sampling of triplets [16]. Fur-
ther adopting ProbTree indexing for reachability and SP dis-
tance evaluation leads to ProbTree-MC+BFS and ProbTree-
MC+Dijkstra. Similarly, instead of using MC-sampling to
estimate entropy, adopting RSS leads to algorithms RSS and
further adoption of ProbTree leads to ProbTree-RSS.

1) Comparison w.r.t. to an exact method: Table V shows
efficiency comparison and approximation error of MC w.r.t.
the Exact algorithm for uncertainty estimation (§IV). MC
is 3 orders of magnitude faster than Exact, while incurring
small errors in entropy estimation. As Exact is impractical on
larger or even medium-size graphs due to its computational
complexity, our results show that MC and its variants can be
used as effective proxy over larger datasets.

2) Efficiency, effectiveness, and memory usage on larger
datasets: Tables VI, VII, and VIII show performance compar-
ison of the algorithms on larger Biomine and Flickr datasets.
We consider MC as the baseline and compute errors in entropy
estimation of other algorithms with respect to it. In Table VI
for reachability queries, (1) MC is the least efficient, while
ProbTree-RSS is the most efficient among all the algorithms.
The latter benefits from both ProbTree indexing and RSS
sampling. In general, ProbTree indexing improves the running
time of MC, MC+BFS, and RSS algorithms. Among purely
sampling-based methods, RSS is the most efficient, followed
by MC+BFS, whereas MC is the least efficient. (2) Accuracy-
wise, MC+BFS is the most similar to MC. Moreover, all our
algorithms generally have lower average errors w.r.t. MC. (3)
Purely sampling-based algorithms consume the least amount
of memory, while ProbTree-based methods require additional
storage due to indexing. Similar trends can be observed for SP
distance function in Table VII and triangle count in Table VIII.

B. Uncertainty Reduction Results

We study the effectiveness of Greedy+subgraph in un-
certainty reduction. The impact of parameters r and k on
Greedy+subgraph is deferred to the Appendix X.

1) Exact, Greedy, and Greedy+subgraph comparison: We
compare the effectiveness and efficiency of our ultimately
proposed Greedy+subgraph for entropy reduction (§V), with
Greedy and Exact algorithms on reachability and SP distance

TABLE VI
Entropy estimate for reachability (Biomine)

algorithm avg.
running time (sec)

avg.
error

avg. peak
mem. (GB)

MC 32849.5 0 4.0
MC+BFS 2742.2 0.005 4.0

ProbTree-MC 18515.1 0.008 8.6
ProbTree-MC+BFS 2257.1 0.049 8.6

RSS 1672.1 0.100 4.0
ProbTree-RSS 1342.8 0.300 8.6

TABLE VII
Entropy estimate for shortest path distance (Biomine)

algorithm avg.
running time (sec)

avg.
error

avg. peak
mem. (GB)

MC 26715.3 0 4.0
MC+Dijkstra 4220.7 0.033 4.0
ProbTree-MC 24559.4 0.038 8.6

ProbTree-MC+Dijkstra 4154.1 0.011 8.6

TABLE VIII
Entropy estimate for triangle count (Flickr)

algorithm avg.
running time (sec)

avg.
error

avg. peak
mem. (GB)

MC 313708.9 0 3.1
MC+ApproxTriangle 34860.2 0.38 3.0

3 4
Budget

0.00

0.05

0.10

0.15

0.20

E
nt

ro
py

re
du

ct
io

n

Greedy+subg Greedy Exact

(a) Reach

3 4
Budget

0.00

0.05

0.10

0.15

0.20

E
nt

ro
py

re
du

ct
io

n

Greedy+subg Greedy Exact

(b) SP

3 4
Budget

10−2

100

102

104

106

R
un

ni
ng

ti
m

e
(s

ec
)

Greedy+subg Greedy Exact

(c) Reach

3 4
Budget

10−2

100

102

104

106

R
un

ni
ng

ti
m

e
(s

ec
)

Greedy+subg Greedy Exact

(d) SP

5 10 15 20
Budget

0.000

0.035

0.070

0.105

0.140

0.175

E
nt

ro
py

re
du

ct
io

n

Greedy+subg PSTAR G

(e) Reach

5 10 15 20
Budget

22

24

26

28

210

R
un

ni
ng

ti
m

e(
se

c)

