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Abstract

We have developed and implemented the Relational Grid Monitoring Architecture (R-GMA) as part of the
DataGrid project, to provide a flexible information and monitoring service for use by other middleware components
and applications.

R-GMA presents users with a virtual database and mediates queries posed at this database: users pose queries
against a global schema and R-GMA takes responsibility for locating relevant sources and returning an answer.
R-GMA’s architecture and mechanisms are general and can be used wherever there is a need for publishing and
querying information in a distributed environment.

We discuss the requirements, design and implementation of R-GMA as deployed on the DataGrid testbed. We
also describe some of the ways in which R-GMA is being used.

1. Introduction

This paper describes the design, implementation and
performance of the Relational Grid Monitoring Ar-
chitecture (R-GMA). R-GMA is a unified Grid in-
formation and monitoring system built as part of the
European DataGrid project [11].

Grids, which are put together by cooperating or-
ganisations to share computing resources, are de-
signed to be big. The main aim of a Grid information
and monitoring system is to provide a way for users to
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obtain information about Grid resources and applica-
tions as quickly as possible. However, there can be a
huge number of resources, running thousands of jobs,
all scattered around the Grid. R-GMA takes a novel
approach to solving this problem. To a user, R-GMA
appears as a “virtual database”. The user simply
queries a relational global schema and R-GMA takes
the responsibility of locating relevant sources and
returning an answer. This is called “mediation”.

The advantage of R-GMA’s approach is that users
are offered the flexibility that the relational model and
SQL query language bring. The relational approach
has a sound theoretical basis [8] and its framework has
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been extended recently to the world of streams by the
database community [3]. In R-GMA, both traditional
“one-time” and continuous queries over streams are
supported.

The flexibility gained by choosing a relational data
model over, say, a hierarchical model does come with
some costs. It is less obvious how a relational schema
can be distributed across the Grid. Indexes still need
to be chosen with certain queries in mind. However,
the main advantage is that the relational model allows
queries to explore complex relationships in data.

This paper details how the R-GMA approach has
been realised. Section 2 identifies the requirements
that drove the design, which is presented in Sec-
tion 3. We then describe how the task of “mediation”
is achieved in Section 4. Section 5 describes the de-
ployment of R-GMA in the DataGrid project while
Section 6 puts our work into context with other Grid
information systems. We present performance results
for the scalability of R-GMA in Section 7. Section 8
contains our conclusions.

2. Grid Monitoring

We describe how DataGrid’s middleware components
interact. Then we discuss the requirements of a Grid
information and monitoring system.

A Grid monitoring system often manages rapidly
changing status data, e.g., the throughput of a network
link, while a Grid information system would handle
more static data, e.g., the hardware configuration of
a machine. As we argue in the present paper, Grid
components need a unified system that is able to deal
with both kinds of data.

2.1. Overview of DataGrid Components

Figure 1 shows a “bird’s eye” view of the components
that make up a Grid. Institutions participating in a vir-
tual organisation [12] contribute computing resources:
computing elements, storage elements and network
bandwidth. Distributed across the Grid are resource
brokers, replica catalogues and other components,
which coordinate and manage access to computing re-
sources and experimental data. At the centre is a Grid
information and monitoring system, which is used
by these components to publish or query information
about the state of resources.

A user submits a job via the user interface. The
user specifies certain requirements, e.g., that certain

experimental data stored on the Grid should be used,
that the job should run in parallel using a certain num-
ber of CPUs on machines having the correct software
and that the output should be stored at a particular
location.

The resource broker has to locate the best resources
for running that job. It first consults the replica cat-
alogue to locate the data requested by the job (the
replica catalogue maps logical file names to physical
locations). It then queries the information and mon-
itoring system to find suitable computing elements
(CE) close to the storage elements (SE) that hold
the experimental data and forwards the job on to the
computing elements to run. As the job progresses, in-
formation on the job’s status is being published. The
logging and bookkeeping service tracks and logs the
jobs that are running on the Grid, by querying the in-
formation and monitoring system. Finally, users can
monitor the progress of their job using the user in-
terface, which queries the information and monitoring
system.

2.2. Use Cases and Requirements

Typical use cases of a Grid information and monitor-
ing system include:
(1) A resource broker needs to quickly locate (within

a few seconds) a cluster with 8 CPUs and 1 GB
of memory that is currently lightly loaded. The
cluster must have ATLAS-6.0.4 software installed,
and have a network link to a SE holding certain
experimental data.

(2) A visualisation tool enables users to monitor the
progress of their jobs. Its display needs to be
updated whenever the job status changes.

(3) The logging and bookkeeping service needs to
know what resources a job has used on the Grid
and for how long, in order to be able to charge for
usage.
The main function of a Grid information and

monitoring system is to allow both users and other
components of the Grid to publish data, to locate
data sources, and to query them. It must also meet
certain performance and security constraints. These
requirements are examined here.

2.2.1. Publishing Data
The act of publishing requires two abilities: (i) to
advertise what data is available and (ii) to answer
requests for that data.
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Figure 1. The major components of DataGrid.

Data about a Grid may be stored or generated in
different ways. For example, details about the topol-
ogy of a network might be held in a database (use
case (1)). Information about the current status of a job
running on a computing element might be computed
by a script (use case (3)). A Grid information and mon-
itoring system, therefore, needs suitable interfaces to
allow applications to publish a range of data sources.

Data can be perceived in two different ways: as
a stream of changing values, or as a static set (or
pool) of values. Database management systems for
example, create the illusion that data is static through
concurrency control, even when in reality data might
be flowing rapidly into the database. The stream
metaphor is useful when users want to query for
change. A Grid information and monitoring system
should have publishing interfaces that support both of
these perspectives.

