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ABSTRACT
This paper demonstrates AGQ [26] — our system for approximate
and interactive processing of aggregate queries on knowledge graphs
(KGs), e.g., “what is the average price of cars produced in Ger-
many?” One can support aggregate queries based on factoid queries,
e.g., “find all cars produced in Germany”, by applying an aggregate
operation on factoid queries’ answers. However, this straightforward
method is problematic since both the accuracy and efficiency of
factoid query processing would impact the performance of aggregate
queries. Moreover, returning a one-time, exact result might add com-
putation overhead and hinder users’ engagement and interactivity.

To this end, we design a system, called AGQ which employs a
“sampling-estimation” model to answer aggregate queries over KGs.
This is the first work to provide an approximate aggregate result with
effective and interactive accuracy guarantees, and without relying on
factoid queries. Our demonstration highlights (1) a novel semantic-
aware sampling to collect a high-quality random sample through a
random walk based on KG embedding, followed by our unbiased
(or, consistent) estimators for {COUNT, SUM, AVG} to compute
the approximate aggregate results using the random sample, with
a confidence interval-based accuracy guarantee. (2) AGQ supports
interactive improvements of accuracy, complex queries with filter,
GROUP-BY, MAX/MIN, and different graph shapes, e.g., chain, cy-
cle, star, flower. (3) Its GUI helps users compare simple and complex
aggregate queries, intermediate results as the queries progress, con-
fidence intervals, relative errors, and various schemas for different
valid answers in a user-friendly and interactive manner. Addition-
ally, our system permits users to input queries in natural languages,
keywords, or to select from a set of example graph queries.

CCS CONCEPTS
• Information systems → Database query processing; • Mathe-
matics of computing → Approximation algorithms.
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1 INTRODUCTION
Knowledge graphs (KGs) such as DBpedia [19], YAGO [13], Free-
base [5], and NELL [23] have been built to manage large-scale, real-
world facts in a schema-flexible manner, where a node denotes an
entity with attributes, and an edge is a relationship between two enti-
ties [10, 28]. We focus on aggregate queries over KGs, e.g., “what is
the average price of cars produced in Germany?” — 31% queries
from the real query log LinkedGeoData13 and 30% queries from the
manually-curated query set WikiData17 are aggregate queries [6].
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Figure 1: A KG 𝐺 and a query graph 𝑄 . Each entity of 𝐺 with type
Automobile has many numerical attributes, e.g., horsepower, price.

Question answering (both aggregate and factoid queries) over
KGs is challenging due to KG’s “schema-flexible” nature [25, 30,
31, 33]: The same kind of information can be represented as diverse
substructures. Consider the factoid query: “Find all cars produced in
Germany” (Q117 from QALD-4 benchmark [1]) over the KG in Fig-
ure 1, we expect answers as all entities having type Automobile that
satisfy the semantic relation product to the specific entity Germany,
e.g., Audi_TT (𝑢10), BMW_320 (𝑢6), etc. These correct answers are
linked to Germany in structurally different ways in Figure 1, for in-
stance, 𝑢10: Audi_TT-assembly-Volkswagen-country-Germany; 𝑢6:
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Figure 2: The architecture of the AGQ system

BMW_320-assembly-Germany. This reflects the “schema-flexible”
nature of a KG. We aim at finding all semantically similar answers.

A commonly used technology for factoid queries is graph query-
ing [17, 25, 29, 34, 35], which we consider in this work: A user
forms a query graph 𝑄 to describe her query intention, and identifies
the exact or approximate matches of 𝑄 in a KG 𝐺 . Subgraph isomor-
phism [35] only returns answers that exactly match with the given 𝑄

(e.g., only 𝑢5 is returned for 𝑄 in Figure 1), while other semantically
similar but structurally different answers are ignored (e.g., 𝑢6, 𝑢7,
and 𝑢10). Analogously, a relational or SPARQL query finds answers
matching exactly the schema of the input query, and other valid
answers with different schemas will be ignored [25, 26, 30]. Other
works [17, 33] return approximate matches to 𝑄 , but it might be
difficult for them to return 100% accurate answers (the notion of “ac-
curate” could depend on the user’s query intension, or may even be
vague [22]). So, when one processes aggregate queries by an aggre-
gate operation on factoid queries’ answers, calculating the aggregate
result over answers with low quality leads to significant errors. We
also lack an effective way to quantify the result’s quality. Finally,
factoid queries’ efficiency affects aggregate queries’ efficiency.

