TAPAAL and Reachability Analysis of P/T Nets

Jonas F. Jensen, Thomas Nielsen, Lars K. Oestergaard, and Jifi Srba

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300, DK-9220 Aalborg East, Denmark

Abstract. We discuss selected model checking techniques used in the
tool TAPAAL for the reachability analysis of weighted Petri nets with
inhibitor arcs. We focus on techniques that had the most significant effect
at the 2015 Model Checking Contest (MCC). While the techniques are
mostly well known, our contribution lies in their adaptation to the MCC
reachability queries, their efficient implementation and the evaluation of
their performance on a large variety of nets from MCC’15.

1 Introduction

Petri nets [15] are a popular formalism for a high level modelling of distributed
systems. Currently, there are more than 80 tools registered in the database of
Petri net tools [8] and an annual model checking contest aiming at comparing
the performance of the different tools has been running since 2011. In the last
two editions of the contest, MCC’14 [10] and MCC’15 [11], our model checker
TAPAAL [4] won a second place in the reachability category. In this paper, we
report on the main verification techniques implemented in our tool and demon-
strate their performance on the class of Petri nets from the latest edition of the
model checking contest.

TAPAAL is a tool suite that apart from the verification engine for P/T nets
supports also the modelling and analysis of a timed extension of the Petri net
formalism called timed-arc Petri nets (for more details see [9]). The tool sup-
ports both continuous and discrete time verification and while the details about
the continuous-time engine [5] and the discrete-time engine [1] were previously
published, the untimed verification engine has not been presented yet.

We focus here solely on the TAPAAL verification techniques directly related
to our participation in the model checking contest. The details about the other
participating tools and a report on the competition results can be found in [11].
In what follows, we first describe an efficient heuristic search technique for ex-
plicit exploration of the Petri net state-space, then we discuss the adaptation
of the state-equation approach to the case of cardinality queries and finally we
demonstrate the applicability of the sequential and parallel structural reduc-
tion rules into the context of checking cardinality queries on weighted nets with
inhibitor arcs.

TAPAAL is open-source and publicly available at www.tapaal.net. Citations
to the related work connected to the techniques used in our tool are given at
the respective sections of the paper. All experiments reported in this paper use

the competition nets and queries from MCC’15 but the verification was rerun
locally as we needed to compare the different options and techniques (the data
for the different combinations of these parameters is not available at the MCC’15
web-page as we submitted there only the best working configuration of our tool).

2 Definitions

Let Ny denote the set of natural numbers including zero. A Petri net (PN) with
inhibitor arcs is a tuple N = (P, T, F, I) where

— P is a finite, nonempty set of places,

— T is a finite set of transitions such that PNT = 0,

— F:(PxT)U(T x P) = Ny is the flow function, and

— I C P x T is the set of inhibitor arcs such that (p,t) € I implies F(p,t) = 0.

Let N = (P,T,F,I) be a PN. A marking is a mapping M : P — Ny that
assigns tokens to places. The set M(N) denotes the infinite set of all markings
on N. A marked PN is a pair (N, M) where My € M(N) is an initial marking.

The preset of a place/transition y is defined as *y 4 {z€e PUT | F(z,y) >

0}. Likewise, the postset is y* o {z € PUT | F(y,z) > 0}. We denote the set

of inhibitor places of a transition ¢ as I(t) = {p € P| (p,t) € I} and transitions

that a place p inhibits as I(p) o {teT]| (p,t) e}

A transition t € T is enabled in a marking M if for all p € °t we have
F(p,t) < M(p)and M (p) = 0for all p € I(¢). A transition ¢ enabled in a marking
M can fire and produce a marking M’ such that M’ (p) = M (p)—F(p,t)+F(t,p)

for all p € P, written as M L M’. This firing relation is in a natural way
extended to a sequence of transitions w € T* so that M - M and for w = tw’

’
w

we write M % M’ if M 5 M” and M” % M’. We also write M — M’ if
M % M’ for some ¢ € T. The reflexive and transitive closure of — is denoted
by —*. Finally, let R(M) = {M' | M —* M’} be the set of markings reachable
from M.