2.2.2. Locating and Querying Data
Data will be distributed across the entire fabric of the
Grid and a Grid information and monitoring system
should provide easy ways for users to locate sources
with interesting data. In addition, a global view over all
the data published in the system must be provided so
that users can easily explore the relationships between
components.

Since a Grid information and monitoring system
should be able to publish both static and stream data,
it should also be possible to query both types of data.
From the use cases, we see that it must be possible
to find out about the latest-state of a resource (use
case (1)) or to be notified continuously whenever the
state of a component changes (use case (2)). Like-
wise, the history of a stream is sometimes needed
(use case (3)). Thus, a Grid information and monitor-
ing system should support these three temporal query
types.

To be accepted by users, the query language should
capture most of the common use cases but should not
force a user to learn too many new concepts. The
queries should also be processed in a timely manner,
e.g., a resource broker must receive accurate up-to-
date information within only a few seconds of its query
(use case (1)).

2.2.3. Scalability, Performance and Robustness
It is envisioned that Grids will contain many thou-
sands of resources, spread over a large geographical
area. For example, over 7000 CPUs are being made
available via a Grid to physicists working on the Large
Hadron Collider [18]. It is inevitable that the fabric of
such a large Grid will be unreliable; network failures
and other problems will be commonplace in Grids.

The information and monitoring system must be
able to scale to cope with data being published by a
large number of resources simultaneously and to re-
spond with correct answers in a timely manner. It must
not be a performance bottleneck for the entire Grid.

The information and monitoring system itself
should be resilient to failure of any of its own com-
ponents, otherwise the whole Grid could fail along
with it. The information and monitoring system cannot
have any sort of central control as resources will be
contributed by organisations that are independent of
each other.

2.2.4. Security
Users of the Grid may only use resources they are
authorized to use. Only if the they authenticate them-
selves, they are granted access to those resources
to which they are authorized. The information and
monitoring system should only provide access to in-
formation users are authorized to access. Similarly,
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resources should only be allowed to publish if they are
authorized to publish.

3. R-GMA’s Design

In this section we describe R-GMA’s architecture and
the rationale behind its design. We provide some de-
tails of the implementation of this design, but this is
on-going work. Details of the deployment of R-GMA
in the DataGrid project are discussed in Section 5.

3.1. The Grid Monitoring Architecture

The Global Grid Forum [14] have identified a Grid
Monitoring Architecture (GMA) [23], which could
offer the scalability and flexibility needed by a Grid
monitoring system. It is a simple architecture consist-
ing of three main types of actors:

Producer: Makes monitoring data (events) available,
e.g., a sensor reporting on a computing element’s
status.

Consumer: Requests monitoring data, e.g., a resource
broker that wants to locate suitable computing
elements.

Directory Service: A place where producers can ad-
vertise their data, and consumers can advertise
their needs.

Figure 2 shows the interactions of these actors.
A producer registers a description of its event stream
with the directory service. A consumer contacts the
directory service to locate producers that have data rel-
evant to its query. A communication link is then set up
directly with each producer to acquire data, either by
a publish/subscribe protocol, or by a query/response
protocol. Consumers may also register with the di-
rectory service. These are then notified whenever new
producers become available.

Intermediary components may be set up that con-
sist of both a consumer and a producer. Intermediaries
may be used to forward, broadcast, filter, aggregate
or archive data from other producers. The intermedi-
ary then makes this data available for other consumers
from a single point in the Grid.

By separating the tasks of information discovery,
enquiry, and publication, the GMA is scalable. How-
ever, the GMA does not define a data model, query
language, nor a protocol for data transmission. Nor
does it say what information should be stored in the
directory service.

In the design of R-GMA we have taken the ideas
from the GMA and extended them with the relational
data model. This provides us with a query language,
SQL, and a data format for transmitting data down the
wire.

3.2. R-GMA: A Virtual Database

Users need to be able to locate interesting informa-
tion using the information and monitoring system; but
the difficulty is that data is scattered across the whole
Grid. It would be useful if the system could oper-
ate like a database, presenting a schema over which
queries can be posed. However, it would not be prac-
tical to stream all data into a central database, as this
would become a single point of failure for the Grid.
Therefore, R-GMA creates the illusion of a database
through which data appears to flow.

To implement a virtual database requires tech-
niques of data integration which have been devel-
oped within the database community over the last 15
years. Data integration systems use a mediator [25] for
matching queries posed over the global schema with
sources of relevant information. Several approaches
have been suggested for performing this “matchmak-
ing role” [17]. One approach is local-as-view where
data sources describe their content as a view on the
global schema. This provides the flexibility of being
able to add and remove sources without reconfiguring
the global schema, although query answering is not
straightforward. We take the ideas of the local-as-view
approach and apply them to data streams.

3.3. Software Design Considerations

The metaphor of Grid components playing the roles
of producer and consumer, introduced by the GMA,
is taken up and extended by R-GMA. Lightweight
APIs are provided to allow the components to act out
their role. The functionality of the APIs is provided by
agents which are created on their behalf and located on
a web server. Figure 3 shows the interactions between
the APIs, agents, registry and a consumer.

In our system, agents are realised as objects in
Java servlets. A web-based architecture is conve-
nient. It allows data to be streamed between agents
as XML packets over a socket. Control messages can
be exchanged between the agents and the registry and
schema as HTTP requests.

Protocols are needed to cope with the unreliability
of Grid components and networks. We have adopted



327

Figure 2. The components of the GMA and their interactions.

Figure 3. The roles and agents of R-GMA along with their interaction with the registry.

the common approach of the Grid Resource Registra-
tion Protocol (GRRP) heartbeats [10]. These are sent
from API to agent and from agent to registry. If a
heartbeat message should fail to arrive in a set time
period then the receiver can assume that the sender is
no longer alive.