Practically, an aggregate query often does not need an exact result.
An early accurate-enough approximate result is more valuable to
users, while we can improve the accuracy as more time is given [9],
thus enhancing users’ experience and saving resources [4, 25].

Our solution. We propose the “semantic similarity” [25, 26] to mea-
sure how semantically similar an answer is to a query graph 𝑄 . We
then develop an iterative and approximate approach to efficiently
answer aggregate queries over KGs with an accuracy guarantee, but
without requiring factoid queries. We first collect semantically simi-
lar answers to𝑄 as a random sample 𝑆 from a KG. Next, we estimate
an unbiased (or consistent) approximate result 𝑉 based on 𝑆 , and
provide an accuracy guarantee by iteratively computing a confidence
interval CI = 𝑉 ± 𝜀 at a confidence level 1 − 𝛼 . We terminate the
query when a tight CI with a small 𝜀 is obtained, and ensure that the
relative error of𝑉 is bounded by a user-specific error bound 𝑒. To the
best of our knowledge, we are the first to use a “sampling-estimation”
model to answer aggregate queries on KGs, together with interactive
improvements in error bounds. The demonstration of our system,
AGQ is also the first demonstration proposal on fast, approximate,
and interactive processing of aggregate queries over KGs.
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Figure 3: Workflow of AGQ

2 FRAMEWORK OVERVIEW
Figure 2 shows AGQ’s architecture with three layers: KG embedding
layer, online query processing layer, and application layer.

• Offline KG Embedding Layer. A KG embedding learns represen-
tations of entities and relations in a low-dimensional vector space, it
can preserve well the semantic meanings and relations using these
learned vectors [7, 14, 25]. We leverage an offline KG embedding
model to obtain the predicate similarity between two edges from
the KG and query graph, and subsequently the semantic similar-
ity of a path from the KG with a query edge. AGQ can work with
any KG embedding. By employing a high-quality embedding, we
can distinguish the implicit semantics of predicates and different
paths, this is critical for finding all semantically similar answers
to the query graph. In the full version [26], we demonstrated that
translation-based models (TransE [7], TransD [15], TransH [27]) per-
form better than tensor factorization-based models, e.g., RESCAL
[24] and relation-specific projection-based models, e.g., SE [8].

• Online Query Processing Layer. Given complex queries with dif-
ferent shapes, e.g., chain, star, cycle, and flower, we adopt the
“decomposition-assembly” framework [25]: We decompose a com-
plex query into a set of simple or chain-shaped queries that share the
same target entity. In particular, a simple query consists of a single
edge, connecting a specific entity with the target entity, returning
possible matches to target entity as query answers [14]. Each simple
query is processed by (a) collecting a random sample of candidate
answers from the KG that are semantically similar to the query
graph, and (b) estimating an unbiased (or consistent) approximate
aggregate result based on the random sample, together with (c) an
accuracy guarantee in the form of confidence interval.

• Application Layer: User Feedback and Displayer. If the estimated
error is higher than the user-input error bound, we enlarge the random
sample with additional candidate answers and repeat the estimation
till an acceptable accuracy is attained. During runtime, users can
interactively reduce the error bound to achieve more accurate results.
AGQ contains a user-friendly Displayer module (developed with the
D3.js library) for interactive visualization. Users can interact with
the KG, intermediate results, confidence intervals at every round,
and various schemas for different valid answers. Finally, users can
input queries in multiple forms: (a) select from a given set of natural
language and graph queries, and (b) input ad-hoc queries in natural
languages and keywords. AGQ extracts entities and predicates from
text and converts these query forms to graph queries [12, 21, 32].

