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Graph data is everywhere
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Graph data in many forms
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Static graph Dynamic / temporal / time-evolving graph

Uncertain graph

Heterogeneous graph Knowledge graph Multi-modal graph
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Graph data and neural networks
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• Based on the increasing usage, popularity and maturity of graph, Gartner estimates that the market for graph 
technologies, including graph database management systems (DBMSs), will grow to $3.2 billion by 2025 with a 
compound annual growth rate (CAGR) of 28.1%.

• Vendors in the graph DBMS market are expanding their stacks into platforms for enterprise knowledge graphs or 
graph artificial intelligence (AI), with associated product ecosystems.

- Market Guide for Graph Database Management Solutions, Gartner, August 2022 

https://pub.towardsai.net/a-brief-history-of-neural-nets-472107bc2c9c

Graph Signal Processing for Machine Learning: A Review and New Perspectives 
(ICASSP Tutorial, 2021)

Arijit Khan and Ehsan B. Mobaraki



Graph neural network (GNN): Key idea
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Representation learning or embedding

• End-to-end learning →

• Task-independent / task-dependent learning.

• Can capture graph structure and node, edge features.

Downstream tasks (e.g., graph 
and node classification,
recommendation, link 
prediction, question answering)

Graph Convolutional Neural Network (GCN)
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Representation Learning on Networks (WWW Tutorial, 2018)

Learning could be end-to-end

• Massage passing to use aggregation and 
combine functions repeated several times. 
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Graph neural network (GNN): Downstream tasks
Node classification
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• predicting missing links between drug and disease.

Question answering

Node-level task

Graph-level task

Edge-level task

Edge-level task

A Comprehensive Survey on 
Graph Neural Networks. IEEE 
Trans. Neural Networks 
Learn. Syst. 2021.
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Graph neural network (GNN): Interpretability

• Explain the results of high-quality GNNs.

•  [Instance-level] Understand which aspects of the input data drive the decisions of the GNN – discover critical 
nodes, edges, subgraphs, and their features that are responsible for GNN outcomes.

• [Model-level] Insight on how GNNs work – discover what input subgraph patterns lead to a certain prediction.

Importance

Explainability in graph neural networks: A 
taxonomic survey. IEEE Trans. Pattern 
Anal. Mach. Intell., 2022.

• Desirable to understand and explain the workings and results of black-box GNNs – 
bridge domain knowledge with GNN predictions, human-AI collaboration.

•  Safety and well-being (e.g., autonomous car, AI in healthcare) – trust in deep 
learning models.

• Understand bias in machine learning (ML) algorithms – ML algorithms can amplify 
bias, model debugging.

• Robustness against adversarial examples – improve quality of GNN outputs.

• Legal requirements, e.g., GDPR – algorithms to explain their outputs.

Stakeholders

End	users,	domain	experts,	
decision	makers,	policy	
makers,	regulatory	
agencies,	researchers,	data	
scientists,	and	engineers



Tutorial outline 
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1 Introduction
     1.1 Graph neural networks (GNNs) and applications
     1.2 Interpretability of GNNs
            - Definitions, importance, and challenges

2 Taxonomy of interpretability methods for GNNs 
     2.1 Post-hoc vs. intrinsic / self-explainable
     2.2 Global/ class-specific vs. local/ instance-specific
     2.3 Model-specific vs. model-agnostic
     2.4 Forward vs. backward
     2.5 Node-level vs. edge-level vs. subgraph-level

2.6 Perturbation vs. gradient vs. decomposition vs. surrogate models vs. counterfactuals

3 Recent interpretability methods for GNNs
GNNExplainer, PGExplainer , GraphMask, SubgraphX , PGMExplainer, CF2, SA, GuidedBP, 

     CAM, Grad-CAM, LRP, ExcitationBP, and XGNN

4 Benchmark & ground truth for GNN interpretability methods
     4.1 Interpretability evaluation metrics
     4.2 Ground truth datasets, software
     4.3 Benchmarking results

5 Future directions 
Arijit Khan and Ehsan B. Mobaraki
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More on interpretability 
• There is no standard definition – no unique notion of interpretability in the literature.

• Different motivations and requirements for interpretability: 

– trust, causality, transferability, informativeness, fair and ethical decision making,  model debugging, 
recourse,  mental model comparison, context-dependent, low-level mechanistic understanding of models, 
high-level human understanding, what makes users confident about the model.

“Ability to explain or to present a model in understandable terms to humans” 
- Doshi-Velez and Kim 2017

• Outputs of Interpretability

– Heat map visualization, explanation by example,  explanation by text, local explanation, explanation 
based on higher-level patterns/ rules/ global concepts/ counterfactuals. 

• Interpretability vs. Explainability

The mythos of model 
interpretability. Commun. ACM, 
vol. 61, no. 10, 2018. 

Global concept-based 
interpretability for graph 
neural networks via neuron an
alysis. AAAI 2023. 

Explainability in graph neural networks: A 
taxonomic survey. IEEE Trans. Pattern 
Anal. Mach. Intell., 2022.

• Often used interchangeably. 

• Interpretability concerns the understanding (of inner workings) of the model by AI experts and 
researchers, while explainability focuses on explaining the decisions made to end users.

https://www.xcally.com/news/inte
rpretability-vs-explainability-
understanding-the-importance-in-
artificial-intelligence 

https://www.xcally.com/news/interpretability-vs-explainability-understanding-the-importance-in-artificial-intelligence
https://www.xcally.com/news/interpretability-vs-explainability-understanding-the-importance-in-artificial-intelligence
https://www.xcally.com/news/interpretability-vs-explainability-understanding-the-importance-in-artificial-intelligence
https://www.xcally.com/news/interpretability-vs-explainability-understanding-the-importance-in-artificial-intelligence
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Challenges with GNN interpretability
• Many definitions, motivations, and requirements for interpretability.

• Comparing explanations is hard!

• Several quantitative and qualitative evaluation metrics or methods.

– Quantitative: faithfulness (fidelity+, fidelity-), sparsity, contrastivity, accuracy, stability.

– Qualitative: application-grounded evaluation, human-grounded evaluation, functionally-
grounded evaluation.

To be 
discussed 

later

HCI, visualization 
domains; more 

difficult for GNNs 

• Difficult to obtain ground-truth.

– Synthetically created ground-truth: BA-shapes, BA-2Motifs, BA-Community, Tree-Cycle, 
Tree-Grids, etc.  

When comparing to ground truth is wrong: on evaluating 
GNN explanation methods. KDD 2021.