Greedy+subg PSTAR G

(f) Reach
Fig. 3. (a)-(d): Comparison among Exact, Greedy, and Greedy+subgraph,
ER dataset, update U1. Each s-t pair is 3-hops away when budget = 3, and 4-
hops away when budget = 4. Greedy often does not reduce entropy at all due
to the cold start problem. (e)-(f): Comparison between our Greedy+subgraph
and existing PSTAR G [12], products dataset, update U2.

functions. We use the smallest ER dataset for these exper-
iments due to the computational cost of running the Exact
method. Figures 3(a-b) present effectiveness based on the
amount of entropy reduced (y-axis) after selecting and clean-
ing edges as per update U1 under various budgets (x-axis).
Notice that Greedy+subgraph reduces almost equal amount
of uncertainty as Exact, whereas Greedy cannot often reduce
uncertainty at all due to the cold start problem. Figures 3(c-d)
show the efficiency of the algorithms. Greedy+subgraph is
at least 4-5 orders of magnitude faster than Exact and about
2 orders of magnitude more efficient than Greedy. These
results demonstrate the effectiveness and efficiency of our
Greedy+subgraph method for entropy reduction.

2) Comparison with existing PSTAR G [12]: We employ
PSTAR G as a baseline, which was proposed to find a
limited number of edges whose cleaning as per U2 would
maximally reduce the expected entropy of d-hop reachability.
We compare it with our algorithm Greedy+subgraph using
100 query pairs, where each source-target pair is 5-hops away,
on the products dataset. In Figure 3(e-f), Greedy+subgraph

is more effective than PSTAR G in entropy reduction for
the same budget, since we consider greedy subgraph selec-
tion to remove the cold start problem of greedy methods,
whereas PSTAR G follows a greedy approach based on
ranking and selection of individual edges. Efficinecy-wise, our
algorithm Greedy+subgraph achieves 32-128X speedup than
PSTAR G. Recall that PSTAR G computes expected entropy
reduction for all candidate edges using MC sampling, whereas
Greedy+subgraph selectively cleans edges along the most
uncertain subgraphs that are relevant to the network function.

C. ML Application in Strategic Collaboration Problem

We showcase a concrete application of our problems and
their solutions in the strategic collaboration problem: Find
co-authors to collaborate often such that someone’s profile is
more prominently classified in a specific research domain. We
resolve this problem by estimating and reducing uncertainty
of node classification over the uncertain DBLP collaboration
network (Table IV). A node can have one of the 8 class labels:
Artificial Intelligence & Data Mining (AI-DM), Databases
(DB), Hardware & Architecture (HW), Media & Applications
(Media), System Technology (Sys), Programming Languages
& Software Engineering (SW), Algorithms & Theory (Alg),
and Biomedical (Bio). The most frequent label in an author’s
publications from a set of top conferences and journals is used
as the author’s ground-truth class label. The top-20 frequent
and relevant keywords present in the paper titles from each
class label are used as binary node features. We randomly
selected 80% nodes for training the node classifier and 20%
for testing.

We generate 100 possible worlds from the uncertain DBLP
graph and train a 3-layer vanilla GCN [25] on the labeled
nodes from these possible worlds in a supervised manner. For
a specific test node, we obtain its predicted class labels across
10 selected possible worlds. Figure 4 shows the distribution of
predicted class labels for two well-known researchers: Jean-
Pierre Briot (https://dblp.org/pid/b/JPBriot.html) and Pamela
Zave (https://dblp.org/pid/z/PamelaZave.html) over these pos-
sible worlds. The predicted class labels are relevant: JP Briot
and his collaborators published at several AI-DM, Systems,
and SW venues, while he mainly published in SW confer-
ences. Pamela Zave is a senior researcher known for her work
in software requirement engineering; she and her collaborators
over the years published in many areas including AI-DM, Sys,
SW, and Alg. Using our algorithm (§IV), we estimate the
uncertainty associated with label predictions by a GNN [25];
the respective entropies are 1.36 and 1.84 for JP Briot and
Pamela Zave over the uncertain DBLP graph.