As usual, Petri net places are denoted by circles and can contain dots rep-
resenting tokens, transitions are drawn as rectangles, input and output arcs are
depicted as arrows labelled with their weights (if a label is missing we assume
the default weight 1) and inhibitor arcs are denoted by circle-headed arrows.

After having introduced the standard syntax and semantics of Petri nets, we
shall now define the reachability problem for cardinality queries, as the main
MCC’15 competition category in the reachability analysis.

A cardinality formula is given by the abstract syntax

pu=epde | oAp | oV | —p
ex=n | plete|e—e|n-e

where i € {<, <, =,#,>,>}, n € Ny and p € P.

The satisfaction relation M |= ¢ for a given marking is defined in the natural
way such that M | e; <1 eq iff eval(M,e1) <1 eval(M, e3) where eval(M,e) is
the evaluation of the arithmetical expression e into a number, assuming that
eval(M,p) = M (p) for p € P (in other words, a place p evaluates to the number
of tokens currently present in it).

For a marked Petri net (N, Mp), we write (N, My) = EF ¢ if there is a
marking M such that My —* M and M | ¢. As an example, the query EF p >
5 A q # 3 asks whether we can reach a marking where the place p contains at
least 5 tokens and the number of tokens in the place ¢ is different from 3.

Note that the MCC’15 verification queries [11] also contain other types of
reachability questions: (i) reachability fireability where we consider the atomic
proposition fire(t) that is true in a given marking iff the transition ¢ is fireable,
(ii) reachability compute bounds where the expression bounds(X) for X C P
is added as an atomic expression of e and it reports the maximum number
of tokens in the places from X in any reachable marking and (iii) reachability
deadlock where we ask if there is a reachable marking M such that there is no
t € T and no M’ where M 5 M.

We notice that fireability can be encoded as a cardinality query

fire(t)= Np>=F(p,t) n N\ p=0

pe*t pel(t)

and deadlock can be encoded as the cardinality query

deadlock = /\ —fire(t) .

teT

In TAPAAL, we indeed encode reachability fireability queries into the cardi-
nality queries but we use a dedicated deadlock proposition in order to be able
to apply structural reductions (see Section 5). The computation of bounds for a
given set of places X is done by exploring the whole state-space while still being
able to apply some structural reduction rules. Details are discussed in Section 5.

3 Explicit Search Algorithm with Heuristic Distance

We shall now describe the explicit search algorithm used in TAPAAL for answer-
ing reachability cardinality queries. The search is based on the standard search
algorithm using passed/waiting sets (see e.g. [3]) as given in Algorithm 1 but
with the important addition of exploring first the markings with the shortest dis-
tance to a given cardinality query ¢. The distance DISTANCE(M, ¢) is computed
in Algorithm 2 and it returns a nonnegative integer. If M |= ¢ then the distance
function returns 0, otherwise the distance tries to estimate how far away is the
marking M from satisfying the query .

This is achieved by first estimating the distance between two integer values
w.r.t. a given comparison operator <, as defined by the A function in Algo-
rithm 2. Intuitively, the function A(vy,,vy) returns the smallest number by

Algorithm 1 Best-First Reachability Search

1: function BEST-FIRST-REACHABILITY-SEARCH(N, Mo, ¢)
2: if My = ¢ then

3: return true

4: end if

5: Waiting := {Mo} > Priority queue
6: Passed := { Mo} > Set of passed markings
7 while Waiting # 0 do

8: M := argmin DISTANCE(M,) > A shortest distance marking

M e Waiting

9: Waiting := Waiting ~ {M }

10: for M’ such that M > M’ where t € T do > For each successor marking
11: if M’ ¢ Passed then

12: Passed := Passed U {M'}

13: if M’ E ¢ then

14: return true > OQutput true and terminate
15: end if

16: Waiting := Waiting U {M'} > Marking M’ should be explored
17: end if

18: end for

19: end while
20: return false > No reachable marking satisfying ¢ was found

21: end function

which either v, or vy must be changed in order to make the predicate v, > vo
valid. The basic distance A is then extended to the logical connectives: for con-
junction both conjuncts have to hold and hence we add the distances of the
conjuncts together, and for disjunction where only one of the disjuncts needs
to hold, we take the minimum. The negation is simply propagated down to the
atomic predicates using De Morgan’s laws.