To be 
discussed 

later

• Other issues: Evaluation via occlusion creates data outside training distribution, bias 
terms, redundant evidence, trivial correct explanations, weak GNN model, misaligned 
GNN architecture, problems due to graph data vs. grid data. Explainability in graph neural networks: A 

taxonomic survey. IEEE Trans. Pattern 
Anal. Mach. Intell., 2022.

• Capture interplay of graph structure and features in GNN’s decision making. 
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GNN interpretability: Survey and benchmarking
• H. Yuan, H. Yu, S. Gui, and S. Ji. Explainability in graph neural networks: A taxonomic survey. IEEE Trans. Pattern Anal. Mach. Intell., 2022.

• P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann. Explainability methods for graph convolutional neural networks. in CVPR, 2019.

• C. Agarwal, O. Queen, H. Lakkaraju, and M. Zitnik. Evaluating explainability for graph neural networks. Sci Data, vol. 10, no. 1, 2023.
 
• C. Agarwal, M. Zitnik, and H. Lakkaraju. Probing GNNexplainers: a rigorous theoretical and empirical analysis of GNN explanation methods. In 
AISTATS, 2022.

• K. T. T. Shun, E. E. Limanta, and A. Khan. An evaluation of backpropagation interpretability for graph classification with deep learning. In IEEE 
BigData, 2020. 

• B. S´anchez-Lengeling, J. Wei, B. Lee, E. Reif, P. Wang, W. Qian, K. McCloskey, L. Colwell, and A. Wiltschko. Evaluating attribution for graph neural 
networks. In NeurIPS, 2020. 

• F. Baldassarre and H. Azizpour. Explainability techniques for graph convolutional networks. In ICML Workshop on Learning and Reasoning with 
Graph-Structured Representations, 2019.

• J. Kakkad, J. Jannu, K. Sharma, C. C. Aggarwal, and S. Medya. A survey on explainability of graph neural networks. CoRR, vol. abs/2306.01958, 
2023.

• A. Longa, S. Azzolin, G. Santin, G. Cencetti, P. Liò, B. Lepri, and A. Passerini. Explaining the explainers in graph neural networks: a comparative 
study. CoRR, vol. abs/2210.15304 , 2023.

• P. Li, Y. Yang, M. Pagnucco, and Y. Song. Explainability in graph neural networks: an experimental survey. CoRR, vol.abs/2203.09258, 2022.

•M. Khosla and L. Galárraga. Explainable graph machine learning: techniques to explain black-box models on graphs (Tutorial). ECML 2023.

• K. Amara, Z. Ying, Z. Zhang, Z. Han, Y. Zhao, Y. Shan, U. Brandes, S. Schemm, and C. Zhang. 
GraphFramEx: Towards systematic evaluation of explainability methods for graph neural networks. LoG 2022.

• …  
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Motivation of our tutorial

• Categorization of GNN interpretability methods in many verticals; advantages and 
disadvantages.

• Description of 13 representative, recent GNN interpretability methods; advantages 
and disadvantages.

• Challenges with GNN interpretability.

• Evaluation metrics, ground truths, software for GNN interpretability.

• Preliminary benchmarking results and case study on GNN interpretability; beyond 
graphs classification and nodes classification.

• Interplay of GNN model, graph data, interpretability methods, evaluation metrics, 
and downstream tasks.

• Future directions.

GNN Interpretability 
Methods

Graph Data

Evaluation of GNN 
Interpretability 

Methods

GNN Models

Downstream Task

GNN Evaluation 
Metrics
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This tutorial is not about …
• What is interpretability? Interpretability vs. Explainability.

• Qualitative evaluation of interpretability methods.

• Graph counterfactual explanations.

• Self-explainable GNNs

• Explainability of knowledge graph (KG) embedding, KG link prediction, graph embedding 

• Explainability of (only) graph classification

•We shall NOT cover all GNN explainability methods from the literature.

13 representative, recent GNN interpretability methods from diverse categories

The mythos of model interpretability. Commun. ACM, vol. 61, no. 10, 2018. 

Interpreting interpretability: Understanding data scientists' use of interpretability tools for machine learning. CHI 2020.

A survey on graph counterfactual explanations: Definitions, methods, evaluation. CoRR abs/2210.12089 (2022).

-Graph attention networks. In ICLR 2018. – limited by specific GNN architecture.
-Towards self-explainable graph neural network. CIKM 2021.
-ProtGNN: Towards self-explaining graph neural networks. AAAI 2022.
-Towards prototype-based self-explainable graph neural network. In ArXiv 2022.  

 
 -Explainable graph machine learning: Techniques to explain black-box models on graphs (Tutorial). ECML 2023.
-Explaining link prediction systems based on knowledge graph embeddings. SIGMOD 2022.
-On the interpretability and evaluation of graph representation learning. CoRR abs/1910.03081 (2019).

 

 
 

-Explainable classification of brain networks via contrast subgraphs. KDD 2020.
- Counterfactual graphs for explainable classification of brain networks. KDD 2021. 
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1 Introduction
     1.1 Graph neural networks (GNNs) and applications
     1.2 Interpretability of GNNs
            - Definitions, importance, and challenges

2 Taxonomy of interpretability methods for GNNs 
     2.1 Post-hoc vs. intrinsic / self-explainable
     2.2 Global/ class-specific vs. local/ instance-specific
     2.3 Model-specific vs. model-agnostic
     2.4 Forward vs. backward
     2.5 Node-level vs. edge-level vs. subgraph-level

2.6 Perturbation vs. gradient vs. decomposition vs. surrogate models vs. counterfactuals

3 Recent interpretability methods for GNNs
GNNExplainer, PGExplainer , GraphMask, SubgraphX , PGMExplainer, CF2, SA, GuidedBP, 

     CAM, Grad-CAM, LRP, ExcitationBP, and XGNN

4 Benchmark & ground truth for GNN interpretability methods
     4.1 Interpretability evaluation metrics
     4.2 Ground truth datasets, software
     4.3 Benchmarking results

5 Future directions 
Arijit Khan and Ehsan B. Mobaraki



Post-hoc vs. intrinsic / self-explainable
interpretability methods for GNNs 
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• Post-hoc. Creating a second model to provide explanations for an existing GNN model.

- e.g., perturbation-based approaches (GNNExplainer, NeurIPS2019).

- could be limited in interpretability performance (e.g., reporting spuriously-correlated features with the task), 
while keeping the underlying GNN accuracy intact.

• Intrinsic / self-explainable. Constructing self-explanatory models which incorporate interpretability directly 
to their structures.

- e.g., use structural constraints to derive an informative subgraph which is used for both prediction and 
explanation.

