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ABSTRACT
The mainstream adoption of blockchains led to the preparation of
many decentralized applications and web platforms, including Web
3.0, a peer-to-peer internet with no single authority. The data stored
in blockchain can be considered as big data – massive-volume,
dynamic, and heterogeneous. Due to highly connected structure,
graph-based modeling is an optimal tool to analyze the data stored
in blockchains. Recently, several research works performed graph
analysis on the publicly available blockchain data to reveal insights
into its business transactions and for critical downstream tasks,
e.g., cryptocurrency price prediction, phishing scams and counter-
feit token detection. In this tutorial, we discuss relevant literature
on blockchain data structures, storage, categories, data extraction
and graphs construction, graph mining, topological data analysis,
and machine learning methods used, target applications, and the
new insights revealed by them, aiming towards providing a clear
view of unified graph-data models for UTXO and account-based
blockchains. We also emphasize future research directions.
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1 INTRODUCTION
A blockchain is a distributed, digital ledger of records stored in
a sequential order. Each record or block is time-stamped and is
linked to the previous one. These blocks can be shared openly
among its participants to create an immutable sequence of trans-
actions. A blockchain is updated by consensus among its users
(an open or a controlled set), who participate in a peer-to-peer
network. Therefore, a blockchain contains a secure, tamper-proof,
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and verifiable record of every transaction validated by the system.
Due to the proliferation of cryptocurrencies and decentralized ap-
plications (dApps), blockchain technology received tremendous
attention recently, such as in decentralized finance (DeFi), smart
city, Internet-of-Things (IoT), nonfungible tokens (NFTs), stable-
coins, supply chain, identity management, healthcare, voting, and
gaming [15]. A blockchain is well-suited for Web 3.0 [28], that is
a decentralized, secure internet, where individuals engage with
each other in economic transactions without the need for a central
authority, e.g., a bank or a credit card company.

Public blockchains (e.g., Bitcoin, Ethereum) are permissionless,
i.e., allow anyone to join. With “public permissionless” blockchains,
we have access to trusted, transparent, comprehensive, and granular
datasets of digital economic behaviors. Blockchain data analytics,
also called the distributed ledger analytics (DLA), is an emerg-
ing field of research. Data stored in a public blockchain can be
considered as big data: they are massive-volume (e.g., Ethereum
archive nodes that store a complete snapshot of the Ethereum
blockchain, including all the transaction records, take up to 4TB of
space1), dynamic (e.g., Ethereum blockchain processed more than
1.1 million transactions per day in July 20212), and heterogeneous
(e.g., Ethereum blockchain contains a vast amount of heteroge-
neous interactions: user-to-user, user-to-contract, contract-to-user,
and contract-to-contract across multiple layers, such as external
and internal transactions, tokens, dAapps, etc. [18]); thus, data
analytic methods can be applied to extract knowledge hidden in
the blockchain. Such data can be modeled as complex, dynamic,
multi-layer, and even higher-order networks [24, 30, 32]. Pub-
lic blockchain data are widely investigated in several applications,
including cryptocurrency price prediction and abuses, address clus-
tering, criminal usage detection, anti-money-laundering, business
transactions analysis, and thereby providing new means for finan-
cial data mining [5, 6, 16]. They are critical in emerging fields such
as blockchain intelligence, blockchain social networks [25], and
blockchain search engines, using data analytic and machine learn-
ing tools to guide users avoiding transaction risks and frauds.

This tutorial gives a comprehensive introduction to the topic
of graph-based data analysis methods and tools for blockchains
data. We shall provide a discussion of relevant literature based on
blockchain data structures, storage, and categories, data extraction
and usage, graphs construction, graph mining, topological data
analysis, and machine learning methods used (on top of blockchain
graphs), target applications, and the new insights they revealed. We
shall conclude by discussing open problems and the road ahead.
Motivation and benefits: Blockchain data must be analyzed for
an ever-growing list of critical tasks such as money laundering
and price manipulation detection. In recent years, a growing set
1decrypt.co/24779/ethereum-archive-nodes-now-take-up-4-terabytes-of-space
2statista.com/statistics/730838/number-of-daily-cryptocurrency-transactions-by-type/
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Figure 1: Several graphs derived from interactions in UTXO and
account-based blockchains; and their common applications.