3.4. R-GMA Components

Figure 3 shows the components that make up
R-GMA. Like the GMA, R-GMA has producers,
consumers, a registry (GMA directory service) and
republishers (GMA intermediaries). We refer to pro-
ducers and republishers collectively as publishers.
Unlike the GMA, our system also has producer and
consumer agents (one per component) and a schema
(omitted to reduce the complexity of the figure). Also,
in R-GMA the registry is mostly hidden from our
users: the consumer agent has mediator functionality
that will perform registry lookups on behalf of the
user. We now give an overview of the components
of R-GMA, detailing their functionality.

3.4.1. Schema
In R-GMA a common language is needed for describ-
ing what producers have to offer and what consumers

want. This language is based on SQL and the vo-
cabulary consists of relations (i.e. table names) that
together make up a global schema. R-GMA’s schema
component has the responsibility of storing and main-
taining this global schema. The registry and the agents
will contact the schema whenever they need to know
about the relations of the global schema, for example,
when validating a query.

The R-GMA schema is implemented as a servlet
with a relational database to store details of the rela-
tions in the global schema. The basic configuration has
a set of relations that make up a core schema; however
users can easily extend this by new relations.

R-GMA relations have attributes and types, as
in SQL. As each relation represents a stream, it also
implicitly has a timestamp attribute indicating at what
time the tuple was published. A subset of the attributes
can be singled out as the primary key. This is not en-
forced as a key constraint, but is used to identify the
parameters of a measurement.

For instance, R-GMA’s core schema contains a
relation tp to publish the network throughput between
sites connected to the Grid. The relation has the
schema

tp(from, to, tool, psize, time, timestamp),
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to record the time it took packets of a specific size to
travel from one site to another, as measured by a cer-
tain tool. The from, to, tool and psize attributes make
up the primary key of tp.

A particular set of values for a primary key can
be thought of as representing a channel in a stream.
A tuple in the tp relation might be

tp(‘hw’, ‘ral’, ‘UDPmon’, 1000, 2.4,

2004-01-12 11:26:42)

giving a measurement of 2.4 ms for a 1000 byte
UDPmon packet between Heriot-Watt and Rutherford
Appleton Laboratory on 12 January 2004 at 11:26 am.
The channel would be identified by the values

(‘hw’, ‘ral’, ‘UDPmon’, 1000).

3.4.2. Producer Role
The role of a producer is to publish data. This involves
two tasks: (i) advertising the tuples that they make
available and (ii) answering requests for data.

The producer API provides a method for register-
ing a view on the global schema that relates the stream
of the producer to a relation in the global schema. Such
a view is defined by a simple SQL query that ranges
over a single relation and selects all attributes, e.g.,

SELECT ∗
FROM tp

WHERE from = ‘hw’ and tool = ‘UDPmon’.

As a consequence, views for the same relation can
only differ in their WHERE clause. By registering its
view, the producer promises to publish only tuples for
the table in the FROM clause that, moreover, satisfy the
WHERE clause.

Another method in the API allows the producer to
insert a collection of tuples into its stream. The pro-
ducer agent supports a component playing the role of a
producer by taking the responsibility of storing tuples
and answering queries.

3.4.3. Consumer Role
The role of a consumer is to locate and collect together
monitoring data of interest. To perform this role it
needs the ability of posing an SQL query of a certain
type and of retrieving an answer, for which R-GMA
offers methods in the consumer API.

In R-GMA, consumers are defined by both an
SQL query and a query type. The query type may

either be history or latest-state (these queries are col-
lectively called one-time queries) or continuous. Or-
thogonal to this is the distinction between local and
global queries. A local query is directed towards one
or more publishers, while a global query is posed with-
out specifying any publishers and needs mediation, i.e.
translation into a local query, in order to be executed.
Thus, the consumer API allows a client to pose a query
and declare its type. The consumer agent takes on
the task of planning the execution of the query and
retrieving tuples.

Once the consumer agent starts to retrieve tuples,
these need to be passed on to the consumer. The con-
sumer API offers a method that allows tuples to be
retrieved one at a time or as a collection. With this
mechanism, a user who is only interested in receiving,
say one tuple, need not wait for a whole answer set to
arrive.

3.4.4. Producer Agents
A producer agent helps Grid components to play the
role of a producer. It acts on behalf of the producer by
registering a view describing the data and by answer-
ing requests from consumers for that data. The agent
is realised as an object in a Java servlet.

When a producer inserts tuples using the API,
these are forwarded to the agent. The agent then
checks that the tuples conform to the producer’s de-
scriptive view, before storing the tuples in a buffer.

In R-GMA, all producer agents are capable of an-
swering a continuous query. They do so by returning a
stream consisting of all tuples inserted by the producer
that satisfy the query. In addition, producer agents may
be configured, at a small performance cost, to be able
to answer latest-state or history queries. A database is
used for this and one-time queries are simply passed
on to the supporting database.

The producer agent registers the view and the
query types that are supported on behalf of the pro-
ducer. The registration acts as an advertisement and
consumers that are interested (either in its local re-
lation or in the global relation) will contact it with a
suitable query.

3.4.5. Consumer Agents
A consumer agent assists Grid components in playing
the role of a consumer. Again, it is realise as an object
in a Java servlet.

The first stage of query answering is to identify
which publishers have relevant information and to de-
cide which of these to contact. The consumer agent
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cooperates with the registry for this, details are given
in Section 4.

Queries are processed by the consumer agent con-
structing a query plan. It then contacts each publisher
in the plan in turn with a local query. As answers
arrive, the consumer agent stores these in a single
queue. The consumer can then retrieve the answer
by “popping” tuples from the queue, as described in
Section 3.4.3.

3.4.6. Republishers
As the Grid grows in size, mechanisms are needed
in R-GMA that ensure that popular queries are still
answered efficiently. Republishers are used for this
purpose. A republisher is similar to the view mech-
anism of a relational database: it poses a continuous
query over the global schema and publishes the answer
stream.