- e.g., graph attention networks (ICLR 2018), SEGNN (CIKM 2021), ProtGNN (AAAI 2022).

- trade-off between good interpretability vs. prediction accuracy.

We’ll 
focus on 

them



Global/ class-specific vs. local/ instance-specific
interpretability methods for GNNs 
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• Global / class-specific. Users can understand how the model works globally by inspecting the structures and 
parameters of a complex model, thereby explaining the “essence” of a class.

- e.g., explore high-level explanations of GNNs by generating graph patterns to maximize a specific prediction.

- e.g., XGNN, KDD 2020.

• Local / instance-specific. Locally examines an individual prediction of a model, trying to figure out why the 
model makes the decision that it makes for that test instance.

- e.g., GNNExplainer, NeurIPS 2019.



Model-specific vs. model-agnostic
interpretability methods for GNNs 
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• Model-specific / white-box. Requires access to internal model parameters or embeddings to provide 
explanations.

- e.g., gradient-based methods calculate the gradient of an output w.r.t. the input using
backpropagation to derive the contribution of features (Explainability methods for graph convolutional neural networks. 

in CVPR, 2019).

- Gradient-based methods are more efficient, since they usually need one forward and another 
backward pass.

- Issues: gradient saturation, ..

•Model-agnostic / black-box. Does not require internals of the GNNs to generate explanations.

- e.g., perturbation-based methods (GNNExplainer, NeurIPS 2019) determine the contribution of a 
feature by measuring how prediction score changes when the feature is altered. 

- can be computationally inefficient as each perturbation requires a separate forward propagation 
through the network. 



Forward vs. backward
interpretability methods for GNNs 

19Arijit Khan and Ehsan B. Mobaraki

• Forward interpretability methods. GNN model-agnostic, learn evidence about graphs or nodes passed 
through the GNN. 

- e.g., perturbation-based, that is, masking some node features and/ or edge features and analyzing 
the changes when the modified graphs are passed through the GNN model. 

- e.g., employ a simple, interpretable surrogate model to approximate the predictions of a complex 
GNN.

- e.g., counterfactuals-based, i.e., finding a subgraph whose information is necessary which if removed 
will result in different predictions.

• Backward interpretability methods. GNN model-specific.
 
 - e.g., gradient-based – backpropagating importance signal from the output neuron of the model to the 
individual nodes of the input graph.

 - e.g., decomposition-based – distributing the prediction score in a backpropagation manner until the 
input layer. 



Node-level vs. edge-level vs. subgraph-level
interpretability methods for GNNs 
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• Output of interpretability methods. Node / node feature, edge, subgraph.

• Node / node feature.  E.g., ZORRO, IEEE Transactions on Knowledge & Data Engineering. 35(8), 2023.

• Edge. E.g., PGExplainer, NeurIPS 2020. 

• Subgraph. E.g., SubgraphX, ICML 2021.



Counterfactual and Factual Reasoning 
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•Factual reasoning. Finding a subgraph whose information is sufficient to lead to the same prediction 
for the input sample. E.g., GNNExplainer, Advances in neural information processing systems 2019.

•Counterfactual reasoning. Finding a subgraph whose information is necessary hence its removal will 
result in different predictions (i.e., necessary subgraph for the targeted class). E.g., GCFExplainer, 
WSDM 2023.

•Factual and Counterfactual reasoning. Finding a subgraph that follows both the factual and 
counterfactual reasoning; finding a subgraph that outputs the same prediction and its absence will 
cause changes on the output of the model. E.g., CF2, WWW 2022.



Different interpretability methods for GNNs (instance-based) 
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• Perturbation-based. Masking some node features and/ or edge features and analyzing the changes 
when the modified graphs are passed through the GNN model. E.g., GNNExplainer, NeurIPS 2019.

• Surrogate model. Employs a simple, interpretable surrogate model to approximate the predictions of a 
complex GNN. E.g., Pgm-explainer, NeurIPS 2020.

• Gradient-based. Backpropagating importance signal from the output neuron of the model to the 
individual nodes of the input graph. E.g., Grad-CAM (Explainability methods for graph convolutional neural networks. in CVPR, 

2019).

• Decomposition-based. Distributing the prediction score in a backpropagation manner until the input 
layer. E.g., LRP, TextGraphs 2019.



Different interpretability methods for GNNs (model-based) 
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• Generation-based. Graph generator generates example graph patterns that maximize the 
prediction probability of each class. E.g., XGNN, KDD 2020.

• Global counterfactuals-based. Find a small set of representative counterfactual graphs that 
explains all input graphs. E.g., GCFExplainer, WSDM 2023.

• Global concept-based. GNN neurons as global concept detectors. E.g., Global concept-based 
interpretability for graph neural networks via neuron analysis, AAAI 2023.



Tutorial Outline 
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1 Introduction
     1.1 Graph neural networks (GNNs) and applications
     1.2 Interpretability of GNNs
            - Definitions, importance, and challenges

2 Taxonomy of interpretability methods for GNNs 
     2.1 Post-hoc vs. intrinsic / self-explainable
     2.2 Global/ class-specific vs. local/ instance-specific
     2.3 Model-specific vs. model-agnostic
     2.4 Forward vs. backward
     2.5 Node-level vs. edge-level vs. subgraph-level

2.6 Perturbation vs. gradient vs. decomposition vs. surrogate models vs. counterfactuals

3 Recent interpretability methods for GNNs
GNNExplainer, PGExplainer , GraphMask, SubgraphX , PGMExplainer, CF2, SA, GuidedBP, 

     CAM, Grad-CAM, LRP, ExcitationBP, and XGNN

4 Benchmark & ground truth for GNN interpretability methods
     4.1 Interpretability evaluation metrics
     4.2 Ground truth datasets, software
     4.3 Benchmarking results

5 Future directions 



Background: Neural Network and Graph Neural Network
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Neural Networks
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Back Propagation on Neural Networks
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Grid-Data vs. Graph-Data
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Graph Convolutional Neural Network (GCN)
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• Graph convolutional layers.
• Node features update by accumulation of neighborhood features.
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• GCN combines both feature matrix and adjacency matrix.
• More GCN layers imply accumulation of neighborhood information from higher depths.
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Gradient-Based GNN Interpretability Methods:
• Sensitivity Analysis (SA) [CVPR 2019]
• Guided BackPropagation (GuidedBP) [CVPR 2019]
• Class Activation Mapping (CAM) [CVPR 2019]
• Gradient-weighted Class Activation Mapping (Grad-CAM) [CVPR 2019]
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Inspired by neural network interpretation of grid-structured data.
Instance-level.