of custom-made tools (e.g., BiVa [26]) and services (e.g., tutela.xyz)
have been deployed online with support from the blockchain com-
munity to meet the growing needs for blockchain data analytics.
Graph-based analysis of crypto-data is an emerging field of study,
recently adopted by many institutions, e.g., the USA challenger
bank 3, PwC Germany 4, and Elliptic5 for building new financial
services, combating money laundering and terror financing, respec-
tively. However, existing tools work in isolation and do not provide
cross-blockchain data-linkage and search capabilities critical in
applications such as tracking the chain-hopping behavior of mali-
cious users across cryptocurrencies, asset bridging in Decentralized
Finance, and detecting buggy code execution in wrapped assets.
We point out that a clear view of unified graph-data models for
UTXO and account-based blockchains (introduced in §3) is lacking.
As a result, algorithms and tools that are developed for a specific
type of blockchain cannot be easily applied to blockchains with
similar data (i.e., transaction and block models). We propose a graph
model to unify complex, dynamic, multi-layer, and higher-order net-
work data from diverse blockchains in this premier information and
knowledge management conference. Our tutorial also provides the
blueprint to develop a unified ecosystem of interconnected services
for blockchain data, storage, querying, and analysis capabilities.
Our classification and description of data, models, applications, and
future directions on blockchains are timely and critical.

We present in Figure 1 the summary diagram of several impor-
tant graphs that can be constructed based on interactions between
various components of UTXO and account-based blockchains, such
as accounts, transactions, token transfers, and channels; together
with their applications. We hope that our summary diagram would
be a starting point for future research in this domain.
Target audience and prerequisites. The tutorial is intended for
researchers, system designers, data scientists, and practitioners in
the broad area of information and knowledgemanagement, complex
networks, Web science, machine learning, and financial technology
(Fintech). This tutorial does not require any in-depth knowledge
on complex graph algorithms and blockchain techniques.

2 OUTLINE OF TUTORIAL
1 Introduction

3neo4j.com/news/us-challenger-bank-current-uses-neo4j-graph-technology-to-build-services-
centered-around-customer-relationships/
4neo4j.com/blog/how-pwc-germany-combats-money-laundering-in-crypto-space-with-neo4j/
5elliptic.co/blog/crypto-regulatory-affairs-the-us-shuts-down-3-terror-financing-campaigns

1.1 Components
- Ledgers, cryptocurrencies, transactions, users, contracts, tokens, dApps, DeFi,

stablecoins, channels, use cases
1.2 Blockchains: Data Structures and Storage
- Bitcoin, Ethereum, Litecoin, Namecoin, Monero, ZCash, Ripple, IOTA, EOSIO, Steem

1.3 Categories
- Public, private, permissionless, permissioned, consortium, hybrid
- Currency vs. platform; UTXO vs. account; First vs. second layer technologies

2 Data Extraction and Analysis Tools
- Data Extraction and ETL, Open Datasets, Analytic Tools

3 Graphs Constructed
3.1 UTXO-based (Bitcoin, Litecoin, Monero, Zcash)

- Transaction graph, address graph, user graph, k-chainlets, lightning graph
3.2 Account-based (Ethereum)

- Trace graph; transaction (money flow) graph
- (ERC20, ERC721 and ERC1155) token graph(s)
- token creator, holder, and transfer graphs
- user-to-user, contract-to-contract, and user-to-contract graphs
- contract deployment and invocation graphs
- dApp and DeFi graphs

4 Graph Data Analysis and Machine Learning on Blockchain Graphs
4.1 Graph Analysis

- Local and global graph properties analysis
- Hypergraph and multi-layer graph analysis
- k-chainlet analysis, clustering heuristics, coin-mixing analysis

4.2 Topological Data Analysis on Blockchain Graphs
- persistent homology, simplicial complex, Betti number, functional data depth
- mapper analysis

4.3 Machine Learning on Blockchain Graphs
- Graph representation learning, Chainlets

5 Target Applications
- Insights into the transaction and token transfers
- Node classification, link prediction, anomaly detection
- Temporal price prediction

6 Open Problems
6.1 dApps and DeFi graphs
6.2 Individual ERC20 token subnetworks, stablecoin graphs
6.3 Multi-layer network and hypergraph analysis
6.4 Users clustering and graph analysis
6.5 Dynamic graphs and incremental machine learning

Length of the tutorial. The intended length of our tutorial is 3
hours. Both tutors will be available to present in-person.
What we shall not cover in this tutorial. We shall not em-
phasize on applications [15] and distributed databases aspects of
blockchains [8, 14, 21], e.g., consensus protocols, confidentiality,
fault-tolerance, scalability, and production deployment [22].