For continuous queries, it can be expensive (more
network traffic, more socket connections) to contact
many producers. If a republisher is available that has
already merged these streams, then a consumer agent
will answer the query more efficiently by contacting
this instead.

For one-time queries, it can be expensive to per-
form a query that involves distributed query process-
ing, such as a distributed join. However, if a re-
publisher is available that has all the relevant data
in a database, then such a query can be answered
efficiently by passing the query on to that database.

In principle, as both the input and output of a
republisher is a stream, hierarchies of republishers
can be built. For example, republishers could be set
up at sites, and these could all feed into a top-level
global republisher. Queries that only request data from
an individual site could be served by a site repub-
lisher, whereas the global republisher could serve
more general queries.

The advantages that republisher hierarchies could
bring depend on whether relations can be partitioned
in a sensible way. The current system allows hier-
archies to be set up manually. However, we are de-
veloping algorithms and protocols that automatically
generate and maintain such a hierarchy [9].

3.4.7. Registry
Consumer agents need to find publishers that can con-
tribute to answering their query. This is facilitated by
R-GMA’s registry, which records all publishers that
exist at any given point in time. The registry is another
Java servlet which uses a database to store details of

the publishers and consumers. However, the registry
is hidden from the users/components of the Grid. In-
stead, their agents interact with the registry on their
behalf.

Consumer agents interact differently with the reg-
istry, depending on whether they have a continuous
or a one-time query. The mechanisms employed to
perform the matchmaking within the registry are dis-
cussed in detail in Section 4.

For one-time queries, the simplest approach is for
the agent to consult the registry each time the query
is run. The registry is able to identify publishers that
are relevant to the query, by querying its database, and
returns their address, type and other information, e.g.,
view conditions, that are useful for planning the query.

In contrast, as continuous queries are long-lived,
the query is registered by the agent. The registry then
ensures that throughout the lifetime of the consumer, it
can receive all of the data the query asks for: the con-
sumer is notified as relevant publishers are registered
or dropped.

4. Answering Queries in R-GMA

With R-GMA, clients are relieved of the task of lo-
cating sources of information. The schema models
what kind of information about the Grid is available in
principle. A client poses its query against the schema,
which is translated by the system into a set of queries
over the local relations of relevant publishers and then
executed.

We will first discuss the semantics of a query for
each of the three temporal types introduced before-
hand. That is, we define which is the set or stream
of tuples that make up the answer of a query. This is
not completely straightforward since queries are not
evaluated over a relational database. It will turn out
that sometimes queries can only be answered partially
if the data needed for a full answer are not available.

We also discuss the mediation process. As the se-
mantics and the approach to mediation differs between
continuous and one-time queries, we discuss each case
separately.

4.1. Query Semantics

4.1.1. Semantics of Continuous Queries
Currently, R-GMA only supports continuous queries
that are selections over a single relation, that is,
queries that in SQL are written as

SELECT ∗ FROM r WHERE C, (1)
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where r is a relation and C is a condition. In the fol-
lowing we will also use the relational algebra notation
σC(r) for such a selection query. If such a query is
posed at time t0, the answer is a stream that consists
of all tuples of relation r that satisfy condition C and
have a timestamp greater than t0.

4.1.2. Semantics of One-Time Queries
One-time queries are arbitrary SQL queries, which are
flagged either as a history or as a latest-state query.
Suppose that Q is such a query. We indicate its query
type using the superscripts h and l, respectively, thus
writing Q(h) or Q(l). We denote the set of answers
obtained by evaluating the SQL query Q over some
database D as Q(D).

Suppose the query is being posed at a given point
in time t0. Up until time t0, the producers of R-GMA
– including those that have ceased to exist – will have
published a certain set of tuples, all of which have
a timestamp that is less or equal to t0. Conceptually,
we can imagine one database, denoted as D (h), which
contains all these tuples. Then the set of answers to the
history query Q(h) is defined as the result of evaluating
Q over D (h), formally, Ans(Q(h)) = Q(D (h)).

To define the semantics of a latest-state query, we
have to go back to the concept of a channel. Consider
as an example the relation tp with the schema

tp(from, to, tool, psize, time, timestamp),

where the first four attributes form the primary key.
A set of values for these attributes defines a channel
and all the tuples that agree on these attributes are
the tuples that have been sent across the channel. We
assume that different producers always produce for
different channels. We say that a channel is alive at
time t0 if its producer is registered at this point in
time. Now, we construct conceptually a database D (l)

that contains for each channel that is alive the tuple
with the latest timestamp less or equal to t0. Then
the set of answers to the latest-state query Q(l) is de-
fined as the result of evaluating Q over D (l), formally,
Ans(Q(l)) = Q(D (l)).

Note that the answers to Q(l) cannot be computed
by evaluating Q over the subset of D (h) that contains
the latest tuple for each channel present in D (h) be-
cause some of these channels may no longer be alive.
The restriction to channels that are alive is important
since, for instance, a resource broker would not be
helped if it received information about a computing
element that has been shut down in the meantime.

4.2. Answering Continuous Queries

When answering a query, we distinguish between
(i) matchmaking, the task of identifying publishers
that can potentially contribute to answering the query
(called relevant publishers) and (ii) query planning,
the task of deciding which publishers to contact,
posing queries over them, and combining the answers.

4.2.1. Matchmaking
Suppose a consumer with a continuous query Q =
σC(r) has been generated. The consumer agent then
contacts the registry to register the consumer and to
obtain a list of relevant publishers.

Consider a publisher for the relation r that has
registered a descriptive view σD(r). When is such a
publisher relevant to Q? Clearly, if it is logically im-
possible to satisfy both C and D then the producer
can never contribute a tuple to the query. However, if
the condition C AND D is satisfiable then the publisher
must be relevant; answer tuples would be lost if it were
not contacted.