Sensitivity Analysis
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• Summing squared of gradients in the input layer.

• 𝑁: number of connected neurons in next layer.

• Attribution_Score(𝑓!) = ∑"#$% (𝑔")&

• E.g., Attribution_Score(𝑓') = ∑"#$& (𝑔")&
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Explainability Methods for Graph Convolu=onal Neural Networks 
2019 IEEE/CVF Conference on Computer Vision and PaZern 

Recogni[on (CVPR)

Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Mar[n E. 
Charles, Heiko Hoffmann



GuidedBP
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• Summing positive values of gradients in the 
input layer as the attribution scores.

• 𝑁: number of connected neurons in next layer.

• Attribution_Score(𝑓!) = ∑"#$% max(𝑔", 0)

• E.g., Attribution_Score(𝑓') = ∑"#$& max(𝑔", 0)
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Explainability Methods for Graph Convolutional Neural Networks 
2019 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR)

Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Martin E. 
Charles, Heiko Hoffmann



Class Activation Mapping (CAM)
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• Weights of the predicted class are multiplied by the 
outputs of the last graph convolutional layer (GCN).

• For node 𝑛! in the input graph:
• Attribution_Score(𝑛!) =∑(#$) 𝑤(*𝐹((𝑖)

E.g., Attribution_Score(𝑛$) = ∑(#$+ 𝑤(
,)𝐹((1)

𝐺𝐴𝑃: 	𝐺𝑙𝑜𝑏𝑎𝑙	𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑜𝑜𝑙𝑖𝑛𝑔	𝑙𝑎𝑦𝑒𝑟.

m: # of features per node, 𝑓!: 𝑖-.	node feature.
𝐹((𝑖): output of the last GCN layer for 𝑖-.	node and 𝑘-. 
feature.
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Explainability Methods for Graph Convolutional Neural Networks 
2019 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR)

Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Martin E. 
Charles, Heiko Hoffmann
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Gradient-Weighted Class Activation Mapping (Grad-CAM)
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• Gradients of the predicted class are multiplied by the 
outputs of the last graph convolutional layer (GCN).

• For node 𝑛! in the input graph:

• Attribution_Score(𝑛!) =∑(#$) /ℒ
/0-

. 𝐹((𝑖)

E.g., Attribution_Score(𝑛$) = ∑(#$+ /ℒ
/0-

/) 𝐹((1)

m: # of features per node, 𝑓!: 𝑖-.	node feature.

𝐹((𝑖): output of the last GCN layer for 𝑖-.	node and 𝑘-. 
feature.

𝑜#

𝑜"

𝑔& =
𝜕ℒ
𝜕𝑤&

𝑜!𝑤%

𝑜0

Explainability Methods for Graph Convolutional Neural Networks 
2019 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR)

Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Martin E. 
Charles, Heiko Hoffmann
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Objectives
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Method Specific

SA: 
Squared gradients emphasize the rate of change (only 
magnitude, disregard direction) in the model output. 

GuidedBP: 
Positive gradients point out to the direction of maximum 
positive rate of change in the model output.

CAM:
Explaining by last GCN layer should be more semantically 
meaningful compared to input space.  

Grad-CAM: 
Generalize CAM on neural network architecture.



Pros and Cons
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Category Specific 
(Gradient-based)

Cons:
• Dependent on topology of model 

(white-box).
• Sensitivity between input and output 

does not necessarily imply 
importance.

• Misleading explanations due to the 
gradient saturation.

• Generate importance scores for 
nodes, but not for subgraphs.

• Complicated details for non-experts.

Pros:
• Explanations are quite time-efficient.
• Applicable on different downstream tasks 

(compatible with GNNs).
• Simple explanations.

Explainability in graph neural 
networks: A taxonomic survey. 
IEEE transactions on pattern 
analysis and machine intelligence
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Decomposition-based GNN Interpretability Methods:
• Layer-wise Relevance Propagation (LRP) [PLOS ONE 2015]
• Excitation BackPropagation (EBP) [IJCV 2018]

Inspired by neural network interpretation of grid-structured data.
Instance-level.

Difference w.r.t. gradient-based methods: 
1. Decomposition methods decompose final output of the model by their own formulations, not by 

backpropagation rules.
2. Consider output directly, not gradient w.r.t. output.

• GNN-LRP [IEEE TPAMI 2021] 



Layer-wise Relevance Propagation 
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• Decomposes the final prediction score of a GCN 
model w.r.t. a class back to the input nodes by 
using weights and output value of each neuron.

• Attribution_Score(𝑅!):

𝑅! =B
"

𝑎!𝑤!"
𝜖 +	∑! 𝑎!𝑤!"

𝑅",	 𝜖 = 101$2

E.g., 𝑅.)1 =
32)1

03

4532)1
0353211

04
𝑅,)

 𝑅.11 =
3211

04

4532)1
0353211

04
𝑅,)

On pixel-wise explanations for non-linear classifier decisions by 
layer-wise relevance propagation

PloS one 2015

Sebastian Bach, Alexander Binder, Gregoire Montavon, Frederick 
Klauschen, Klaus-Robert Müller, Wojciech Samek
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Excitation Back Propagation (ExcitationBP) 
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• Decomposes target probability w.r.t. a class into 
several conditional probability terms by using 
weights and output values of each neuron.

• Follows the probabilistic Winner-Take-All process 
and is quite similar approach to LRP

• Attribution_Score(𝑃!):

𝑃! =B
"

𝑎!𝑤!"
𝜖 +	∑! 𝑎!𝑤!"

𝑃", 𝜖 = 101$2

E.g., 𝑃.)1 =
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4532)1
0353211

04
𝑃,)

Top-down neural attention by excitation backprop
International Journal of Computer Vision 2017

Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, 
Xiaohui Shen, Stan Sclaroff

𝑓!

ℎ## ℎ#"

𝑜#

𝑜"

ℎ"# ℎ""

𝑤!

𝑤#

𝑤"

𝑤-

𝑤/

𝑤0

𝑤1

𝑤!2

𝑓!

ℎ## ℎ#"

𝑜#

𝑜"

ℎ"# ℎ""

𝑤!

𝑤#

𝑤"

𝑤-

𝑤/

𝑤0

𝑤1

𝑤!2

𝑃."

𝑃3"$

𝑃.$

𝑎." 