The heuristics operates very satisfactory in many scenarios as it relies on the
assumption that similar markings are likely to be just a few firings away from
each other. Nevertheless, in some scenarios the heuristic estimate may degrade
the search performance.

We performed a number of experiments comparing the heuristic search strat-
egy against breadth-first-search (BFS) and depth-first-search (DFS) on the com-
petition nets and queries from MCC’15 [11]. We selected a number of hard
border-line instances of problems where we still expected to get a reasonable
number of conclusive answers for positive reachability queries, resulting in 1296
executions (432 executions for each search strategy). Out of those, we selected
models and queries where at least one search strategy found a reachable marking
satisfying the given cardinality query and where at least one search strategy took
more than 3 seconds (in order to filter out the trivial instances). This resulted
in 492 executions (164 for each search strategy) and the results are presented in
Figure 1.

Algorithm 2 Distance Heuristics

1: function DISTANCE(M, ¢)
2: if ¢ = e1 ez then

3: return A(eval(M,e1),<, eval(M, e2))

4: else if ¢ = 1 A 2 then

5: return DISTANCE(M, 1) + DISTANCE(M, ¢2)

6: else if ¢ = ¢1 V @2 then

T return min{DISTANCE(M, 1), DISTANCE(M, v2)}
8: else if ¢ = —(e1 X e2) then

9: return A(eval(M,e1),5<, eval(M, e2))

10: else if ¢ = (1 A ¢2) then

11: return min{DISTANCE(M, =p1), DISTANCE(M, —p2)}
12: else if ¢ = =(p1 V p2) then

13: return DISTANCE(M, —¢1) + DISTANCE(M, —¢2)
14: else if ¢ = =(—¢1) then
15: return DISTANCE(M, ¢1)
16: end if

17: end function

where X is the dual arithmetical operation of > (for example < is the notation for >)
and where

A(’l)17—7'l)2) |U1 —UQ‘
1 if V1 = V2
v b 7 -
Alvr, #,02) {0 otherwise
A(vy, <,v2) = max{vy —v2 + 1,0} A(v1,>,v2) = A(ve, <,v1)
A(vi, <, v2) = max{v1 — v2,0} Ay, >, v2) = A(v2, <, v1)

The table shows that the heuristic search was the fastest one in 89 instances,
which is more than the sum of cases where BFS or DFS won (75 instances in
total). The heuristic strategy timed out in only 19 cases (where either BFS or
DFS provided an answer) compared to the large number of runs where BFS and
DFS did not find the answer. Finally, the heuristic strategy was in 17 cases the
only one that found a marking satisfying the given cardinality query, whereas
BF'S provided a solo answer in 9 cases and DFS in only 2 cases.

In conclusion, if we use only a single-core for the verification, the heuristic
search is preferable, however, in case of more available cores, it may be a good
idea to run all three different search strategies independently.

4 State Equations for Cardinality Queries

In this section we present an adaptation of the technique based on integer pro-
gramming (state-equations [12, 13]) which can be in some cases used to efficiently
disprove reachability by over-approximating the state-space, hence avoiding the
full state-space exploration. Let N = (P, T, F, I) be a PN and let My, M € M(N)

be markings on N. If there is a sequence of transitions w such that My = M

Search Strategy H Winner ‘ No. of Timeouts ‘ Solo Answer

Heuristic 89 19 17
BFS 26 70 9
DFS 49 53 2

Fig. 1: Heuristic, BFS and DFS search strategies (timeout at 5 minutes)

then a well-known fact (see e.g. [13]) says that there is a nonnegative solution
to the following system of equations over the variables {z; | t € T'}:

Mo(p) + Y (F(t,p) = F(p,t)) -@, = M(p) forallpe P .
teT

Clearly, if we set x; to be the number of times ¢ was fired in the sequence w,
then this gives us the requested solution. Conversely, if there is no solution to the
state-equations then M is not reachable from Mj. On the other hand, a solution
to the state-equations does not in general imply that M is reachable from the
marking M.