In general, checking the satisfiability of un-nested
conditions, formed using AND and OR, is NP-hard in
the worst-case, which could turn matchmaking into
a computationally expensive task. The current ver-
sion of R-GMA, however, only accepts queries and
views that have simple conditions. For queries, these
conditions are of the form

Attr1Op1Val1 AND . . . AND AttrnOpnValn, (2)

where Attri is an attribute, Vali is a value and Opi

one of the operators “�”, “=”, or “�”; view condi-
tions have the same form, except that only the operator
“=” is supported. For such conditions the satisfiability
check is simple. To perform it efficiently, the registry
contains a relational database that stores in a structured
manner both consumer queries and publisher views.
Then, for a consumer query Q, the registry gener-
ates a query over its database that retrieves all relevant
publishers for Q.

Similarly, when a new producer is registered by its
agent then the registry creates a query that retrieves
all consumers for which that publisher is relevant and
notifies their agents of the new producer.

4.2.2. Query Planning and Execution
Again, a simple approach has been chosen, in the
current implementation of R-GMA, for planning con-
tinuous queries in that only producers are used to
answer a query – republishers are not used. We have
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developed theoretical foundations for a more general
approach [9] but we are waiting for a clear use case
before implementing this.

A plan that delivers all answer tuples for a selection
query σC(r) consists of contacting all relevant produc-
ers, querying them for those tuples of the relation in
question that satisfy the query condition and finally
merging the answer streams. When new producers are
created or existing ones die, the plan is adapted in a
straightforward manner.

Techniques that make use of republishers need to
be considerably more sophisticated. One reason is that
republishers introduce redundant data and a choice has
to be made as to which publisher to use in a query plan.
Moreover, plans have to be modified to take advantage
of new republishers or to compensate for a republisher
that is no longer available. When switching plans, spe-
cial care must be taken to avoid the loss of tuples or
duplicate tuples. We expect a need for republishers to
arise as R-GMA is used in larger Grids.

4.3. Answering One-Time Queries

There are two reasons why one-time queries in
R-GMA are more difficult to answer than continuous
queries.

The main difficulty is due to the fact that history
or latest-state queries refer to data that have been pro-
duced in the past. Therefore, such a query can only be
answered if a publisher maintains the necessary data
in a latest-state or a history database for its streams.
To ease our presentation, we say that a producer is a
latest-state or history producer if its agent maintains
a latest-state or history database. Similarly, we talk
about latest-state and history republishers. Note that
producers and republishers can be set up to support
both types.

A second difficulty arises if the data are distributed
over more than one database. In such a situation query
answering would require some specialised mecha-
nism for distributed query processing. Until recently,
no production-strength distributed query processors
were available in the public domain and so R-GMA
has only relatively simple mechanisms for distributed
query processing.

They are based on the observation that sometimes
a global query Q can be translated into several lo-
cal queries Q1, . . . ,Qn over databases D1, . . . ,Dn

such that Ans(Q) = Q1(D1) ∪ · · · ∪ Qn(Dn). If this
is possible, the query can be executed by a “divide
and conquer” approach, that is, by processing it in-
dependently over each database and then merging the

results. This approach works for example for selection
queries.

To apply the “divide and conquer” approach
to more complex situations, more meta-information
about the databases would be needed. For instance,
equality joins often involve attributes where one is a
foreign key referring to the other. If a foreign key
constraint is maintained by each database, then the
corresponding join could be executed by “divide and
conquer”. However, R-GMA does not support foreign
keys so that this optimisation technique is not feasible.

4.3.1. Matchmaking
When a consumer agent receives a one-time query it
checks whether it is a selection with a condition as in
formula (2). If so, it is called a simple query; if not, it
is called complex query.

If it is a complex query, R-GMA cannot apply the
“divide and conquer” strategy. Thus, the agent asks
the registry for a list of all publishers that are of the
same type as the query and are capable of processing
the query alone. We say that a publisher publishes fully
for a relation r if its descriptive view for that relation
has an empty WHERE clause, i.e. if it is of the form
“SELECT ∗ FROM r”. The registry returns a list of pub-
lishers each of which satisfies the following criteria:
the publisher is publishing for all relations that occur
in the query and either it is a republisher and it pub-
lishes the query relations fully, or it is a producer and
there is no other producer for any of the relations in
the query.

In both cases the publisher can answer the query
alone. In the first case, it is a republisher that collects
all the data for all the relations in the query. In the sec-
ond case, it is a producer that holds all the data needed
because it is the only source of data for the query rela-
tions. If none of the two cases holds, R-GMA does not
attempt to answer the query and the consumer agent
returns a warning.

If the query is simple then “divide and conquer”
is applicable. The agent asks the registry for relevant
publishers that are of the same type as the query. They
are determined as for a continuous query.

4.3.2. Query Planning and Execution
The guiding principle for answering complex queries
is to ensure that answers are always correct. Currently,
R-GMA can only ensure this by handing the query
over to a complete publisher. We say a publisher is
complete with respect to its view if σD(r) contains all
tuples of relation r that satisfy D. In general, answers
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to queries involving negation or aggregation could be
incorrect if executed by an incomplete publisher.

All the publishers in the consumer agent’s list are
complete. However, they may be closer or less close
in terms of communication time. Therefore, the agent
polls the publishers on its list to identify the one that
can reply the fastest and then sends the query to it.
The agent forwards to its client the result set returned
by the publisher agent.

For simple queries, correctness of answers is
straightforward to guarantee. A consumer agent that
has to set up a plan for a simple query receives a
list of relevant republishers R1, . . . , Rm and relevant
producers P1, . . . , Pn.