𝑎.$ 

𝑎3"$ 

𝑃.)) =
𝑎.))𝑤'

𝜖 + 𝑎.))𝑤' + 𝑎.1)𝑤+
𝑃.)1 +

𝑎.))𝑤6
𝜖 + 𝑎.))𝑤6 + 𝑎.1)𝑤2

𝑃.11

𝑤$

𝑤%



Pros and Cons
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Layer-wise Relevance Propagation:
• Backpropagating the final output to each 

neuron by using weights and neuron 
outputs, could determine contribution of 
each node.

Excitation BackPropagation:
• Backpropagating the final probability to each 

neuron by using weights and neuron outputs, 
could determine contribution of each node.

Method Specific Objectives

Cons:
• Generate importance scores for nodes, but 

not for subgraphs.
• Depend on the topology of GNN models 

(white-box).
• Complicated details for non-experts.

Pros:
• Explanations are time-efficient.
• Applicable on different downstream tasks 

(compatible with GNNs).
• Simple explanations.
• Time efficient compared to perturbation-

based methods, but inefficient compared 
to gradient-based methods.

Explainability in graph neural 
networks: A taxonomic survey. 
IEEE transactions on pattern 
analysis and machine intelligence

Category Specific 
(Decomposition-based)
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Perturbation-Based GNN Interpretability Methods:
• GNNExplainer [NeurIPS 2019]
• PGExplainer [NeurIPS 2020]
• GraphMask [ICLR 2021]
• SubgraphX [ICML 2021]

Provide instance-level interpretations, by masking input features and graph structures.
(except PGExplainer and GraphMask that provide global interpretability).

• ZORRO [TKDE 2023]
• Causal Screening [IEEE Trans. Pattern Anal. 

Mach. Intell. 2023]



GNNExplainer
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• Generates soft masks for edges and node features; and 
multiplies those masks with node features and edges.

• max
75

𝑀𝐼 𝑌, (𝐺8, 𝑋8) = 𝐻 𝑌 − 𝐻(𝑌|𝐺 = 𝐺8, 𝑋 = 𝑋8).

• The interpreter gets trained separately on one input 
sample and generates customized interpretations (i.e., 
local interpretations).

GNNExplainer: Generating explanations for graph neural networks
Advances in neural information processing systems 2019

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure 
Leskovec
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PGExplainer
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• Generates discrete masks for edges (only).

• Global interpretations (i.e., not instance-specific).

• Element-wise multiplication of masks by edges.
• max

75
𝑀𝐼 𝑌, 𝐺8 = 𝐻 𝑌 − 𝐻(𝑌|𝐺 = 𝐺8)

• 𝑒96 − 97 = 𝜎((log 𝜖 − log 1 − 𝜖 +𝑤96 − 97 )/𝜏)

Parameterized explainer for graph neural network
Advances in neural information processing systems 2020

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, 
Haifeng Chen, and Xiang Zhang
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GraphMask
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• Generates discrete masks for edges.

• Element-wise multiplication of masks by edges.

• Similar approach to PGExplainer.

• Aggregates edges in every GNN layer by masks and 
layer coefficients.

Interpreting graph neural networks for NLP with differentiable 
edge masking

International Conference on Learning Representations, ICLR 2021

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov 
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SubGraphX
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• Explains by generating important subgraphs for the input graph.

• 𝑔∗ = 𝑎𝑟𝑔max
;6 <%869

𝑆𝑐𝑜𝑟𝑒 𝑓 . , 𝑔, 𝑔! ,  

1. Monte Carlo Tree Search for subgraph exploration.
2. Shapley Values on GCN outputs for subgraph selection.

3. Relaxing Subgraphs domain: 
• L-hop neighborhoods 
• Monte Carlo Sampling.

𝑎∗ = 𝑎𝑟𝑔max
37

𝑊 𝑁!, 𝑎"
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𝐶 𝑁!, 𝑎" = 𝐶 𝑁!, 𝑎" + 1
𝑊 𝑁!, 𝑎" = 𝑊 𝑁!, 𝑎" + 𝑆𝑐𝑜𝑟𝑒 𝑓 . , 𝑔, 𝑔B

On explainability of graph neural networks via subgraph 
explorations

International conference on machine learning 2021

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji

Input graph

Node pruning𝑃={𝑔&, 𝑣>(!, … , 𝑣*}
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Method Specific
(Perturbation-based)

GNNExplainer: 
The first model-agnostic GNN interpretability 
method. The method generates a subgraph and 
small subset of critical node features.

GraphMask:
Adopts a neural network to parameterize 
interpretation process by doing weighted sum of 
k GCN layers output.

PGExplainer:
Adopts a neural network to parameterize interpretation 
process, which enables it to interpret multiple instances 
collectively. 

SubgraphX: 
An easy way to explain a graph is to generate subgraphs 
and select the most important one as an explanation.



Pros and Cons
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Method Specific
(Perturbation-based)

GNNExplainer:
• Interpreting by node features and edges.
• Time efficient compared to SubgraphX, but 

inefficient compared to gradient-based and 
decomposition-based methods.

GNNExplainer:
• Local interpretation (instance-specific).
• Interpretation by soft masks.
• Introduced evidence.
• Important elements are not guaranteed to be connected.

PGExplainer:
• Global interpretation.
• Interpretation by discrete masks.
• Time efficient compared to SubgraphX, but 

inefficient compared to gradient-based and 
decomposition-based methods.

PGExplainer:
• Important elements are not guaranteed to be connected (a 

regularization term is suggested to encourage connectivity).

GraphMask:
• Global interpretation.
• Interpretation by discrete masks.
• Time efficient compared to SubgraphX, but 

inefficient compared to gradient-based and 
decomposition-based methods.

GraphMask:
• Important elements are not guaranteed to be connected.

SubgraphX: 
• Interpretation by discrete masks.
• Subgraph-based interpretation.

SubgraphX:
• Local interpretation (instance-specific).
• Time-inefficient interpretation.

Explainability in graph neural 
networks: A taxonomic survey. 
IEEE transactions on pattern 
analysis and machine intelligence

On explainability of graph neural networks 
via subgraph explorations. In International 
conference on machine learning 2021.

Pros: Cons:
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Surrogate-Based GNN Interpretability Methods:
• PGMExplainer [NeurIPS 2020]

Provide instance-level interpretations by approximation on the output of a GCN.

• RelEx [AIES 2021 ]
• GraphLime [IEEE TKDE 2023]



PGMExplainer
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• Generates interpretation by eliminating 
unimportant elements.

• Three steps:
1. Data generation: add noise to the node 

features.
2. Node selection: Markov Blanket of the node.
3. Structure learning: Chi-Squared Test.