To effectively reduce uncertainty within a budget, our
Greedy+subgraph algorithm in §V selectively cleans edges
(we consider update U1) along subgraphs of interest that are
highly relevant to that node’s classification. To this end, we
employ GNN explainability methods, such as SubgraphX [18]
that identifies an important subgraph in a node’s neighborhood
which explains the GNN’s prediction. Specifically for a test
node, we find its majority predicted class (e.g., SW for

AI-DM Sys SW
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Pr
ed

ict
ed

 C
la

ss
 P

ro
b. Before Clean

k=6

(a) JP Briot

AI-DM Sys SW Alg
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Pr
ed

ict
ed

 C
la

ss
 P

ro
b. Before Clean

k=16

(b) Pamela Zave
Pamela Zave

Michael Jackson

Sebastian Uchitel

Marsha Chechik

(c) Recommended col-
laborations

Fig. 4. (a-b) The distributions of predicted class for Jean-Pierre Briot and
Pamela Zave on DBLP graph before and after cleaning of selected uncertain
edges. (c) The recommended future collaborations for Pamela Zave (among
her co-authors) such that she is more prominently classified into SW.

Pamela Zave) and apply SubgraphX on each possible world
to obtain an explanation subgraph that explains the majority
class prediction in that possible world. With 10 possible
worlds, we obtain 10 explanation subgraphs which we use
as candidates for S in Algorithm 4 (Line 1). We hypothesize
that by cleaning the most uncertain (high-entropy) ones among
these important subgraphs, one can reduce the uncertainty
of that node’s label prediction. Figures 4(a-b) validate our
hypothesis: After cleaning the top-16 uncertain edges selected
via our Greedy+subgraph method from important subgraphs,
Pamela Zave is classified into the SW class in more possible
worlds, and the corresponding entropy reduces to 1.16.

In Figure 4(c), we highlight a few important edges that are
selected and cleaned via Greedy+subgraph. Further inspect-
ing the cleaned edges, we find that many of them connect
Pamela Zave to prominent researchers in the SW domain,
e.g., Marsha Chechik (https://dblp.org/pid/c/MarshaChechik.
html), Sebastian Uchitel (https://dblp.org/pid/21/1391.html)
and Michael A. Jackson (https://dblp.org/pid/92/1629-1.
html). By cleaning these edge probabilities to 1, i.e., recom-
mending to collaborate more with these co-authors, Pamela
Zave would be predicted to have the SW class label across
more possible worlds, thus reducing the uncertainty associated
with this author’s classification. Our case study demonstrates
the usefulness of our problems and their solutions over node
classification in real-world uncertain graphs.

VIII. CONCLUSIONS

We studied estimating and reducing uncertainty of comput-
ing network functions over uncertain graphs. We exploited
the information-theoretic notion of entropy to formulate our
problems and characterize their complexity. For uncertainty
estimation, we proposed an approximation algorithm with an
(ϵ, δ)-type guarantee. For uncertainty reduction, we designed a
practical greedy subgraphs selection algorithm that reduces the
cold start problem of greedy approaches. Based on empirical
results, our algorithms coupled with indexing and smart sam-
pling strategies achieve the best accuracy and efficiency. Our
case study depicted an application of uncertainty reduction for
node classification in the strategic collaboration problem.

One limitation of this work is that we consider a network
function that produces a single value when computed on a
deterministic graph. In future, we shall extend our solution
to network functions generating multiple outputs, e.g., all
subgraphs satisfying an input constraint, all nodes reachable
within a limited number of hops, all nodes classified in a
specific label, etc.

REFERENCES

[1] M. O. Ball, “Computational complexity of network reliability analysis:
An overview,” IEEE Tran. Rel., 1986.

[2] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “K-nearest neighbors
in uncertain graphs,” PVLDB, 2010.

[3] A. Khan, Y. Ye, and L. Chen, On Uncertain Graphs, ser. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2018.

[4] X. Ke, A. Khan, and L. L. H. Quan, “An in-depth comparison of s-t
reliability algorithms over uncertain graphs,” PVLDB, 2019.

[5] A. Saha, R. Brokkelkamp, Y. Velaj, A. Khan, and F. Bonchi, “Shortest
paths and centrality in uncertain networks,” PVLDB, 2021.

[6] C. Ma, R. Cheng, L. V. S. Lakshmanan, T. Grubenmann, Y. Fang,
and X. Li, “LINC: A motif counting algorithm for uncertain graphs,”
PVLDB, 2019.