Currently, the agent follows a simple approach. If
there is a republisher that publishes fully for R then
it is chosen, otherwise all producers are contacted.
In the absence of full republishers, the approach is
not guaranteed to deliver all answers because there
may be producers that do not maintain latest-state or
history databases. It is technically possible, however,
to improve R-GMA’s mediator in such a way that it
can also make use republishers which publish only
fragments of the relation r to answer simple queries.

5. R-GMA in DataGrid

R-GMA was used within the DataGrid project [11] for
publishing network monitoring information and pro-
viding information on resources. It was also tested
for its suitability for providing job monitoring in-
formation. This served to help test and improve the
implementation of R-GMA, and established a user
community. In this section we discuss how R-GMA
was used for collecting resource information and for
providing information about the status of running jobs.

5.1. Collecting Resource Information

The first major use of R-GMA was to collect sta-
tus information about Grid resources and make this
available to the resource brokers. Status information
may be obtained from the resources in an LDAP for-
mat. The resource brokers consume the data from their
own local LDAP database. The LDAP data format
was adopted as the Monitoring and Discovery Service
(MDS 2) [10] was initially used as the information and
monitoring system within DataGrid.

As stated in Section 3, R-GMA uses the rela-
tional data model. Thus, mechanisms were required

to convert the published data from LDAP into rela-
tional tuples and back again for the resource broker to
access. For this purpose Gadget In (GIn) and Gadget
Out (GOut), respectively, were developed. These also
allow for interoperability with Grids using the MDS 2
information system.

A latest-state republisher is used to populate and
maintain a resource broker’s LDAP database. This
collects all the status information about resources into
its own database. It is then converted, using the GOut
tool, and copied into the resource broker’s database.
This approach has two drawbacks: (i) the resource bro-
ker’s database is a copy of the republisher’s database,
and (ii) as the resource broker is not querying R-GMA
directly it cannot take advantage of other latest-state
republishers if its designated republisher should fail.

5.2. Job Monitoring

The scalability and stability of R-GMA were particu-
larly tested when its suitability for job monitoring was
tested. This was done in the context of batch jobs for
the CMS and D0 experiments.

The batch jobs are wrapped so that they gener-
ate status information. This status information needs
to be stored in a database located at the submitter’s
site. However, a resource broker may schedule the
job to run on any site on the Grid so the status in-
formation must be returned to the submitter’s site.
This was achieved by the job wrapper creating a pro-
ducer. A history republisher was then created which
collated the information about all the jobs processed.
The tests showed that R-GMA was then able to cope
with batches of over 2000 jobs. Full details may be
found in [6].

The facility to be able to extend R-GMA’s schema
at will proved to be useful for job monitoring. The
information generated by the job wrappers did not fall
in the core schema and thus R-GMA’s schema was
extended with suitable relations to capture this data.

6. Related Work

In this section we give an overview of existing Grid
monitoring and Grid information systems. We also
discuss work that has been conducted on data streams.

6.1. Grid Monitoring and Information Systems

Several Grid monitoring systems have been devel-
oped, each with a different emphasis and aim. Some
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have been developed for specific Grids, e.g., CODE
[22] for NASA’s Information Power Grid, while others
are prototype systems to prove the correctness of the
GMA approach, e.g., pyGMA [16].

Many Grid monitors only provide specific types
of information. For example, Autopilot [19] used
in the GrADS project and G-PM/OCM-G [5] in the
CrossGrid project have been developed to track the
progress of jobs running on the Grid, while sys-
tems such as the Network Weather Service (NWS)
[26] have been developed to monitor the status of the
resources on the Grid.

R-GMA was designed as a unified Grid informa-
tion and monitoring system to cover all aspects of the
Grid. Other such unified systems are Scalea-G [24],
Mercury [4], and the Monitoring and Discovery Ser-
vice (MDS) [10] of the Globus toolkit. These can
all be seen to be implementations of the GMA, with
Scalea-G and MDS both using standard data models.

Scalea-G uses an XML data format and makes use
of the XPath and XQuery query languages. It consists
of Sensor Managers, a Client Service and a Directory
Service. However, it has currently only been deployed
on a small testbed with no indication of how it will
scale to a large Grid.

MDS continues to be developed as part of
the Globus Toolkit [15]. It consists of information
providers and aggregate directories. Data is organised
using a hierarchical model, based on the Lightweight
Directory Access Protocol (LDAP) in version 2 and
on XML in version 3.

MDS has a scalable architecture and is able to
present to users a global view over the data. The
MDS schema is not easily extensible. In version 2,
latest-state queries are supported; however there is no
assurance that the answers are up-to-date, as cached
data is only refreshed when queries are received. Also,
version 2 provides no easy way of supporting history
queries. Some of these problems were addressed in
version 3. However, the main drawback of MDS is
its limited query language. Firstly, the schema must
be designed with popular queries in mind. Secondly,
there are no mechanism to capture relationships in the
data that are not hierarchical, e.g., join operations. The
ability to perform a join is required by the resource
broker, which needs to relate latest-state information
about computing elements, storage elements and net-
work links. The only way this can be conducted in
MDS is with separate queries. These can be captured
by a single query in R-GMA.

A more comprehensive comparison of these mon-
itoring systems, and many others, can be found in the
survey [13].

6.2. Data Streams

In recent years the database community has been ac-
tively researching the idea of processing stream data.
Stream data occurs in many different scenarios in-
cluding financial tickers, telecommunication logs and
monitoring applications. A data stream is a time
varying, unbounded, append-only sequence of data.

Standard database techniques require the entire
data set to be loaded in before querying. For exam-
ple, some techniques for processing joins block until
the entire data set has been read once. This approach
cannot be used for data streams as they are potentially
infinite.

Several research data stream management systems
(DSMS) such as STREAM [3], Telegraph [20] and
Aurora [7] have been developed to deal with the char-
acteristics of stream data. New ways of processing
data which require only one pass and do not require
the entire data set to have been processed have been
devised, e.g., eddies [2]. Also, new query languages
have been designed such as the relational based CQL
language [1]. However, the work on DSMSs has been
conducted for centralised systems, which are not suit-
able for a Grid information and monitoring system
and many of the concepts for the query languages
are beyond the requirements for a Grid monitoring
system.