Esparza and Melzer [7] proposed to use integer linear programming in order to
solve the state-equations, ensuring that z; € Ny for all t € T' and thus providing
a more accurate approximation. We shall generalize this approach to cardinality
queries which may require several calls to a linear program solver. A restriction
is a function r : P — Ny x (Ng U {oo}) from places to right-open intervals rep-
resenting the allowed number of tokens in each of the places (if 7(p) = [0, 0]
then there is no restriction on the number of tokens in p). Given two restric-
tions r; and r9, we introduce the combined restriction combine(ry,rs) defined
as combine(ry,r2)(p) = r1(p) Nr2(p) where we assume here the standard inter-
val intersection operator. We use the notation (p1 — [a1,b1],...pn = [an, bn])
to represent a restriction r such that r(p1) = [a1,b1], ..., r(pn) = [an,bs] and
r(p) = [0,00] for all p € P~{p1,...,pn}. For example, combine({p — [2,00],q —
[27 10]>7 <p = [07 7]>) = <p = [27 7]7 q— [2’ 10]>'

Let us now define the function constraints that for a given cardinality query
@ returns a set of restrictions. For simplicity, we assume that the negation has
already been pushed (using De Morgan rules) all the way to the atomic propo-
sitions where the negation can be replaced by the dual atomic propositions.

constr(p=n) = {{p+— [n,n])}

constr(p#n) ={p—[0,n—-1]),(p— [n+1,00])}

constr(p <n) ={{p—[0,n])}

constr(p >n) = {{p+— [n,o0])}

constr(p<mn) ={{p—[0,n—1])}

constr(p>n) ={{p—[n+1,00])}

constr(py V p2) = constr(p1) U constr(ps)

constr(p1 A a) = {combine(r1,r2) | r1 € constr(p1),m2 € constr(ps2)}

Algorithm 3 Disproving Reachability Using Integer Programming

1: function DISPROVE-REACHABILITY (N, Mo, ¢)

2: Let N = (P, T,F,1I).

3: for all r € constr(y) do

4: LP:=1 > Let LP be an empty system of inequations
5: for allp € P do

6: Let [min, maz] = r(p).

7 LP := LPU{Mo(p) + > ,cr (F(t,p) — F(p,t)) - & > min}
8: LP := LPU{Mo(p) + > ,cr (F(t,p) — F(p,t)) - 21 < maz}
9: end for

10: if LP has an integer solution then

11: return “Inconclusive”

12: end if

13: end for

14: return “M [~ EF @7
15: end function

The actual use of state-equations in the setting of cardinality queries is now
described in Algorithm 3.

Our implementation of the algorithm uses Ipsolve [2] for the linear program-
ming part and performs fast on most of the competition nets. We have selected
two smallest instances of each scalable model from the known models used in
MCC’15 in order to be able to make a full state-space search on most of these
models for the purpose of our analysis. Then we ran the state-equation test for
all cardinality queries, resulting in the total number of 1024 executions. If the
over-approximation using state-equations succeeded (disproved reachability), we
report this and terminate, otherwise we continue with the state-space search us-
ing the heuristic strategy with 5 minutes timeout. In 125 runs we did not get a
conclusive answer and reached the timeout, in 405 runs the answer was negative
(cardinality query was not reachable) and in the remaining 494 cases the query
was reachable. Out of the 405 runs where the cardinality query was disproved,
the state-equation technique succeeded in 118 cases (and hence the expensive
state-space search was completely avoided). Moreover, it took on average only
0.15 seconds to perform the state-equation check, with only four tests exceed-
ing 2 seconds. The most expensive over-approximation test was for the model
PolyORBNT-S05J30 where it took 4.25 seconds.

The over-approximation using state-equations is a fast and efficient method
to disprove the reachability of cardinality queries and it manages in almost 30%
of cases to provide a conclusive answer. In order to further increase the percent-
age of cases with conclusive answers, we plan to experiment with trap reduc-
tion [7] and other techniques in order to make the technique applicable to even
more cardinality queries.