𝑆𝑐𝑜𝑟𝑒#$% = ℓ 𝐷& 𝑈 𝑡 −
log 𝑛
2

𝐷𝑖𝑚(𝛽)

𝑥'( =
(𝑂' − 𝐸')(

𝐸'
Markov Blanket of a node: minimum set of nodes 
that are conditionally independent of the node.
Chi-Squared Test: how much the observed 
frequencies for a categorical variable match the 
expected frequencies.

PGM-Explainer: Probabilistic graphical model explanations for 
graph neural networks

Advances in neural information processing systems 2020

Minh Vu and My T Thai 

G = Input graph 𝐺G= Perturbed G

GCN

y

G 𝐺G

𝑦G

Data 
Generation

Node 
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Structure 
Learning

PGMExplainer



PGMExplainer
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Method Specific
(Surrogate-based)

PGMExplainer:
Pros: 

• Time-efficient interpretation compared to SubgraphX, 
inefficient compared to gradient-based methods.

• Provides interpretation for graph and node 
classification.

PGMExplainer:
Cons:

• Local interpretation (instance-specific).
• Important elements are not guaranteed to be connected.

Explainability in graph neural 
networks: A taxonomic survey. 
IEEE transactions on pattern 
analysis and machine intelligence
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Counterfactual reasoning:
• CounterFactual and Factual (CF2) [ACM Web Conference 2022]

Provide instance-level interpretations by considering factual and counterfactual reasoning systems.

• RCExplainer [NeurIPS 2021]



CF2 
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CounterFactual and Factual

v Strength: 

v Simpleness: simple interpretation is preferred (Occam Razor’s 
principle).

vMask generation follows a perturbation-based technique.
vObjective is to:
 1. Minimize interpretation complexity.

 2. Interpretation is sufficient and necessary.
• Factual reasoning:

argmax
:∈<

𝑃∅(𝑐|𝐴, ⊙𝑀, , 𝑋, ⊙𝐹,) = 2𝑦,

• Counterfactual reasoning:
argmax

:∈<
𝑃∅(𝑐|𝐴, 	− 	𝐴, ⊙𝑀, , 𝑋, 	− 	𝑋, ⊙𝐹,) ≠ 2𝑦,

• Simpleness measurement:
𝐶 𝑀, 𝐹 = 𝑀 # + 𝐹 #

Learning and evaluating graph neural network explanations 
based on counterfactual and factual reasoning
Proceedings of the ACM Web Conference 2022

Juntao Tan, Shijie Geng, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, 
Yunqi Li, and Yongfeng Zhang

1. Sufficient: Factual
2. Necessary: CounterFactual Effectiveness
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Method Specific
(Counterfactual reasoning)

Pros: 
• Interpretation by node features and edges.
• Counterfactual and factual reasoning.

Cons:
• Local interpretation (instance-specific).
• Important elements are not guaranteed to be connected.
• Time-efficient compared to SubgraphX, but inefficient 

compared to gradient-based, surrogate-based, and 
decomposition-based methods.
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Model-Level Interpretations:
• XGNN [SIGKDD 2020]

Provide model-level interpretations by using a graph generator.



XGNN
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• Find best input patterns for the given input graph and 
GNN model.

𝐺∗ = max
7

𝑃(𝑓 𝐺 = 	 𝑐!)

• Generates graph by a graph generator that maximizes 
Reinforcement Learning reward (i.e., 𝑅-) on the 
following objective function:

• 𝑅- = 𝑅-,D 𝐺-5$ + 𝜆$
∑6>)
8 F?,A(F,BB,H-(7?B)))

)
+ 𝜆&𝑅-,J

• 𝑅-,D 𝐺-5$ = 𝑝 𝑓 𝐺-5$ = 𝑐! − 1/ℓ
• If 𝑅- < 0: 𝐺-5$= 𝐺-

XGNN: Towards Model-Level Explanations of Graph Neural 
Networks

Proceedings of the 26th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining 2020
Hao Yuan, Jiliang Tang, Xia Hu, Shuiwang Ji

2 1

Node Feature Matrix

Current Graph

Adjacency Matrix
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layers
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Source Node Target Node
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Method Specific
(Model-Level Interpretation)

Pros: 
• Global interpretation.
• Class-discriminative interpretation.
• Subgraph-based interpretation.

Cons:
• Only graph classification.
• The generated subgraph still might 

be unrealistic (however, some 
graph rules are incorporated to 
encourage the explanations to be 
valid and human-intelligible).

Explainability in graph neural 
networks: A taxonomic survey. 
IEEE transactions on pattern 
analysis and machine intelligence
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1 Introduction
     1.1 Graph neural networks (GNNs) and applications
     1.2 Interpretability of GNNs
            - Definitions, importance, and challenges

2 Taxonomy of interpretability methods for GNNs 
     2.1 Post-hoc vs. intrinsic / self-explainable
     2.2 Global/ class-specific vs. local/ instance-specific
     2.3 Model-specific vs. model-agnostic
     2.4 Forward vs. backward
     2.5 Node-level vs. edge-level vs. subgraph-level

2.6 Perturbation vs. gradient vs. decomposition vs. surrogate models vs. counterfactuals

3 Recent interpretability methods for GNNs
GNNExplainer, PGExplainer , GraphMask, SubgraphX , PGMExplainer, CF2, SA, GuidedBP, 

     CAM, Grad-CAM, LRP, ExcitationBP, and XGNN

4 Benchmark & ground truth for GNN interpretability methods
     4.1 Interpretability evaluation metrics
     4.2 Ground truth datasets, software
     4.3 Benchmarking results

5 Future directions 
Arijit Khan and Ehsan B. Mobaraki
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Interpretability Evaluation Metrics:

Provide quantitative measurements on the performance of interpretability methods.

   - Faithfulness (Fidelity+ / Comprehensiveness, Fidelity- /Sufficiency/ Validity)
   - Contrastivity
   - Sparsity
   - Accuracy
   - Stability/ Robustness (RDT Fidelity)
   - Consistency
   - Interpretation time

   - Plausibility



Faithfulness

59Arijit Khan and Ehsan B. Mobaraki

• Do explanation results faithfully explain the behaviors of GNN models?

• Are all nodes/edges/features in the graph needed to make a prediction selected in the explanation?

• Occlusion of explanation elements should decrease prediction accuracy.
• High fidelity+ /comprehensiveness score is better.

                              

Fidelity+ /Comprehensiveness:

Fidelity- /Sufficiency / Validity:

• Is explanation sufficient for the original prediction?

• Occlusion of non-explanation elements should not decrease prediction accuracy.

• Low fidelity- /sufficiency score is better. 
                              