7. Performance Measurements

We have made measurements to explore the scalabil-
ity of R-GMA. Our measurements are inspired by
the work of Zhang, Freschl and Schopf who con-
ducted a performance evaluation of Grid information
and monitoring systems [27]. They investigated four
questions, which rephrased in R-GMA terminology
read as follows:
(1) How does the performance of a producer scale

with the number of consumers?
(2) How does the performance of the registry scale

with the number of consumers?
(3) How does the performance of a producer scale

with the amount of data it is publishing?
(4) How does a republisher scale with the number of

producers it is aggregating?
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We expect R-GMA to be deployed with infor-
mation being published via producers, which stream
tuples. Republishers then collect the information to-
gether. As a consequence, the load on the producers
is very low as they are only feeding the republish-
ers. Thus, Question 1 is not relevant for R-GMA.
Moreover, by deploying more republishers the load
on individual republishers can be reduced as neces-
sary. However, since consumers have to contact the
registry and usually are consuming from republishers,
Questions 2, 3 and 4 are highly relevant.

Being aware of the registry as a single point of fail-
ure, R-GMA supports multiple registry instances with
a replication mechanism between them. As the repli-
cation overhead must have some impact, we would
not expect to see two registries giving twice the per-
formance of one. To answer Question 2, we have
made measurements with both one and two registries
as described in Section 7.1.

Section 7.2 presents measurements which address
Question 4 on the aggregation performance of a repub-
lisher in R-GMA. This test also involves publishing
from a large number of producers via a producer
servlet and so addresses Question 3 at the same time.
There will be a limit on the amount of data one can
push into one node on a network. The only way to
circumvent this limit is not to attempt to merge all in-
formation but leave it partially distributed. To do this
transparently requires the introduction of distributed
query processing into R-GMA. Meanwhile it has to
be done manually by setting up multiple republishers
that each collect only a part of the information; the
application must then combine results of queries from
all the republishers.

7.1. Testing the Performance and Scalability of the
Registry Service

This test reflects the second test in the study of Zhang,
Freschl and Schopf [27]. We used a fixed number of
producers – all publishing to the same virtual table and
with no WHERE clause. The measurements were made
with ten and with fifty producers created on a sin-
gle node. Separate nodes were used for the producer
servlet, the registry and the schema.

To test the registry, we wrote a program to cre-
ate and destroy consumers at varying intervals, each
running a continuous query to the producers. Each
creation contacts the registry to find all producers
and registers the consumer. The destruction merely
unregisters the consumer.

We were able to increase the load on the registry
by running more instances of the program. Again, we
used separate nodes for the consumers and the con-
sumer servlet, otherwise we risked being limited by
the performance of these components, and not by the
performance of the registry.

By varying the total consumer creation/destruction
frequency, we were able to observe the total load on
the registry servlet by noting the percentage CPU idle
time as reported by the top command (there were no
other processes placing a significant load on the sys-
tem). We expected to see that the maximum frequency
would be limited by overloading of the registry servlet.
By repeating the measurements with a pair of reg-
istries we were able to see how close we could get
to doubling the frequency of registry accesses, with
any shortfall being due to the overhead of registry
replication. All tests were run with logging (log 4j)
disabled.

7.1.1. Results
Figure 4 shows a plot of the percentage idle time on
the registry servlet machine as a function of the over-
all frequency against the average time to complete the
consumer create and close operations, with all mea-
surements taken in the steady state. The lines labelled
“indirect” show the results of carrying out the tests
just described. As can be seen, the idle time decreases
almost linearly with the registration frequency, and the
response time also increases.

We were, however, unable to saturate the registry
with the available hardware. So to impose a greater
load on the registry, we altered the test program to con-
tact the registry directly, making the same calls as the
consumer agent would normally do. This produced the
lines labelled “direct”, and the similarity between the
“direct” and “indirect” lines in both plots justifies the
simulation. Interestingly, the almost parallel offset in
the response time graph (right) gives us an indication
of the extra time taken by the consumer itself, with
the “direct” connection being about 25 ms faster. The
main result is that the maximum rate of registration
(with one registry) was around 125 registrations per
second, at which point the CPU idle time was zero.

Repeating the test with a pair of registries produced
the results plotted in Figure 5.

Note that even with eight direct connections to the
pair of registries, we were unable to saturate them. An
inspection of Figure 5 suggests that it is reasonable
to extrapolate to a rate of 250 registrations per sec-
ond for a zero idle time, though hardware limitations
prevented us from demonstrating this.
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(a) (b)

Figure 4. Idle time of the registry (a) and response time (b) vs rate of registration with direct and indirect connections from 4 machines.

(a) (b)

Figure 5. Idle time of the registry (a) and response time (b) vs rate of registration with direct connections to a pair of registries from 8 machines
and indirect from 4 machines.

For the response time, we note again that the con-
sumer takes about 25 ms in addition to the time taken
by the registry.

The conclusion is that a single registry can cope
with 125 consumers per second and that a second reg-
istry shows near-linear scaling behaviour. Although
we would expect two registries to show slightly less
than twice the performance of one (because of the
overhead of replication), in this test, the effect was too
small to measure.

7.2. Testing the Performance and Scalability of the
Aggregation Process

This test used a simple consumer being fed by multi-
ple producers, to assess the aggregation performance
of a republisher. Since a republisher is essentially a
consumer combined with a producer to publish the

consumed tuples, this allowed us to concentrate on the
aggregation part of the process which is carried out by
the consumer. We investigated the effects of varying
the tuple size and of varying the number of producers.