/

~

~ Y

/
NN

M
s
=

) P Conditions on p, t and p':

1
2
3
4
5.
6
7
8

\VYS

Mo(p) =0 or Mo(p
I(t)=1(p) = I(p')
p,p" & places(p)

:6 Remove t and p’ (if Mo(p’) = 0)
resp. p (otherwise).

: p//
L p#yp
2. p* ={t}, "t ={p}, t* = {p'}
"o p if MO() 0
i Ep,t) = F(t,p) /)1 {p otherwise
5.
6.

For all ' € T\ {t}:
F({',p") = F({',p)+ F(,p)
F(p",t') = F(p,t') + F(p',t)

(a) Sequential transition removal

Conditions on ¢, p and ¢": = t
LAt
St =Ath p* ={t'"}, ' = {p}

. F(t,p)=F(p,t')=w>0

. Mo(p) =0 ,
Ip)=It)=1I{t)=0 Remove p and t'.

.p ¢lplaces(go) o For all p € P:

- A(p) =0 forall pf € ¢ F(t,p') = F(t,p') + F(t',p)

. p' & places(ip) for all p’ € t'®

(b) Sequential place removal

Fig. 2: Sequential rules for a cardinality formula ¢ and initial marking M

5 Structural Reductions

We shall now present a set of structural reduction rules that allow us to reduce
the net structure and decrease the size of the state-space, while preserving the
answers to cardinality queries. The classical reduction rules for preserving live-
ness, safeness and boundedness were introduced in [14, 13]. We extend them to
weighted nets with inhibitor arcs and specialize to the use for cardinality queries.
The extension is not completely straightforward as a number of side conditions
must be satisfied in order to preserve correctness—in fact TAPAAL was the
only tool at MCC’15 that used structural reduction techniques. The rules are
presented in Figures 2 and 3 and they are relative to a given initial marking Mj
and a cardinality query ¢, where places(p) is the set of all places that occur in

the query .

|/ \/

y Conditions on ¢, ¢/, p and p': .
Cp#ED, t#Y
w1 \W1 . :°p':{t}
° /e
P p’

=> Remove p.

s o p,t')=F@,t') >0 .
ey Mo (p) = Mo (p') ’
~ At,/ I(p) =0 or I(p) = I(p") ~ ‘t'/

NSO W=

(a) Parallel place removal
p1 P p2 pl “e e p2

Conditions on t and t':

1. t#£t wy | W2

2. F(p,t :Fp,t/
f01(r all) pE }g) = Remove t. ¢
3. F(t,p) = F(t',p) AN
for all p € P
Oz \O 4. I(t) =1I(t) \O‘/ A
Ps3 e () P4

Fig. 3: Parallel rules for a cardinality formula ¢ and initial marking M

(b) Parallel transition removal

Theorem 1. Let (N, My) be a marked Petri net and let ¢ be a cardinality query.
Let N’ be the net N after the application of some reduction rules from Figures 2
and 3. Then (N, My) |= EF ¢ if and only if (N, My) = EF .

Proof. As cardinality queries are only concerned about the number of tokens in
places, it is easy to see that the parallel transition rule in Figure 3b is harmless
as the transitions ¢ and ¢’ are enabled at the same time and they have the same
firing effect, so we can easily remove one of them without affecting the reachable
markings. Similarly, the parallel places rule in Figure 3a ensures that the number
of tokens in p and p’ remain the same in any reachable marking (ensured by the
assumption that p and p’ contain the same number of tokens already in the
initial marking). Now we can remove the place p, provided that p is not used in
the cardinality query ¢ and either there are no inhibitor arcs connected to p or
the places p and p’ inhibit exactly the same set of transitions.