3 ALGORITHMS AND PERFORMANCE
The workflow of our AGQ framework is presented in Figure 3.

Aggregate Query. An aggregate query over KG 𝐺 is denoted as
𝐴𝑄𝐺 = (𝑄, 𝑓𝑎), where 𝑄 is a query graph for finding candidate
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Figure 4: An aggregate query 𝐴𝑄𝐺 = (𝑄, 𝑓𝑎 )
answers from 𝐺 and 𝑓𝑎 is an aggregate function on the numeri-
cal attribute 𝑎 of the answers to 𝑄 . Figure 4 shows the 𝐴𝑄𝐺 of
a simple query “what is the average price of cars produced in
Germany?”. The query graph 𝑄 contains a specific node 𝑞𝑠 = 𝑞1
(type: {Country}, name: Germany), a target node 𝑞𝑡 = 𝑞2 (type:
{Automobile}), an edge 𝑒 = 𝑞1𝑞2 (predicate: product), and 𝑓𝑎 =

AVG on the attribute 𝑎 = price. Given our framework for simple
questions, we later extend it for more complex queries and shapes.
Semantic Similarity. We employ an offline KG embedding to com-
pute the predicate similarity between two edges 𝑒′ and 𝑒, from𝐺 and
𝑄 , respectively. The similarity between their predicates, denoted as
𝑠𝑖𝑚(𝐿𝐺 (𝑒′), 𝐿𝑄 (𝑒)), is computed by the cosine similarity between
their predicate vectors 𝒆 and 𝒆′, obtained via KG embedding.

𝑠𝑖𝑚 (𝐿𝐺 (𝑒′ ), 𝐿𝑄 (𝑒 ) ) = 𝒆′ · 𝒆
| |𝒆′ | | × | |𝒆 | | (1)

Given a simple query graph 𝑄 and a KG𝐺 , a subgraph match 𝑀 (𝑢𝑡
𝑖
)

to 𝑄 is defined as an edge-to-path mapping from the query edge
𝑒 = 𝑞𝑠𝑞𝑡 in 𝑄 to a path 𝑢𝑠𝑢𝑡

𝑖
in 𝐺 . (1) The specific node 𝑞𝑠 is

mapped to 𝑢𝑠 , having similar name and type. (2) The target node
𝑞𝑡 is mapped to 𝑢𝑡

𝑖
having similar type. We define the semantic

similarity 𝑠 [𝑀 (𝑢𝑡
𝑖
)] of 𝑀 (𝑢𝑡

𝑖
) to 𝑄 as the geometric mean of the

predicate similarities of all edges in 𝑢𝑠𝑢𝑡
𝑖

(Eq. 2), where 𝑙 is the

length of 𝑢𝑠𝑢𝑡
𝑖

[25]. If there are multiple subgraph matches of 𝑢𝑡
𝑖
, we

compute the semantic similarity 𝑠𝑖 of 𝑢𝑡
𝑖

as the maximum semantic
similarity considering all its subgraph matches (Eq. 3).

𝑠 [𝑀 (𝑢𝑡𝑖 ) ] = 𝑙

√√√ ∏
𝑒′∈𝑢𝑠𝑢𝑡

𝑖

𝑠𝑖𝑚 (𝐿𝐺 (𝑒′ ), 𝐿𝑄 (𝑒 ) ) (2)

𝑠𝑖 = max
𝑀 (𝑢𝑡

𝑖
)
𝑠 [𝑀 (𝑢𝑡𝑖 ) ] (3)

Due to the schema-flexible nature of KGs, there can be many seman-
tically similar, yet structurally different subgraph matches to a given
𝑄 . We set a threshold 𝜏 and view those candidate answers having
semantic similarity 𝑠𝑖 ≥ 𝜏 as the correct answers to 𝑄 , denoted by
A+ = {𝑢𝑡

𝑖
∈ A : 𝑠𝑖 ≥ 𝜏}. The ground truth of 𝐴𝑄𝐺 is 𝑉=𝑓𝑎 (A+).