[7] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., 1948.

[8] J. Ghosh, H. Q. Ngo, S. Yoon, and C. Qiao, “On a routing problem
within probabilistic graphs and its application to intermittently connected
networks,” in INFOCOM, 2007.

[9] S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth, “Predicting
protein complex membership using probabilistic network reliability,”
Genome Res., 2004.

[10] S. Wang, X. Xiao, and C. Lee, “Crowd-based deduplication: An adaptive
approach,” in SIGMOD, 2015.

[11] F. Wang, Y. Liu, K. Liu, Y. Wang, S. Medya, and P. S. Yu, “Uncertainty
in graph neural networks: A survey,” CoRR, vol. abs/2403.07185, 2024.

[12] X. Lin, Y. Peng, B. Choi, and J. Xu, “Human-powered data cleaning for
probabilistic reachability queries on uncertain graphs,” TKDE, 2017.

[13] Y. Wu, X. Lin, Y. Yang, and L. He, “Cleaning uncertain graphs via noisy
crowdsourcing,” World Wide Web, 2019.

[14] S. Maniu, R. Cheng, and P. Senellart, “An indexing framework for
queries on probabilistic graphs,” ACM Trans. Database Syst., 2017.

[15] R. Li, J. X. Yu, R. Mao, and T. Jin, “Recursive stratified sampling: A
new framework for query evaluation on uncertain graphs,” TKDE, 2016.

[16] T. Schank and D. Wagner, “Approximating clustering coefficient and
transitivity,” J. Graph Alg. Appl., 2005.

[17] A. N. Kolmogorov, “Foundations of the theory of probability,” 1960.
[18] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, “On explainability of graph

neural networks via subgraph explorations,” in ICML, 2021.
[19] S. Munikoti, D. Agarwal, L. Das, and B. Natarajan, “A general frame-

work for quantifying aleatoric and epistemic uncertainty in graph neural
networks,” Neurocomputing, 2023.

[20] M. Dallachiesa, C. C. Aggarwal, and T. Palpanas, “Node classification
in uncertain graphs,” in SSDBM, 2014.

[21] J. Hu, R. Cheng, Z. Huang, Y. Fang, and S. Luo, “On embedding
uncertain graphs,” in CIKM, 2017.

[22] L. Eronen and H. Toivonen, “Biomine: Predicting links between biolog-
ical entities using network models of heterogeneous databases,” BMC
Bioinformatics, 2012.

[23] M. Ley, “Dblp: some lessons learned,” Proceedings of the VLDB
Endowment, vol. 2, no. 2, pp. 1493–1500, 2009.

[24] N. A. Arafat, A. Khan, A. K. Rai, and B. Ghosh, “Neighborhood-based
hypergraph core decomposition,” Proceedings of the VLDB Endowment,
vol. 16, no. 9, pp. 2061–2074, 2023.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[26] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. American Stat. Association, vol. 58, p. 13–30, 1963.

[27] Y. W. Teh, D. Newman, and M. Welling, “A collapsed variational
bayesian inference algorithm for latent dirichlet allocation,” in Advances
in Neural Information Processing Systems, 2007.

APPENDIX

IX. PROOF OF THEOREM 2

Proof. Consider a random variable Xi = Ĥi and mean =
E[Ĥi]. As entropy is bounded, 0 ≤ Ĥi ≤ log|Sup(P,G)|.
Applying Hoeffding’s inequality for a bounded random vari-
able [26]

Pr

(
E[Ĥi]− ϵ ≤

∑
Ĥi

N
≤ E[Ĥi] + ϵ

)
≥ 1− 2e

−2Nϵ2

log2|Sup(P,G)|

(10)

In order to compute E[Ĥi], let us assume another random
variable Yi = P̂ ri(Ω = Ω) = P̂ ri(Ω), whose mean µ =
E[P̂ ri(Ω = Ω)] = Pr(Ω = Ω) (Theorem 1). Similar to [27],
second order Taylor approximation around Yi = µ yields:

log(Yi) = log(µ)+
1

µ
(Yi−µ)+

1

µ2

(Yi − µ)2

2
+higher order terms

By taking expectation and ignoring the higher order terms,

E[log(Yi)] ≈ log(µ) +
1

µ
(E[Yi]− µ) +

1

µ2

E[(Yi − µ)2]