Explainability in graph neural networks: A 
taxonomic survey. IEEE Trans. Pattern 
Anal. Mach. Intell., 2022.
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• Explanations for different classes should be significantly different.

• Ratio of the Hamming distance between binarized saliency maps for positive and negative classes, 
normalized by the total number of salient nodes identified by either method.

Explainability methods 
for graph convolutional 
neural networks. in 
CVPR, 2019.
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• Conciseness of explanation.

• Higher sparsity values tend to be better. It indicates that the explanations capture the most 
important input information.

Explainability in graph neural networks: A 
taxonomic survey. IEEE Trans. Pattern 
Anal. Mach. Intell., 2022.
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• Applicable when ground-truth explainability is available (e.g., synthetic datasets).

• Metrics can include general accuracy, F1 score, ROC-AUC score.

GNNExplainer: generating explanations for 
graph neural networks. NeurIPS 2019.



Stability/ Robustness
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• When small changes are applied to the input without affecting the predictions, the explanations 
should remain similar.

• Stable explanations are better.

RDT Fidelity:

Zorro: Valid, sparse, 
and stable explanations 
in graph neural 
networks. IEEE 
Transactions on 
Knowledge & Data 
Engineering. 35(8), 
2023.

Robust counterfactual 
explanations on graph 
neural networks. 
NeurIPS2021

• Principles of rate-distortion theory. 

Perturbed input:

RDT Fidelity is expected fidelity- of the perturbed input.
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• The explanations should be consistent across high-performing GNN models.

• Concern: Multiple explanations - different high-performing models may capture different relationships.

Evaluating attribution 
for graph neural 
networks. NeurIPS 
2020
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• Time to generate interpretation.

• E.g., perturbation-based methods are generally slower than gradient-based interpretability approaches. 

• Useful for human-in-the-loop, qualitative evaluation.  



Plausibility
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• Human-grounded evaluation.

• Agreement of explanation with domain knowledge / expert. 

• Metrics can include general accuracy, F1 score, ROC-AUC score.
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• Motifs added to base graphs as ground truth explanations.

• Base graphs: grid, binary tree, Barabasi-Albert (BA) graph, etc.

• Motifs: 
      – house motif with five nodes, formed by a top, a middle, and a bottom node

      – cycle motif with five or six nodes

      – grid-structured motif, etc.

• Example synthetic datasets: BA-Shapes, BA-Community, Tree Cycle, Tree Grids, BA-2Motifs, 
Spurious Motifs, etc.

• Synthetic datasets generator: 
ShapeGGen  https://zitniklab.hms.harvard.edu/projects/GraphXAI/ 

Ground Truth Datasets (Synthetic)

GNNExplainer: generating explanations for 
graph neural networks. NeurIPS 2019.

Explainability in graph neural networks: A 
taxonomic survey. IEEE Trans. Pattern Anal. 
Mach. Intell., 2022.

A survey on explainability of graph neural 
networks. CoRR, vol. abs/2306.01958, 2023.

Evaluating explainability for graph neural 
networks. Sci Data, vol. 10, no. 1, 2023

https://zitniklab.hms.harvard.edu/projects/GraphXAI/
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• Molecular graphs due to domain knowledge (i.e., known chemical properties 
of the molecules).

• Examples: Mutag, NCI1, Tox21, Blood-brain barrier penetration (BBBP), Alkane 
carbonyl, Fluoride carbonyl, etc. 

• Others: Graph SST2, Graph SST5, and Graph Twitter, MNIST-75sp, Visual 
Genome dataset, Recidivism, etc. 

Ground Truth Datasets (Real-world)

GNNExplainer: generating explanations for 
graph neural networks. NeurIPS 2019.

Explainability in graph neural networks: A 
taxonomic survey. IEEE Trans. Pattern Anal. 
Mach. Intell., 2022.

A survey on explainability of graph neural 
networks. CoRR, vol. abs/2306.01958, 2023.

Explainability methods for graph convolutional 
neural networks. in CVPR, 2019.

Evaluating explainability for graph neural 
networks. Sci Data, vol. 10, no. 1, 2023.
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Software
• StellarGraph Machine Learning Library (Data61, CSIRO)
https://stellargraph.readthedocs.io/en/stable/ 

• DIG: Dive into Graphs (DIVE Lab, led by Dr. Shuiwang Ji, Texas A&M University)
https://diveintographs.readthedocs.io/en/latest/ 

• DGL (Deep Graph Library is developed and maintained by NYU, NYU Shanghai, AWS Shanghai 
AI Lab, and AWS MXNet Science Team)

https://docs.dgl.ai/tutorials/blitz/index.html  

• torch_geometric.explain (PyG Team)
https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html 

• GraphXAI (Zitnik Lab, led by Dr. Marinka Zitnik, Harvard University)
https://zitniklab.hms.harvard.edu/projects/GraphXAI/ 

https://stellargraph.readthedocs.io/en/stable/
https://diveintographs.readthedocs.io/en/latest/
https://docs.dgl.ai/tutorials/blitz/index.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html
https://zitniklab.hms.harvard.edu/projects/GraphXAI/


(Preliminary) Benchmarking Results:
• Evaluation of Graph Neural Networks 
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GNN Model Name AUC-ROC AUC-PR Acc Avg Running Time per Epoch [Sec]

GIN 0.913 0.93 0.835 0.076

GCN+GAP 0.8 0.867 0.714 0.053

DIFFPOOL 0.876 0.89 0.824 0.191

DGCNN 0.91 0.872 0.862 0.128

Evaluation of Graph Neural Networks

MUTAG dataset for graph classification.
Optimized hyperparameters w.r.t. AUC-ROC.

AUC-ROC: Area Under the Curve Receiver Operating Characteristics

AUC-PR: Area Under the Curve Precision Recall

Acc: Accuracy

HOW POWERFUL ARE GRAPH NEURAL 
NETWORKS? ICLR 2019.

Hierarchical Graph Representation 
Learning with Differentiable Pooling. 
NeurIPS 2018.

An End-to-End Deep Learning 
Architecture for Graph Classification. 
AAAI-2018.

SEMI-SUPERVISED CLASSIFICATION 
WITH GRAPH CONVOLUTIONAL 
NETWORKS. ICLR 2017.



(Preliminary) Benchmarking Results:
• Evaluation of Interpretability Methods on Graph Neural Networks 

72Arijit Khan and Ehsan B. Mobaraki 



73Arijit Khan and Ehsan B. Mobaraki 

Evaluation of Interpretability Methods
MUTAG dataset for graph classification.
Optimized hyperparameters w.r.t. AUC-ROC.