Approximate Answers. Given an aggregate query 𝐴𝑄𝐺 = (𝑄, 𝑓𝑎), a
KG𝐺 , an input error bound 𝑒, and a confidence level 1−𝛼 , our system
AGQ (1) designs a sampling algorithm D to collect a random sample
𝑆A = D(A) of the candidate answers A from 𝐺 , (2) estimates the
approximate result 𝑉 based on 𝑆A with a confidence interval 𝑉 ± 𝜀

at 1 − 𝛼 confidence level, and (3) ensure that the relative error of 𝑉
is bounded by 𝑒. 𝑓𝑎 is an unbiased (or consistent) estimator of 𝑓𝑎 .

�̂� = 𝑓𝑎 (𝑆A ) s.t. Pr[�̂� −𝜀 ≤ 𝑉 ≤ �̂� +𝜀 ] = 1−𝛼, |�̂� −𝑉 |/𝑉 ≤ 𝑒 (4)

Semantic-aware Sampling. We collect answers with higher se-
mantic similarities to 𝑄 as a random sample 𝑆A , via our novel
semantic-aware random walk sampling over 𝐺 . We design a transi-
tion matrix to guide a walker towards an answer 𝑢𝑡

𝑖
with the greatest

𝑠𝑖 as much as possible, so this 𝑢𝑡
𝑖

is more likely to have a greater
visiting probability at convergence. Hence, we assign a greater tran-
sition probability on each edge 𝑒′ from 𝐺 having a higher predicate

Table 1: Accuracy (considering human-annotated ground truth) and
efficiency for various aggregate queries (DBpedia)

Method Relative error (%) Efficiency (sec)
Simple Filter GROUP-BY Simple Filter GROUP-BY

AGQ 0.99 0.71 1.13 0.37 0.43 31.67
EAQ 21.14 - - 4.53 - -
GraB 7.31 20.94 - 9.23 1.10 -
QGA 19.01 46.95 - 1.51 1.41 -
SGQ 9.97 17.71 - 0.82 0.73 -
JENA 17.62 48.98 16.30 1.20 0.70 95.76

Virtuoso 17.62 48.98 16.30 1.21 0.72 94.67

similarity 𝑠𝑖𝑚(𝐿𝐺 (𝑒′), 𝐿𝑄 (𝑒)) to the query edge 𝑒 from𝑄 . We ensure
that our random walk converges to a stationary distribution, and all
the answers in 𝑆A are i.i.d. random variables. We depicted in [26]
that our semantic-aware sampling is more effective in finding correct
answers compared to topology-based sampling, e.g., Node2Vec [11].

Correctness Validation. Due to randomness of sampling, a few
answers with lower semantic similarity might still be collected in
𝑆A . We design an efficient heuristic algorithm to remove sampled
answers with semantic similarity < 𝜏 , thus improving the accuracy.

Aggregate Estimation. We develop unbiased estimators for {SUM,
COUNT} and a consistent estimator for AVG, that is, it converges
almost surely to the true expectation. We derive an approximate
result 𝑉 using these estimators.

Accuracy Guarantee, Additional Sampling, and Interactive Re-
finement. Given a user-input confidence level 1 − 𝛼 , we compute
a confidence interval CI = 𝑉 ± 𝜀 to quantify 𝑉 ’s quality using the
Central Limit Theorem and the bag of little bootstrap method [18].
We show that when 𝜀 is small enough to satisfy ≤ 𝑉 · 𝑒/(1 + 𝑒),
the relative error is bounded by a user-input error bound 𝑒. Other-
wise, we update 𝑆A with additional Δ𝑆A answers. To avoid over-
and under-sampling, we propose an error-based method that au-
tomatically configures |Δ𝑆A |. Moreover, AGQ permits interactive
refinements in error bound 𝑒 during runtime. It quickly obtains a new
approximate result with a small additional overhead, because the
error-based method can sense the variation of 𝑒 and updates |Δ𝑆A |
accordingly.