2

= log(µ) +
1

µ2

V ar[Yi]

2

Replacing Yi with P̂ ri(Ω),

E[log(P̂ ri(Ω))] = log(Pr(Ω)) +
1

Pr(Ω)2
V ar[P̂ ri(Ω)]

2

=⇒ E[− log(P̂ ri(Ω))] = − log(Pr(Ω))− 1

Pr(Ω)2
V ar[P̂ ri(Ω)]

2

Multiplying both sides by Pr(Ω) and taking sum over the
support set Sup(P,G) yields,∑
Ω∈Sup(P,G)

Pr(Ω)E[− log(P̂ ri(Ω))]

=
∑

Ω∈Sup(P,G)

−Pr(Ω) log(Pr(Ω))−
∑

Ω∈Sup(P,G)

1

Pr(Ω)

V ar[P̂ ri(Ω)]

2

=⇒ E[E[− log P̂ ri(Ω)]] = H(Ω)−
∑

Ω∈Sup(P,G)

1

Pr(Ω)

V ar[P̂ ri(Ω)]

2

=⇒ E[Ĥi] = H(Ω)−
∑

Ω∈Sup(P,G)

V ar[P̂ ri(Ω)]

2Pr(Ω)

We compute the variance term as the following:

V ar[P̂ ri(Ω)] = V ar[P̂ ri(Ω = Ω)]

=
1

T 2
V ar

[
T∑

i=1

I(P (Gi) = Ω)

]
=

1

T 2

T∑
i=1

V ar[I(P (Gi) = Ω)]

=
1

T 2

T∑
i=1

Pr(P (Gi) = Ω)Pr(P (Gi) ̸= Ω)

=
1

T 2

T∑
i=1

Pr(Ω)(1− Pr(Ω)) =
1

T
Pr(Ω)(1− Pr(Ω))

=⇒
∑

Ω∈Sup(P,G)

V ar[P̂ ri(Ω)]

Pr(Ω)
=

∑
Ω∈Sup(P,G)

(1− Pr(Ω))

T

=
|Sup(P,G)| − 1

T

=⇒ E[Ĥi] = H(Ω)−
|Sup(P,G)| − 1

2T

1 50 100
T

-0.03
0.00
0.03
0.06
0.09
0.13

H
/

T

T * = 6.0

H/ T

0.0
0.2
0.4
0.6
0.8

H

H

(a) Reach

1 50 100
T

-0.030.000.030.06
0.12
0.18

H
/

T

T * = 11.0

H/ T

0.0
0.3
0.7
1.0
1.4

H

H

(b) SP
Fig. 5. ∆H/∆T vs. T (left y-axis); H vs. T (right y-axis) on ER

Using the above result in Equation 10,

Pr

(
−
|Sup(P,G)| − 1

2T
− ϵ ≤

∑
Ĥi

N
−H(Ω) ≤ −

|Sup(P,G)| − 1

2T
+ ϵ

)

≥ 1− 2e
−2Nϵ2

log2|Sup(P,G)|

=⇒

Pr

(
−
|Sup(P,G)| − 1

2T
− ϵ ≤

∑
Ĥi

N
−H(Ω) ≤

|Sup(P,G)| − 1

2T
+ ϵ

)

≥ 1− 2e
−2Nϵ2

log2|Sup(P,G)|

The last line follows since probability can only increase as
we increase the upper bound. Hence, the theorem.

Bound on the number of possible world samples. If we
want to achieve a margin of error value |Sup(P,G)|−1

2T ≤ δ ≤
|Sup(P,G)|−1

2T + ϵ, T needs to satisfy:

|Sup(P,G)| − 1

2T
< δ =⇒ T ≥ |Sup(P,G)|

2δ

If we aim the above with a probability ≥ γ, N must satisfy:

1− 2e
−2Nϵ2

log2|Sup(P,G)| ≥ γ =⇒ N ≥ 1

ϵ2
log2|Sup(P,G)| ln

(
2

1− γ

)
Corollary 1. To achieve an error margin δ ∈

(
|Sup(P,G)|−1

2T ,

|Sup(P,G)|−1
2T + ϵ

)
with probability γ, it is sufficient to sample

ln 2
1−γ

2δϵ2 |Sup(P,G)| log2|Sup(P,G)| possible worlds (ϵ > 0).