3 DESCRIPTION OF TOPICS

• Introduction. Bitcoin introduced arguably the first decentral-
ized cryptocurrency [23]. Ethereum started a new way to flourish
decentralized applications with its smart contracts (SC), which are
autonomous agents that can execute complex code across a decen-
tralized network [10]. In addition to ether, its native cryptocur-
rency, Ethereum blockchain also permits creation and transaction
of tokens, which are digital assets, through codes defined in the
respective smart contracts. Therefore, Ethereum introduces a het-
erogeneous, financial ecosystem of humans (users) and autonomous
agents (smart contracts). Among other important blockchains, we
shall introduce Litecoin, Namecoin, Monero, ZCash, Ripple, IOTA,
EOSIO, and Steem, together with their ecosystems, data structures,
and storage, e.g., hypergraph representation of bitcoin [30], Merkle
Patricia trees in Ethereum, trust graph in Ripple, and directed acyclic
graph in IOTA [4]. We can broadly classify blockchains as (i) pri-
vate vs. public, (ii) currency-based vs. platform, (iii) UTXO-based vs.
account-based, and (iv) first vs. second layer technologies. This tuto-
rial focuses on graph-based analysis of data from public blockchains.

In account-based transaction model (e.g., Ethereum), an ac-
count can spend a fraction of its coins and keep the remaining
balance, similar to bank accounts; thus account-based model up-
dates user balances globally. In the unspent transaction output

tutela.xyz
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(UTXO) model (e.g., Bitcoin), the entire graph of transaction out-
puts, spent and unspent, represents the global state. The UTXO
model only records transaction receipts, account balances can be
calculated by adding up the available unspent transaction outputs.
•Data extraction and analysis tools.To get all historic blockchain
transactions, one can join the peer-to-peer network through a client,
e.g., Bitcoin-Core, Geth, OpenEthereum, and Parity 6 are popular
software clients for running a full node. Alternatively, users can
also interact with network nodes via the web3 library using man-
aged services, such as Infura, Quicknode, and SoChain.7 In addition,
some well-curated blockchain datasets have also been released, e.g.,
Google BigQuery [13] and XBlock-ETH [33]. The ETL (extract-
transform-load) process converts raw data into convenient formats,
such as CSVs, relational databases, and graphs [29].

Participants in blockchain transact under pseudonyms, making
it hard to obtain their identity (e.g., exchanges, wallets, frauds,
etc.). Such information for many accounts can be collected from
Etherscan (etherscan.io) and open forums, e.g., CryptoScamDB
(cryptoscamdb.org), they are useful in fraud detection. Ethereum
Query Language (EQL) [9] supports SQL-like queries to retrieve
information from the Ethereum blockchain data. BiVA is a graph
mining tool for the bitcoin network visualization and analysis [25].

Researchers are also working on natural language processing,
sentiment analysis using tweets and Google Trends on blockchain
[17], providing alternative ways to monitor blockchain ecosystems.
• Graphs constructed. UTXO (e.g., Bitcoin, Monero) transaction
networks are modeled as address or transaction graphs [4]. Addi-
tionally, one can extract chainlet substructures [2].

UTXO transaction graphs omit address nodes from the trans-
action network and create edges among transaction nodes only. The
most important aspect of the transaction graph is that a node can
appear only once. There will be no future edges that reuse a trans-
action node, which simplifies graph analysis. By omitting addresses,
however, associations between addresses are lost which prevents
linking addresses. UTXO address graph is the most commonly
used graph model for UTXO networks. The address graph omits
transactions and creates edges between addresses only. Address
nodes may appear multiple times, which implies that addresses may
create new transactions or receive coins from new transactions in
the future. Address graphs are larger than transaction graphs in
node and edge counts. When omitting the intermediate transaction
node, we cannot know how to connect input-output address pairs.
Thus, one needs to create an edge between every pair, which creates
artificial edges in the graph that causes computational overheads.

In Ethereum, Chen et al. [12] studied the money flow graph
(MFG), smart contract creation (CCG), and invocation graphs
(CIG). MFG is a weighted, directed graph denoting transfer of ether
between accounts. An weight denotes the total amount of ether
transferred along that edge via one or more transactions. CCG,
which deals with smart contracts creation, is a forest havingmultiple
trees. The root of every tree is an EOA (externally owned account),
other nodes of the tree are smart contract accounts that are directly
or indirectly created by that EOA. Thus, the edges in CCG are
unidirectional. In contrast, CIG is a weighted, directed graph; an
edge indicates an invocation of a smart contract, either by an EOA
6geth.ethereum.org openethereum.github.io parity.io/technologies/ethereum
7 infura.io quicknode.com https://chain.so

or by another smart contract; the edge weight counts the number
of invocations, via one or more transactions.