For a given net N, let N’ be a net after one application of the sequential
transition rule in Figure 2a that removed the transition . We shall first argue
that if (N, My) = EF ¢, meaning that My —+ M for some sequence of transitions
w such that M = ¢, then also (N’, My) = EF . To show this, let w’ be the

transition sequence obtained from w by removing all occurrences of the transition
t. Observe now that due to the fact that no inhibitor arcs are connected to p
and p’ (condition 5), we can execute from My in N’ the sequence w’ (Mj is a
valid marking also in N’ due to condition 4 requiring that the place we removed
in N’ has no tokens in M) and obtain a marking M’ such that M'(p) = M (p)
forall p € P~ {p,p'} and M'(p") = M(p) + M(p'). As the query ¢ does not
contain the places p and p’ (condition 6), we can conclude that also M’ |= ¢ and
hence (N’, My) = EF . For the opposite direction, assume that My = M’ in
the net N’ such that M’ |= ¢. We shall now fire this transition sequence w in
the original net N such that whenever the transition ¢ that was removed in N’ is
enabled, we insert its firing into the sequence w as long as it is enabled. This will
guarantee that all tokens from p are moved to p’ due to the requirement that the
single input and output arcs of ¢ have weight 1 (conditions 2 and 3) and that ¢ is
not connected with any inhibitor arcs (condition 5). As p is not an input place
for any other transition than ¢ (condition 2), moving the tokens from p to p’ does
not influence the firing of other transitions in N. Similarly, the configuration of
tokens in p and p’ cannot influence the firing of other transitions in N’ due to
the absence of inhibitor arcs connected to p and p’ (condition 5). Now, let M
be the marking reached in N after firing the sequence of transitions described
above. Clearly, M (p) = M'(p) for all p € P~ {p,p'} and as ¢ is not referring to
the places p and p’ (condition 6), we get M = ¢ implying that (N, My) = EF .

The arguments for the rule in Figure 2b, omitted due to space limitations,
are analogous to the sequential transition removal rule discussed above. ad

Note that the more places occur in the query ¢, the fewer reduction rules
are in general applicable. The reachability of a deadlock can be expressed using
a cardinality query but then all places connected to some transition will be
mentioned in the query and hence the structural reduction rules will not be
applicable. However, for deadlock we can reduce the net w.r.t. some trivial query
that does not contain any places (e.g. EF 2 < 1) and now (N, My) is deadlock-
free if and only if (N’, M) is deadlock-free.

Theorem 2. Let (N, My) be a marked Petri net. Let N’ be the net N after the
application of some reduction rules from Figures 2 and 3 for a query ¢ =2 < 1.
Then (N, My) has a deadlock if and only if (N', My) has a deadlock.

Proof. The proof is very similar to the proof of Theorem 1 but some of the
additional conditions like the requirement p # p’ in the rule from Figure 2a
(condition 1) are important as removing the transition ¢ in case of p = p’ can
create a new deadlock in N’ that is not present in N. O

For the competition queries that ask to compute the maximum number of
tokens in the net, we may only use reduction rules from Figure 2a and 3b as the
other two rules possibly decrease the maximum number of reachable tokens.

We have conducted experiments on the same nets as in Section 4 in order
to see how many nets can be reduced and to what degree. The reductions were
performed relative to a query that does not contain any places (as e.g. deadlock)

in order to see the maximal possible reduction. If a query contains many places,
the number of applications of the reduction rules may be possibly lower. The
data show that out of the 261 nets, 118 of them were reducible, with an average
reduction of 35% of the net size (measured as the number of places plus the
number of transitions). Some nets are reducible by only a few percent while
others allow a reduction of up to 95% (e.g. the house construction net). As
reducing the size of a net can imply up to an exponential decrease in the size
of the state-space, the effect of the reductions significantly contributes to the
performance of our verification engine.

6 Tool Implementation

The verification engine for P/T nets, employing the techniques described in
earlier sections, has been efficiently implemented in C++ and made publicly
available as a part of the tool suite TAPAAL [4]. It includes a GUI for drawing
the nets, graphical query creation dialog and advanced debugging (simulation)
options. The tool allows us to import the MCC competition nets in PNML
format as well as the cardinality and deadlock queries, and process them either
individually or in a batch processing mode.

Regarding the implementation details, our experiments showed that the in-
cidence matrix representation of a Petri net is preferred over the linked list rep-
resentation as even though on larger nets the linked list representation preserves
some space, it is remarkably slower [6] (likely due to the cache coherence issues).
Finally, it is important to remark that for larger nets with several hundreds
of places and transitions, an efficient implementation of the structural reduction
rules is of great importance as a naive coding of the rules using up to four nested
loops (like the rule in Figure 3a) will use too much of the preprocessing time.