In each case, we monitored the tuples coming out
of the consumer. We plotted both the idle time of the
processor running the producer servlet and the prop-
agation time of the data through the system, as a
function of the rate of tuples consumed. We stopped
when the tuples emerging were no longer up to date,
as this indicated that data was beginning to be queued
and so we had reached the maximum aggregation
throughput. The machines were all synchronised with
the Network Time Protocol (NTP), so measuring the
propagation time merely required comparison of the
published measurement time of a tuple with the time
it was received by the consumer.
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To ensure that we were limited only by the aggre-
gation process, we used two producer servlets being
fed by a program running multiple threads, each with
a producer instance. This approach is identical, from
the consumer’s point of view, to having many geo-
graphically dispersed producer agents, as there is a
direct connection to the consumer from each producer
instance.

7.2.1. Results

Figure 6 shows the effect on aggregation throughput,
of varying the tuple size.

In each case, as the throughput increases, the idle
time of the consumer servlet decreases. However the
idle time drops close to zero only with the smaller of
the tuple sizes, not for the 2432 byte and 4845 byte

tuples. To understand why, we plotted the number of
tuples queued on the consumer agent and the load on
the consumer client. These results are shown in Fig-
ure 7, and they indicate that the consumer client is
unable to keep up for the largest tuples, and in con-
sequence, the data gets queued by the consumer agent.
So, smaller tuple sizes are limited by the consumer
agent, and larger ones by the consumer API.

Figure 8 shows the maximum consumption rate of
tuples plotted against tuple size, fitted to a function of
the form f (n) = 1/(a+bn), assuming that the time to
transfer n bytes is a + bn, for some parameters a and
b. The curve shown has values of a = 1404 µs and
b = 1.00 µs/byte. However, there are different limit-
ing factors for small and large tuples and these would
need to be considered when deploying on a real Grid.

(a) (b)

Figure 6. Idle time of the consumer servlet (a) and propagation time (b) vs rate of consumption for 100 producers over 2 producer servlet
processors with tuple sizes of 57, 380, 2432 and 4845 Bytes.

(a) (b)

Figure 7. Number of tuples held by the consumer agent (a) and idle time of the consumer client (b) vs rate of consumption for 100 producers
over 2 producer servlet processors with tuple sizes of 57, 380, 2432 and 4845 Bytes.
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Finally, we tried varying the number of producers.
As more producers were added, the rate of publish-
ing for each one was reduced. The results for a tuple
size of 765 bytes are shown in Figure 9 (where “SP”
denotes a streaming producer).

We see that at low rates, consumer loading is
strongly related to the number of producers, but the
upper limit seems to be largely independent of the
number of producers. We were again limited in testing
by available hardware, and were not able to go beyond
3200 producers because of the number of Java threads
running on the nodes with the producers and producer
agents. The maximum rate for 3200 producers was
423 tuples per second. This involved having 1600
producers publishing via each of the producer servlets.

7.3. Hardware Configuration

The tests were carried out using release 4.0.0 of R-
GMA on machines with an AMD Athlon XP 2400+.

Figure 8. Maximum consumption rate of tuples vs tuple size.

The machines had 1 GB of RAM, and were con-
nected through Via RhineII 10/100 VT6102 NICs to
a Dlink 1016D 10/100 Ethernet Switch. We used
Tomcat 4.1.18 and Sun’s Java j2sdk1.4.2_05 with a
maximum heap size of 512 MB. The ulimit com-
mand was used to increase the limit on open files on
the consumer servlet.

7.4. Deployment Experience

R-GMA has been deployed on the Large Hadron Col-
lider Computing Grid (LCG) coordinated by CERN,
where it has so far been installed on about 50 sites.
There have been some problems with sites having
incorrectly configured firewalls which have blocked
messages. However the performance of R-GMA has
not been a bottleneck and has been consistent with our
measurements.

8. Conclusions and Future Work

We conclude with a discussion of how well R-GMA
meets the requirements identified for a Grid informa-
tion and monitoring system and describe the work that
will be conducted to extend the implementation.

Through the role of a producer, Grid compo-
nents can publish their monitoring data. The schema
provides a global view of all the monitoring data
available. Grid components interested in monitoring
data can locate and retrieve that data through the
role of a consumer. The actual task of locating and

(a) (b)

Figure 9. Idle time of the consumer servlet (a) and propagation time (b) vs rate of consumption for a tuple size of 765 bytes published via 2
producer servlet processors with 16, 100, 800, 1600 and 3200 streaming producers.
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retrieving the data is automated by the consumer’s
agent and the registry. By separating out the tasks
of locating and retrieving data, the system will scale
effectively.

Our measurements indicate that we have good
scaling behaviour. A registry can cope with 125 con-
sumers per second being created and destroyed. A
second registry shows perfect scaling behaviour within
the accuracy of our measurements. A consumer, ag-
gregating tuples can process a tuple in a time of
1404 µs + 1.00 µs/byte. We were able to aggre-
gate data from 3200 producers with no indication of
an approaching limit. We were able to publish data
from 1600 producers connected to a single producer
servlet.

Work on R-GMA is continuing within the En-
abling Grids for E-Science in Europe (EGEE) project
where it is being re-engineered as a set of Web Ser-
vices and where great emphasis is being placed on the
quality and portability of the code.

As Grids will be shared by increasing numbers of
virtual organisations (VOs), each will need their own
name space and control of security. We will allow each
VO to have its own virtual database, each having au-
thorization rules to control publishing and consuming
of information. These rules will allow fine grained
authorization.

Finally, it is planned that mediation capabilities
will be improved to allow hierarchies of republishers
to be created and exploited in answering continuous
queries. Moreover, if public domain middleware for
distributed query processing that is currently being
developed in other Grid projects (OGSA-DAI [21])
proves to be suitable, R-GMA will be extended to
execute queries over multiple producers.
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