Lee et al. [18] derived four networks: (a) TraceNet, consisting of
all successful traces with non-null from/to addresses as edges; (b)
ContractNet, a subgraph of TraceNet, where only those edges with
both from_address and to_address belonging to smart contracts, are
retained; (c) TransactionNet, whose edges are formed by external
transactions (this is similar to the money flow graph in [12] ); and
(d) TokenNet, based on explicit transfer of tokens. In [32], Lin et
al. studied temporal variations of the four networks.
• Graph analysis, topological data analysis, and machine
learning methods on blockchain graphs.Majority of the works
conducted graph analysis by measuring graph properties, which
can be classified as: (a) global properties, also known as “summary
features”, and (b) local properties of individual nodes and edges
[18]. Important local properties analyzed on blockchain graphs
are node degree distribution, node centrality measures such as de-
gree, closeness, betweenness, PageRank, and Eigenvector centrality.
Among global properties, most prominent ones studied are con-
nected components, reciprocity, assortativity, maximum clique, core
decomposition, density, triangle and motif counts, and diameter.

Another emerging approach for ransomware payment detection
is topological data analysis (TDA). TDA systematically infers qual-
itative and quantitative geometric and topological structures of
blockchain transaction graphs at multiple resolutions [1, 19]. As a
result, TDA allows us to capture subtler patterns in the transaction
graphs, including changes in chainlet dynamics, which are often
associated with illicit or malicious activity and which are inacces-
sible with more conventional methods based on various forms of
information aggregation [7, 24]. Both [19, 24] conducted topologi-
cal data analysis on Ethereum networks for anomaly detection, the
key concepts include simplicial complex, persistent homology, Betti
number, functional data depth, and stacked persistence diagram.

Several works performed graph embedding with blockchain
graphs. Lin et al. [20], Poursafaei et al. [27], and Wu et al. [31]
designed temporal, node, and edge features-biased random walks
for graph representation learning. Chen et al. [11] performed graph
convolutional neural network (GCN)-based node embedding.
• Target applications. Bulk of the works conducted graph analy-
sis to gain insights into transaction and token transfers. Some of
them considered downstream tasks, e.g., node classification, link
prediction, anomaly detection, token price prediction. Most tools
for blockchain data are related to e-crime or financial (e.g., price,
investor) analytics. From ransomware payment detection [7] to
sextortion discovery [25], transaction graph analysis has proven
useful to study blockchain address importance and to cluster them.
• Future directions.We conclude by discussing open problems.

(1) Accounts interact with each other based on different dApps
and DeFi protocols, thus forming graph structures. One can investi-
gate their graph properties, embeddings, and anomalous patterns. A
specific interest could be analyzing stablecoins’ price stabilization
mechanisms and understanding the recent crash of Luna Terra 8.

(2) There are relatively less works on graph analysis of individual
ERC20 token subnetworks. One may correlate their graph proper-
ties with token price and popularity for more accurate forecasting.

8bloomberg.com/news/articles/2022-05-19/luna-terra-collapse-reveal-crypto-price-volatility

cryptoscamdb.org
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(3) Due to several modes of interactions among EOAs and con-
tracts, such as external and internal transactions, token transfers,
dApps and DeFi usage, one may construct a multi-layer network,
where each layer will denote one specific mode of interaction. Multi-
layer graphs would be an expressive model of real-world activities.

(4) Accounts can be grouped into various categories and gran-
ularity, e.g., miners, mining pools, mixers, exchanges, phishing
accounts, ICO contracts, gambling games, etc. One can conduct
graph analysis in an OLAP (online analytical processing) manner,
by drilling-up/down based on hierarchical categories.

(5) Due to dynamic nature of accounts and transactions, em-
ployed ML models must deal with data drifts. Incremental learning,
machine unlearning, and continuous learning would be useful.

4 RELATED TUTORIALS
• Blockchain data analytics. Akcora, Gel, and Kantarcioglu have
given blockchain tutorials at PaKDD, ICDM, ICDE, SDM, and KDD
between 2018 and 2021 [3]. These tutorials covered fundamental
building blocks of blockchains and data structures of UTXO and
account blockchains. However, unlike ours, these tutorials have not
proposed unified graph models. Our tutorial also covers data extrac-
tion and analysis, as well as the existing methodology in blockchain
data analytics. Furthermore, we cover the state-of-the-art in graph
analysis, topological data analysis, and graph machine learning,
which have seen a considerable body of new work recently.
• Databases and distributed systems aspects of blockchains.
Several tutorials [8, 14, 21] were presented emphasizing databases
and distributed systems aspects of blockchains, such as consensus
protocols, confidentiality, verifiability, fault-tolerance, scalability,
data management applications, deployment, and benchmarking.
Our tutorial is different since we shall discuss the graph-based
analysis of transactions and other data stored on public blockchains.
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