X. ADDITIONAL EXPERIMENTAL RESULTS

Parameters Study of the Number of Possible Worlds.
We vary parameters N and T that control the number of
MC-samples to assess the effect of these parameters on the
estimated entropy (§IV). We demonstrate using the ER dataset,
while reporting the optimal values of N and T for other
datasets and network functions in Table IX.

Figure 5 shows the variation of entropy H and entropy-rate
∆H
∆T w.r.t. T on the ER dataset, while N = 1 remains fixed.
We observe that irrespective of network functions, the entropy
estimate initially fluctuates as we increase T ; however, after
a certain T (say T = T ∗), it gets stable, which indicates that
T ∗ is sufficient to approximate entropy. Note that it is difficult
to determine T ∗ from T vs. H plot, because the range of
entropy as represented in the secondary y-axis in Figure 5 is
not necessarily the same for different network functions. For
instance, with reachability function, 0 ≤ H ≤ 1 (Figure 5(a));
however, with the shortest path distance function, it is possible
that H > 1 (Figure 5(b)).

To address this issue, we determine T ∗ based on the entropy
rate, represented as ∆H

∆T = HT+δ−HT

δ . Here, δ > 0 is the

TABLE IX
Optimal N and T for all datasets with MC-sampling

graph function N∗ (ϵN = 0.001) T ∗ (ϵT = 0.03)
ER SP 286 11
ER Reach 161 6
ER #Tri 466 11

Biomine Reach 171 10
Biomine SP 126 11
Flickr #Tri 76 51
Papers #Tri 100 60

Products Reach 46 4

5 10 15 20
Budget

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

E
nt

ro
py

re
du

ct
io

n

r=1

r=2

r=3

r=6

r=9

r=12

(a) Effectiveness (Reach)

5 10 15 20
Budget

0

100

200

300

400

500

600

R
un

ni
ng

ti
m

e
(s

ec
)

r=1

r=2

r=3

r=6

r=9

r=12

(b) Efficiency (Reach)

20 30 40
Budget

0.00

0.01

0.02

0.03

0.04

0.05

0.06

E
nt

ro
py

re
du

ct
io

n

r=16 r=512

(c) Effectiveness (#Triangles)

20 30 40
Budget

0

1000

2000

3000

4000

5000

R
un

ni
ng

ti
m

e
(s

ec
)

r=16 r=512

(d) Efficiency (#Triangles)
Fig. 6. Impact of budget k and hyper-parameter r on Greedy+subgraph,
update function U2 (a-b) on reachability function, products dataset; (c-d) on
#Triangles function, papers dataset

increment in T . The intuition is that after T ≥ T ∗, the rate of
change in entropy ∆H

∆T ∼ 0. We set a threshold ϵT = 0.03 for
all network functions and datasets, and determine T ∗ as the
point after which |∆H

∆T | ≤ ϵT . We select optimal N , denoted
as N∗, similarly by setting a threshold ϵN = 0.001 and
computing N∗ as the point after which |∆H

∆N | ≤ ϵN . Table IX
reports N∗ and T ∗ for all datasets with MC-sampling.
Parameter Study of the Greedy+subgraph Algorithm.
We analyze the impact of budget k and hyper-parameter r
(i.e., the number of subgraphs selected) on the performance
of Greedy+subgraph algorithm (§V). For reachability on
products dataset, we select 100 query pairs where each source-
target pair is 5-hops away. Figure 6(a-b) demonstrates that
with higher budgets, both the entropy reduction as well as the
running time of the algorithm increase. For a fixed budget, as
we increase r, the entropy reduction improves initially. Then,
it gets saturated because the entropy has already been reduced
maximally and increasing r further does not bring any benefit.
In contrast, the running time usually increases with r.

For #Triangles function on papers dataset, we observe a
similar trend in Figure 6(c-d). One important observation
is that the hyper-parameter r needs to be sufficiently large
to obtain significant reduction in entropy. This is because
there are many triangles (e.g. 35M on papers dataset), and a
sufficient number of triangles needs to be selected and cleaned
to observe significant reduction in entropy.