7 Conclusion

We described the most essential verification techniques used in the P/T net en-
gine of TAPAAL. Each of the techniques has a significant performance effect,
as documented by a number of experiments run on the nets and queries from
MCC’15. We believe that it is the combination of these techniques and a rela-
tively simple explicit search engine that contributed to the second place of our
tool in the years 2014 and 2015. We are currently working on optimizing the
performance of the successor generator, space optimizations and extending the
reachability analysis to the full CTL model checking.

Acknowledgments. The fourth author is partially affiliated with FI MU, Brno,
Czech Republic.

References

(1]

2]

3]

[7]
(8]
[9]

[10]

[11]

[12]
[13]
[14]

[15]

M. Andersen, H.G. Larsen, J. Srba, M.G. Sgrensen, and J.H. Taankvist. Verifica-
tion of liveness properties on closed timed-arc Petri nets. In MEMICS’12, volume
7721 of LNCS, pages 69-81. Springer-Verlag, 2013.

M. Berkelaar, K. Eikland, and P. Notebaert. lp_solve 5.5, open source (mixed-
integer) linear programming system. Software, May 1 2004. Available at
http://Ipsolve.sourceforge.net/5.5.

A. David, G. Behrmann, K.G. Larsen, and W. Yi. A tool architecture for the
next generation of Uppaal. In Formal Methods at the Crossroads. From Panacea
to Foundational Support, volume 2757 of LNCS, pages 352-366. Springer, 2003.
A. David, L. Jacobsen, M. Jacobsen, K.Y. Jgrgensen, M.H. Mgller, and J. Srba.
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In
TACAS’12, volume 7214 of LNCS, pages 492-497. Springer-Verlag, 2012.

A. David, L. Jacobsen, M. Jacobsen, and J. Srba. A forward reachability algorithm
for bounded timed-arc Petri nets. In SSV’12, volume 102 of EPTCS, pages 125—
140. Open Publishing Association, 2012.

J. Dyhr, M. Johannsen, I. Kaufmann, and S.M. Nielsen. Multi-core model checking
of Petri nets with precompiled successor generation. Bacherol thesis. Department
of Computer Science, Aalborg University, Denmark., 2015.

J. Esparza and S. Melzer. Verification of safety properties using integer program-
ming: Beyond the state equation. Form. Meth. in Syst. Design, 16:159-189, 2000.
F. Heitmann and D. Moldt. Petri nets tool database. http://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/db.html, 2015.

L. Jacobsen, M. Jacobsen, M.H. Mgller, and J. Srba. Verification of timed-arc
Petri nets. In SOFSEM’11, volume 6543 of LNCS, pages 46-72. Springer, 2011.
F. Kordon, H. Garavel, L-M. Hillah, F. Hulin-Hubard, A. Linard, M. Beccuti,
S. Evangelista, A. Hamez, N. Lohmann, E. Lopez, E. Paviot-Adet, C. Rodriguez,
C. Rohr, and J. Srba. HTML results from the Model Checking Contest @ Petri
Net (2014 edition). http://mecc.lip6.fr/2014, 2014.

F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, A. Linard, M. Beccuti,
A. Hamez, E. Lopez-Bobeda, L. Jezequel, J. Meijer, E. Paviot-Adet, C. Rodriguez,
C. Rohr, J. Srba, Y. Thierry-Mieg, and K. Wolf. Complete Results for the 2015
Edition of the Model Checking Contest. http://mcc.lip6.fr/2015/, 2015.

T. Murata. State equation, controllability, and maximal matching of Petri nets.
IEEE Transactions on Automatic Control, 22(3):412-416, 1977.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541-580, April 1989.

T. Murata and J.Y. Koh. Reduction and expansion of live and safe marked graphs.
IEEE Transactions on Circuits and Systems, 27(1):68-70, 1980.

C.A. Petri. Kommunikation mit Automaten. PhD thesis, Darmstadt, 1962.