Filters, GROUP-BY, MAX/MIN, and Complex Shapes. We sup-
port filter operations during correctness validation. For GROUP-BY,
we divide the collected sample into different groups, then estimate
the approximate result for each group. For MAX/MIN, we cannot
provide accuracy guarantees, though we can support them by re-
turning the MAX/MIN answers from the sample. For queries with
complex shapes, e.g., chain, star, cycle, flower, we first decompose
them into a set of simple or chain-shaped queries that share the same
target entity. We omit details due to lack of space and refer to [26].

System Performance. We run experiments on a 2.1GHZ, 64GB
memory AMD-6272 server, and compare our system AGQ with
recent works on KG search: EAQ [20], SGQ [25], GraB [16], and
QGA [12] (Table 1). Since SGQ, GraB, and QGA process factoid
queries, we extend them by adding an additional aggregate opera-
tion after obtaining factoid query answers. We also compare with
one RDF store, JENA [3] and a SPARQL endpoint Virtuoso, both
supporting SPARQL queries. The ground truth is obtained based
on crowdsourcing-based human annotations [26]. AGQ reduces the
relative error by two orders of magnitude, than existing methods;
and requires up to an order of magnitude less response time than
other approaches. Our code and all datasets are available at [2].
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Figure 5: User interface of AGQ: natural language query form with interactive query model

Figure 6: Keyword query forms with error-bound query model

4 DEMOSTRATION
Demonstration and Audience. We present a web app for demon-
stration. A video is available at the YouTube - https://www.youtube.com/
watch?v=FEJeIIxDizQ. It is intended for researchers, system designers,
data scientists, practitioners, and enthusiasts in the broad area of
data management, querying, knowledge graphs, complex networks,
Web science, graph embedding, machine learning and deep learning.

User Interface and Interactive-ness. Figure 5 presents the user
interface of AGQ. When we open this web app for the first time,
it shows a snapshot of the input KG on the right bottom. A set of
sample aggregate queries are provided in the left panel. Alternatively,
users can input ad-hoc natural language and keyword queries by
typing them on the top panel, as shown in Figure 5 and 6, respectively.
We extract various entities and predicates from input text following
[12, 21, 32], and convert them to graph queries. When the user
inputs one query, its equivalent query graph is shown at the top of
the monitor window, and a partial knowledge graph containing the
specific entity is presented on the right bottom.

When the user submits a query, AGQ provides two options to
process it. First, in the interactive mode (see Figure 5), AGQ shows
the first round’s estimated result with confidence interval, relative
error, and running time in a blue table on the top; all collected
samples for estimation are presented in another orange table below
it. When the user selects one sample from the orange table, our
interface shows its detailed information in a red table on the top

 

Figure 7: AGQ finds different schemas for various correct answers

right, and also highlights the corresponding path from the specific
entity in the partial KG. Finally, the user may proceed to subsequent
rounds by pressing the “continue” button, and more accurate results
are provided round-by-round. Second, in the error-bound mode,
the user inputs the desired error bound and confidence level. AGQ
computes approximate result and directly reports the final result with
confidence interval, relative error, and running time (see Figure 6).

Demonstration with the DBPedia Dataset. DBpedia is an open-
domain KG constructed from Wikipedia, with about 4.5M nodes,
15M edges, 359 distinct node types, and 676 distinct edge predicates.
We shall demonstrate our system AGQ with DBpedia. Figure 7
shows six different schemas that are used in answering the query:
“How many software has been developed by organizations founded
in California?”, which are all identified by the AGQ system.
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