Fidelity⁺

GCN+GAP DGCNN DIFFPOOL GIN

SA 0.178 0.007 0.044 0.015

GuidedBP 0.104 0.072 0.022 0.016

CAM 0.105 0.097 0.175 0.129

Grad-CAM 0.283 0.233 0.194 0.184

GNNExplainer 0.223 0.276 0.099 0.096

PGExplaienr 0.126 0.072 0.167 0.196

Graph-Mask 0.154 -0.107 0.061 0.186

SubGraphX 0.0625 -0.053 0.287 0.162

LRP 0.035 0.173 0.152 0.138

ExcitationBP 0.112 0.169 0.17 0.101

PGM-Explainer 0.122 0.077 0.242 0.202

CF² 0.101 0.109 0.052 0.126

Contrastivity

GCN+GAP DGCNN DIFFPOOL GIN

SA 0.503 0.146 0.056 0.481

GuidedBP 0.467 0.199 0.176 0.526

CAM 0.548 0.533 0.493 0.507

Grad-CAM 0.476 0.519 0.482 0.489

GNNExplainer 0.618 0.576 0.47 0.442

PGExplaienr 0.509 0.486 0.477 0.512

Graph-Mask 0.558 0.544 0.825 0.721

SubGraphX 0.471 0.601 0.394 0.427

LRP 0.511 0.402 0.519 0.488

ExcitationBP 0.586 0.392 0.433 0.584

PGM-Explainer 0.747 0.744 0.746 0.754

CF² 0.505 0.472 0.479 0.503
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Evaluation of Interpretability Methods
MUTAG dataset for graph classification.
Optimized hyperparameters w.r.t. AUC-ROC.

Sparsity

GCN+GAP DGCNN DIFFPOOL GIN

SA 0.375 0.418 0.378 0.522

GuidedBP 0.187 0.577 0.561 0.729

CAM 0.492 0.522 0.398 0.471

Grad-CAM 0.453 0.541 0.506 0.513

GNNExplainer 0.495 0.476 0.547 0.472

PGExplaienr 0.516 0.488 0.487 0.498

Graph-Mask 0.721 0.572 0.488 0.613

SubGraphX 0.794 0.705 0.727 0.794

LRP 0.631 0.491 0.549 0.583

ExcitationBP 0.688 0.476 0.486 0.547

PGM-Explainer 0.563 0.436 0.436 0.436

CF² 0.499 0.486 0.49 0.501

Avg. Explaining Time [Sec]

GCN+GAP DGCNN DIFFPOOL GIN

SA 0.003 0.074 0.005 0.006

GuidedBP 0.002 0.075 0.004 0.006

CAM 0.001 0.019 0.004 0.012

Grad-CAM 0.002 0.004 0.005 0.009

GNNExplainer 0.657 0.926 1.11 0.78

PGExplaienr 0.066 0.649 0.088 0.079

Graph-Mask 0.036 0.233 0.124 0.129

SubGraphX 4.211 24.051 7.764 12.416

LRP 0.018 0.034 0.078 0.043

ExcitationBP 0.011 0.027 0.069 0.056

PGM-Explainer 1.161 1.287 2.197 0.622

CF² 0.952 0.636 1.43 2.184
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Evaluation of Interpretability Methods
MUTAG dataset for graph classification.
Optimized hyperparameters w.r.t. AUC-ROC.

Fidelity⁺ Contrastivity Sparsity Avg. Explaining Time

GCN+GAP Grad-CAM PGM-Explainer SubgraphX CAM

DGCNN GNNExplainer PGM-Explainer SubgraphX Grad-CAM

DIFFPOOL SubgraphX PGM-Explainer SubgraphX CAM

GIN PGM-Explainer PGM-Explainer SubgraphX GuidedBP

• The more effective GNN model, the better interpretation result.
• Time Efficiency:

• Fastest method:
• CAM, on top of GCN+GAP: 0.001 sec.

• Slowest method:
• SubgraphX, on top of DGCNN: 24.051 sec.

• GNNExplainer, PGExplainer, SubgraphX, PGMExplainer, and CF² are more effective in general, in combination with 
more effective GNN models.
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Case Study for Interpretability Methods on Graph Classification

• GNNExplainer is among the top-ranking methods in terms of Fidelity and 
Contrastivity scores.

Mutagen

Non-Mutagen
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Link Prediction Models
SEAL: learning from subgraphs embedding and attributes for link prediction [NeuIPS 2018]
• Takes neighborhood subgraphs of the link and uses GNN to predict the probability of existence for the edges.

LGLP: Line graph link prediction [TPAMI 2021]
• Converts the input graph to a line graph and performs node labeling.
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Case Study for Interpretability Methods on Link Prediction

PGExplainer

GraphMask

Facebook network data
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1 Introduction
     1.1 Graph neural networks (GNNs) and applications
     1.2 Interpretability of GNNs
            - Definitions, importance, and challenges

2 Taxonomy of interpretability methods for GNNs 
     2.1 Post-hoc vs. intrinsic / self-explainable
     2.2 Global/ class-specific vs. local/ instance-specific
     2.3 Model-specific vs. model-agnostic
     2.4 Forward vs. backward
     2.5 Node-level vs. edge-level vs. subgraph-level

2.6 Perturbation vs. gradient vs. decomposition vs. surrogate models vs. counterfactuals

3 Recent interpretability methods for GNNs
GNNExplainer, PGExplainer , GraphMask, SubgraphX , PGMExplainer, CF2, SA, GuidedBP, 

     CAM, Grad-CAM, LRP, ExcitationBP, and XGNN

4 Benchmark & ground truth for GNN interpretability methods
     4.1 Interpretability evaluation metrics
     4.2 Ground truth datasets
     4.3 Benchmarking results

5 Future directions 
Arijit Khan and Ehsan B. Mobaraki
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• Benchmarking interplay of GNN models, graph data, interpretability methods, evaluation metrics, 
and downstream tasks. Downstream tasks beyond graphs and nodes classification.

• Qualitative evaluation of GNN interpretation – usability, interactive-ness, querying with domain 
knowledge, trustworthiness, deployment, visualization and HCI tools.

• Obtain real-world ground truth.

• Higher-order explanation, e.g., motif, example, and rule-based explanations.

• Interpretability for more complex graph neural networks, e.g., hypergraph neural networks, 
temporal graph neural networks, task-agonistic GNN explanation, causal explainer, etc.

• Self-explainable GNNs, explainability to improve GNN prediction, robust and consistent 
explanations.

• Relation to GNN robustness, fairness, and privacy.
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